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Abstract. A meshless method based on the method of fundamental solutions (MFS)
is proposed to solve the time-dependent partial differential equations with variable
coefficients. The proposed method combines the time discretization and the one-
stage MFS for spatial discretization. In contrast to the traditional two-stage process,
the one-stage MFS approach is capable of solving a broad spectrum of partial differ-
ential equations. The numerical implementation is simple since both closed-form
approximate particular solution and fundamental solution are easy to find than the
traditional approach. The numerical results show that the one-stage approach is
robust and stable.
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1 Introduction

Through various types of reduction techniques, numerical solution of a given time-
dependent partial differential equation can be obtained by converting it to a series
of elliptic equations which can be solved by standard numerical methods. There are
many reduction techniques which include Laplace transform method [4, 19], Fourier
transform method [9], and discretization in time methods [7, 10, 11, 17]. Among these
reduction techniques, the discretization in time methods appear to be the most pop-
ular approach. In this paper, we will focus on the method of discretization in time to
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reduce the given convection-diffusion problem to a series of elliptic partial differential
equations.

For the purpose of solving time-dependent problems, instead of using traditional
methods such as finite element, finite difference, or boundary element methods, we
propose to apply the method of fundamental solutions (MFS) [2, 8, 10, 12] coupled
with the method of particular solutions (MPS) with the use of radial basis functions.
Such approach for solving time-dependent problems can be found in the literature
[7, 10, 11, 17]. When the fundamental solution and particular solution of a given dif-
ferential operator are available, the differential equation can be solved effectively.
However, they can only be obtained for a limited class of linear differential operators.
The fundamental solutions for various types of differential operators are available in
the literature of boundary integral equations and boundary element methods (BEM).
Furthermore, the closed-form particular solutions are available only for very limited
classes of differential equations [5, 10, 14]. In the BEM, the dual reciprocity method
(DRM) [15] has been successful in coupling the fundamental solution and particular
solution to solve various science and engineering problems. However, for differential
equations with variable coefficients, the above approach requires iterations and is not
very effective. Recently, combining the MFS, MPS, and the DRM, it is possible to ex-
tend the above methods for solving elliptic partial differential equations with variable
coefficients without the need of meshing the domain or boundary [3]. The idea of
solving the given partial differential equation by combing the fundamental solution
and particular solution as a one-stage method were proposed by Balakrishnan and
Ramachandran [1] and Wang and Qin [18]. However, they seems unaware of the ex-
tended applications for solving PDEs with variable coefficients. The extensive study
has been given and excellent results have been reported by Chen et al. [3] using the
one-stage approach. Based on the numerical technique proposed in [3, 18], it is the
purpose of this paper to extend the proposed one-stage method of the MFS and MPS
to solve general convection-diffusion equations.

This paper is organized as follows. In Section 2, the θ-method has been applied to
discretize the time domain. The given convection-diffusion equation is reduced to a
series of elliptic differential equations. The MFS coupled with the MPS in the sense
of one-stage formulation is applied to solve these elliptic equations at each time step.
In Section 3, we conducted extensive numerical tests on two examples to demonstrate
the convergence, stability, and high accuracy of the numerical algorithm mentioned in
Section 2. In Section 4, we summarize the impact of each parameter to be used in the
implementation.

2 Convection-diffusion equations

In this section, we consider the following general non-homogeneous time-dependent
convection-diffusion equation in the closed domain Ω ⊂ R2 bounded by ∂Ω given by

∂u(x, t)
∂t

= k∆u(x, t) + (v · ∇) u(x, t) + f (x, t), x ∈Ω, (2.1)
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Bu(x, t) = g(x, t), x ∈∂Ω, (2.2)
u(x, 0) = h(x), x ∈Ω, (2.3)

where v=(vx, vy) is the convective velocity, k is the diffusivity, ∆ is the Laplacian, and
f (x, t), g(x, t), h(x) are given functions. B is the boundary operator and (2.2) is the
given boundary condition.

The method of lines is used whereby time is discretized using the θ− method and
the spatial variables are discretized using a combination of the MFS and MPS which
will be discussed in the later sections.

2.1 A finite difference time stepping algorithm

In this section, a generalized trapezoidal method (θ−method) is used to approximate
the time derivative in (2.1). Let δt=tn+1 − tn be the time step and define the mesh
tn=nδt, n ≥ 0. For tn ≤ t ≤ tn+1, approximate u(x, t) by

u(x, t) ' θu(x, tn+1) + (1− θ)u(x, tn), (2.4)

and
∂u(x, t)

∂t
' u(x, tn+1)− u(x, tn)

δt
, (2.5)

where (0 ≤ θ ≤ 1). From (2.4), we have

∆u(x, t) = θ∆u(x, tn+1) + (1− θ)∆u(x, tn). (2.6)

For simplicity, we denote u(x, tn) ≡ un(x) and f (x, tn) ≡ f n(x). Using (2.5) and (2.6),
(2.1) can be reformulated as follows:

un+1(x)− un(x)
δt

= θ
(

k∆un+1(x) + (v · ∇) un+1(x) + f n+1(x)
)

+ (1− θ)
(

k∆un(x) + (v · ∇) un(x) + f n(x)
)

. (2.7)

To avoid evaluating ∆un in (2.7), we define the following half step approach [11]

vn+1 = un+1 +
1− θ

θ
un. (2.8)

By some algebraic manipulations, (2.7) can be rewritten as

∆vn+1 + (v · ∇)
vn+1

k
− 1

kθδt
vn+1 = − 1

kθ2δt
un − f n+1

k
− 1− θ

θ

f n

k
. (2.9)

Once vn+1 is evaluated, un+1 can be obtained through (2.8). Note that forward differ-
encing (θ = 0) cannot be used in this formulation. In particular, for implicit formula-
tion (θ = 1), we have
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(k∆− 1
δt

+ vx
∂

∂x
+ vy

∂

∂y
)un+1(x) = − 1

δt
un(x)− f n+1(x) (2.10)

Using the formulation stated above, (2.1) has been transformed into a series of
inhomogeneous convection-reaction equations. To avoid the discretization of domain,
the MFS and the MPS have been employed. This approach results in a mesh free
method.

2.2 The method of particular solutions (MPS)

In the past, the MPS has been widely employed to solve (2.9) without the convection
term (v · ∇)vn+1/k [4, 11, 17, 19]. In such cases, the closed-form approximate partic-
ular solutions of Helmholtz-type equations are available. However, with the general
convection term, the derivation of a closed-form particular solution for (2.9) is not
available. In this paper, the convection term is moved to the right-hand side of (2.9)
and is treated as a forcing term. As a result, the iterative procedure is required. In
this section, we employ the newly established numerical approach of keeping only
the Laplacian term on the left-hand side and moving all other terms to the right-hand
side; i.e., [3, 18]

∆vn+1 = −(v · ∇)
vn+1

k
+

1
kθδt

vn+1 − 1
kθ2δt

un − 1
k

f n+1 − 1− θ

kθ
f n

= F(x, un,vn+1, (v · ∇)vn+1, f n, f n+1). (2.11)

The convection-reaction equation in (2.11) can be viewed as a non-linear Poisson equa-
tion. As far as the Poisson equation is concerned, the solution vn+1 in (2.11) can be
written as the sum of the approximate particular solution, v̂n+1

p (x), and the approxi-
mate homogeneous solution, v̂n+1

h (x):

vn+1(x) ' v̂n+1
p (x) + v̂n+1

h (x). (2.12)

The basic idea of the MPS is to approximate the inhomogeneous part in (2.11) using a
linear combination of the RBF, φ(r), as follows:

F(x, un,vn+1, (v · ∇)vn+1, f n, f n+1) '
np

∑
j=1

ajφ
(
rj

)
, (2.13)

where rj=
∥∥x− xj

∥∥ and
{

xj
}np

j=1 are the center points, which are located randomly in-

side the computational domain. φ: R+→R is a univariate function.
{

aj
}np

j=1 are the
unknown coefficients to be determined.

Then, another RBF, Φ(r), should be derived analytically by satisfying the Poisson
equation, in which the inhomogeneous term is the original RBF, φ(r),

∆Φ(r) = φ(r). (2.14)
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Once the Φ(r) is obtained analytically, the particular solution can be expressed as a
linear combination of Φ(r)

v̂n+1
p (x) =

np

∑
j=1

ajΦ(rj). (2.15)

For Poisson equation (2.14) the derivation of Φ(r) for a given φ(r) is straightfor-
ward [5, 10]. MQ, φ(r) =

√
r2 + c2, is one of the most popular RBFs. The closed-form

particular solution of MQ and its derivatives are as follows [13]:

Φ(r) =
1
9

(
4c2 + r2) √

r2 + c2 − c3

3
ln

(
c +

√
r2 + c2

)
, (2.16)

∂Φ(r)
∂x

=
x

(
c
√

r2 + c2 + 2c2 + r2
)

3
(

c +
√

r2 + c2
) , (2.17)

∂Φ(r)
∂y

=
y

(
c
√

r2 + c2 + 2c2 + r2
)

3
(

c +
√

r2 + c2
) , (2.18)

where c is the shape parameter. In the RBFs literature, it is well-known that the quality
of the interpolation depends on the proper choice of the shape parameter. Despite the
effectiveness of the MQ, it is a challenge to find the optimal shape parameter. We will
address this issue in the section with numerical results. Other RBFs can also be used
and the derivation of their particular solutions is straightforward. In the section of nu-
merical results, we will also use conical RBFs φ=r2n−1 for the evaluation of particular
solutions. In this case, by direct integration, we can easily obtain

Φ(r) =
r2n+1

(2n + 1)2 . (2.19)

Unlike the two-stage scheme [10], it is important to note that
{

aj
}np

j=1 can not be
obtained directly from (2.13) since F contains unknown functions. Combining the MPS
and the MFS with some kind of reformulation as we shall see in the next subsection,
we will be able to find

{
aj

}np
j=1 so that the particular solution can be evaluated.

2.3 The method of fundamental solutions (MFS)

Since the fundamental solution satisfies the governing equation, the approximate ho-
mogeneous solution v̂n+1

h in (2.12) can be expressed as a combination of the funda-

mental solution with different strengths,
{

bj
}nh

j=1,

v̂n+1
h (x) =

nh

∑
j=1

bjG(ρj), x ∈ Ω ∪ ∂Ω, (2.20)



220 C.M. Fan, C.S. Chen, J. Monroe / Adv. Appl. Math. Mech., 2 (2009), pp. 215-230

where ρj=
∥∥x− yj

∥∥ is the distance between the field point x and the source point,{
yj

}nh
j=1, which are located outside the solution domain. In this paper, G(ρ) is the

fundamental solution of the Laplace equation. How to place the source points to ob-
tain optimal solution is still an outstanding research problem. The typical distribution
of source point and boundary point can be found in Fig. 1.

Γ

∂Ω

Ω

Figure 1: Interpolation points (∗),
boundary collocation points (•), and
source points (◦) on the fictitious
boundary.

The two-dimensional fundamental solution and its derivatives of the Laplace equa-
tion are given by

G(ρ) = ln ρ,
∂G(ρ)

∂x
=

x
ρ2 ,

∂G(ρ)
∂y

=
y
ρ2 . (2.21)

From (2.12), we have

vn+1(x) ' v̂n+1(x) = v̂n+1
p (x) + v̂n+1

h (x)

=
np

∑
j=1

ajΦ(rj) +
nh

∑
j=1

bjG(ρj), (2.22)

∂v̂n+1(x)
∂x

=
np

∑
j=1

aj
∂Φ(rj)

∂x
+

nh

∑
j=1

bj
∂G(ρj)

∂x
, (2.23)

∂v̂n+1(x)
∂y

=
np

∑
j=1

aj
∂Φ(rj)

∂y
+

nh

∑
j=1

bj
∂G(ρj)

∂y
. (2.24)

Substituting (2.22)-(2.24) into (2.9), we obtain the following equation

np

∑
j=1

ajLΦ(rij) +
nh

∑
j=1

bjLG(ρij) = Fn+1(xi), i = 1, 2, · · · , np, (2.25)

where

L = ∆ + (v · ∇)
1
k
− 1

kθδt
, (2.26)

Fn+1(xi) = − 1
kθ2δt

un(xi)− 1
k

f n+1(xi)− 1− θ

kθ
f n(xi). (2.27)
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We notice that ∆G(ρij)=0 and ∆Φ(rij)=φ(rij). Then, (2.25) becomes

np

∑
j=1

ajΨ(rij) +
nh

∑
j=1

bjΘ(ρij) = Fn+1(xi), i = 1, 2, · · · , np, (2.28)

where

Ψ(rij) = φ(rij) +
1
k
(v · ∇)Φ(rij)− 1

kθδt
Φ(rij), (2.29)

Θ(ρij) =
1
k
(v · ∇)G(ρij)− 1

kθδt
G(rij). (2.30)

Hence, the evaluation of second order derivatives with respect to x and y can be
avoided during the proposed numerical process.

The boundary condition in (2.2) becomes

np

∑
j=1

ajBΦ(rij) +
nh

∑
j=1

bjBG(ρij) = gn+1(xi), i = np + 1, np + 2, ....np + nh. (2.31)

From (2.28) and (2.31), we have thus formulated the following system of equations of
order (np + nh)× (np + nh),

[
Ψ(rij) Θ(ρij)
BΦ(rij) BG(ρij)

] [
a
b

]
=

[
Fn+1(xi)
gn+1(xi)

]
, (2.32)

where a =
[
a1, a2, a3, ...anp

]T and b = [b1, b2, b3, ...bnh]
T.

The above matrix system is solved by singular value decomposition (SVD) with
truncation [3,6,16] to stabilize the solution in our following numerical tests. The small
singular values will be truncated in the solution process. If the convective velocity
is a time-independent function, the inverse matrix, which is produced by SVD, can
be used repeatedly in every time step. That means we only have to invert the matrix
system once for all time steps.

3 Numerical results

To demonstrate the efficiency and accuracy of the numerical method mentioned in the
previous sections, we give two examples. The first example is a standard diffusion
equation and the second one is a convection-diffusion equation with nonconstant co-
efficients. All of the numerical results were compared with the analytical solutions
and, for the sake of completeness, we numerically examined several factors that may
affect the performance of the proposed method.

For systematically locating the source points in the MFS for all of the following
numerical tests, we use the following formula:

xs = xb + σ
(

xb − xc
)

, (3.1)
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where xs, xb, and xc denote the source, boundary, and central nodes, respectively. σ,
which is a pre-defined parameter, determines the distance between source and the
boundary, ∂Ω. The relation between σ and the accuracy of the results will be shown
in the numerical results.

In addition, the root-mean-square error (RMSE) and the root-mean-square error of
the derivative with respect to x (RMSEx) are used in the paper to show the accuracy
of the solutions. They are defined as follows:

RMSE =

√√√√ 1
n1

n1

∑
j=1

(
ûj − uj

)2, (3.2)

RMSEx =

√√√√ 1
n1

n1

∑
j=1

(
∂ûj

∂x
− ∂uj

∂x

)2

, (3.3)

where n1 is the number of testing nodes chosen randomly within the domain. ûj de-
notes the approximate solution at the jth node. From the numerical results, we found
that the RMSEy is similar to RMSEx. In order to avoid duplication, we only show the
RMSE and RMSEx in the following tests.

When MQ is chosen as the basis function for interpolation, it is well-known that
finding the optimal shape parameter c is a challenge. In [3], it is known that the
given boundary conditions can be used to find the optimal shape parameter since the
boundary conditions are known and can be regarded as part of the analytical solution.
Hence, we repeat the first time step using different shape parameters and record the
RMSE along the boundary, which is denoted as RMSEb. The definition of RMSEb is
defined as follows:

RMSEb =

√√√√ 1
n2

n2

∑
j=1

(
ûj − uj

)2, (3.4)

where n2 is the number of testing nodes chosen along the boundary. The set of testing
nodes for RMSEb should not coincide with the set of boundary collocation nodes in
the MFS.

In the following examples, we denote γ as the truncated singular value, np as
the number of interior points, nh as the number of boundary points and n1, n2 as the
number of testing points showed in (3.2)-(3.4). Due to the ill-conditioning of the MFS,
TSVD is required for solving (2.32) [3]. For the time stepping algorithm, we choose
θ = 1; i.e., implicit Euler method.

Example 3.1. Consider the following diffusion equation with boundary and initial
conditions in a peanut shaped domain:

∂u(x, t)
∂t

= ∆u(x, t) + sin(x) sin(y)(2 cos(t)− sin(t)), x ∈Ω, t > 0, (3.5)

u(x, t) = sin(x) sin(y) cos(t), x ∈∂Ω, t > 0, (3.6)
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u(x, 0) = sin(x) sin(y), x ∈Ω. (3.7)

The analytical solution is given as follows:

u(x, t) = sin(x) sin(y) cos(t). (3.8)

The computational domain, interior nodes, and boundary nodes are shown in Fig. 2.
Unless otherwise specified, the numerical results in figures and tables for this example
are based on the following parameters: np=74, nh=30, n1=145, n2=50, σ=5, δt=0.1
and γ=10−9.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

Figure 2: Computational domain, interpolation
nodes (∗) and boundary nodes (•) adopted in
Example 1.
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Figure 3: Profile of RMSEb versus shape param-
eter c for δt = 0.1, 0.2.
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Figure 4: Profiles of RMSE (left) and RMSEx (right).

In order to identify the optimal shape parameter of MQ, we repeatedly tested the
method in the first time step using the boundary conditions for various shape param-
eters. The resultant RMSEb and its corresponding shape parameter are presented in
Fig. 3 for δt=0.2 and 0.1.

The selection of optimal shape parameter of MQ is based on the smallest RMSEb
of the initial time step. In addition, the RMSE and RMSEx from t=0 to t=20 are shown
in Fig. 4 and Table 1 using various time steps δt=0.2, 0.1, 0.05. In Fig. 4, we observe
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Table 1: RMSE and RMSEx obtained by different time steps, δt, for t = 1, 5, 20.

δt = 0.2 δt = 0.1 δt = 0.05
t = 1
RMSE 1.67E-04 7.98E-05 3.89E-05
RMSEx 5.65E-04 2.55E-04 1.21E-04
t = 5
RMSE 5.46E-05 3.17E-05 1.69E-05
RMSEx 1.79E-04 1.03E-04 5.33E-05
t = 20
RMSE 1.32E-04 6.22E-05 3.01E-05
RMSEx 4.50E-04 1.98E-04 9.37E-05

Table 2: RMSE and RMSEx obtained using various number of nodes, np and nh, for t = 1, 5, 20.

np = 52 np = 74 np = 101
nh = 20 nh = 30 nh = 40

t = 1
RMSE 1.16E-04 7.98E-05 7.98E-05
RMSEx 7.34E-04 2.55E-04 2.50E-04
t = 5
RMSE 4.92E-05 3.17E-05 3.17E-05
RMSEx 3.31E-04 1.03E-04 1.00E-04
t = 20
RMSE 9.05E-05 6.22E-05 6.22E-05
RMSEx 5.67E-04 1.98E-04 1.95E-04

the error for δt=0.2 is approximately twice as large as the error of δt=0.1 and the same
situation is also observed for δt=0.1 and 0.05. The numerical results are consistent
with the discretized scheme in time we adopted.

We further investigated the effects of the total number of nodes, source location in
the MFS, truncated singular value, and different types of RBFs. The RMSE and RM-
SEx, obtained by using different numbers of nodes, are presented in Table 2 where
we used 52, 74, and 101 interior nodes and 20, 30, and 40 boundary nodes. Excellent
results are obtained using only 52 interior nodes and 20 boundary nodes. We also ob-
served that the difference between the tests using np=74, nh=30 and np=101, nh=40
is negligible. This implies that the method converges rapidly and few nodes are re-
quired to achieve good accuracy.

It is known that the location of sources in the MFS formulation affects its perfor-
mance. In Table 3, we observed little difference for various values of σ. This implies
that the solution of the one-stage approach is very stable in terms of the location of
sources [3].

In Table 4, we observed little difference in RMSE and RMSEx using the cut-off
singular values γ=10−7, 10−9, and 10−11. The TSVD cannot regularize the matrix if γ
is too small. The numerical simulation diverges in this example for γ<10−13.

Besides MQ, we also used the conical RBFs, r2n−1. The numerical results are shown
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Table 3: RMSE and RMSEx obtained by different location of sources, σ, for t = 1, 5 and 20.

σ = 3 σ = 5 σ = 10 σ = 20
t = 1
RMSE 8.00E-05 7.98E-05 7.97E-05 8.00E-05
RMSEx 2.98E-04 2.55E-04 2.49E-04 2.45E-04
t = 5
RMSE 3.18E-05 3.17E-05 3.17E-05 3.18E-05
RMSEx 1.24E-04 1.03E-04 9.98E-05 9.85E-05
t = 20
RMSE 6.25E-05 6.22E-05 6.22E-05 6.24E-05
RMSEx 2.31E-04 1.98E-04 1.94E-04 1.91E-04

Table 4: RMSE and RMSEx obtained by different truncated singular values, γ, for t = 1, 5 and 20.

γ 1.0E-07 1.0E-09 1.0E-11 1.0E-13
t = 1
RMSE 8.65E-05 7.98E-05 7.98E-05 1.79E-04
RMSEx 1.88E-04 2.55E-04 2.48E-04 2.37E-03
t = 5
RMSE 3.56E-05 3.17E-05 3.17E-05 8.78E-05
RMSEx 6.97E-05 1.03E-04 9.98E-05 1.19E-03
t = 20
RMSE 6.73E-05 6.22E-05 6.22E-05 1.37E-04
RMSEx 1.48E-04 1.98E-04 1.93E-04 1.80E-03

in Table 5. From the table, we find both RBFs can reach similar accuracy. This implies
that the challenge of choosing the optimal shape parameter can be alleviated using
conical RBFs.

Example 3.2. We consider the convection-diffusion equation with its boundary and
initial conditions as follows:

∂u(x, t)
∂t

= ∆u(x, t)− cos(y)
∂u(x, t)

∂x
− x sin(x)

∂u(x, t)
∂y

+ f (x, t), x ∈Ω, (3.9)

u(x, t) = (y sin(πx) + x cos(πy)) cos(t), x ∈∂Ω, (3.10)
u(x, 0) = y sin(πx) + x cos(πy), x ∈Ω. (3.11)

The analytical solution is given by

u(x, t) = (y sin(πx) + x cos(πy)) cos(t). (3.12)

The inhomogeneous term, f (x, t), can be chosen according to the analytical solution.
The computational domain, interior interpolation nodes, and boundary nodes are

presented in Fig. 5. Unless otherwise specified, the numerical results in figures and
tables for this example are based on the following parameters: np=111, nh=60, n1=75,
n2=40, σ=5, δt=0.1 and γ=10−9.
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Table 5: RMSE and RMSEx obtained by different radial basis function, φ(r), for t = 1, 5, and 20.

√
r2 + c2 r5 r7 r9

t = 1
RMSE 7.98E-05 8.01E-05 8.00E-05 7.98E-05
RMSEx 2.55E-04 2.73E-04 2.64E-04 2.50E-04
t = 5
RMSE 3.17E-05 3.19E-05 3.18E-05 3.17E-05
RMSEx 1.03E-04 1.12E-04 1.07E-04 1.00E-04
t = 20
RMSE 6.22E-05 6.25E-05 6.24E-05 6.23E-05
RMSEx 1.98E-04 2.13E-04 2.05E-04 1.95E-04

Table 6: RMSE and RMSEx obtained by different time increments, δt, for t = 1, 5 and 20.

δt = 0.2 δt = 0.1 δt = 0.05 δt = 0.01
t = 1
RMSE 1.69E-03 8.08E-04 4.02E-04 9.38E-05
RMSEx 4.74E-03 2.13E-03 1.00E-03 4.46E-04
t = 5
RMSE 4.29E-04 2.49E-04 1.38E-04 3.38E-05
RMSEx 1.42E-03 7.02E-04 3.58E-04 2.29E-04
t = 20
RMSE 1.37E-03 6.46E-04 3.18E-04 7.43E-05
RMSEx 3.80E-03 1.69E-03 7.91E-04 3.391E-04

To choose the optimal shape parameter, the RMSEb is calculated and recorded in
the first time step from c=0.1 to c=5. The results are shown in Fig. 6 for δt=0.1, 0.05.
We used the same technique as the last example to choose the optimal shape parameter
in all of the following tests.

The profiles of RMSE and RMSEx with respect to time are shown in Fig. 7 for
δt=0.2, 0.1, and 0.05. From this figure, we find the error of δt=0.2 is twice the error of

Table 7: RMSE and RMSEx obtained by different number of nodes, np and nh, for t = 1, 5 and 20.

np = 60 np = 111 np = 144
nh = 30 nh = 60 nh = 80

t = 1
RMSE 8.49E-04 8.08E-04 8.01E-04
RMSEx 2.14E-03 2.13E-03 2.14E-03
t = 5
RMSE 2.65E-04 2.49E-04 2.47E-04
RMSEx 7.14E-04 7.02E-04 7.13E-04
t = 20
RMSE 6.78E-04 6.46E-04 6.41E-04
RMSEx 1.70E-03 1.69E-03 1.70E-03
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Figure 5: Computational domain, interpolation
nodes (∗) and boundary nodes (•) adopted in
Example 2.
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Figure 6: Profiles of RMSEb with respect to
different shape parameters c for δt = 0.05 and
δt = 0.1.
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Figure 7: Profiles of RMSE (left) and RMSEx (right) from t = 0 to t = 20.

δt=0.1 and the error of δt=0.1 is twice the error of δt=0.05.
Similar to the first example, we numerically investigated the effect of time steps,

number of nodes, and type of RBF in Tables 6-8. Since the location of source points
in the MFS and the truncated singular value did not affect our numerical results very
much in this example, we did not show it here. In Table 6, the RMSE and RMSEx are
tabulated for δt=0.2, 0.1, 0.05, 0.01. Better RMSE and RMSEx are obtained by using the
smaller time step which validates the stability of the proposed numerical scheme for
time-dependent convection-diffusion equation.

We further tested the numerical simulation by using different numbers of nodes
in Table 7. 60, 111, and 144 interpolation nodes as well as 30, 60, and 80 boundary
nodes are considered in the table. It can be found that the accuracy is almost the
same when interior and boundary nodes are larger than 111 and 60 respectively. The
proposed scheme converges very fast when a relatively small number of nodes are
adopted. Furthermore, the results in Table 8 are obtained by using different RBFs for
interpolating the inhomogeneous term. We used MQ, r5, r7, and r9 for the simulations.
Only slight differences between the results can be observed in this table. Therefore, we
can use different RBFs to avoid finding the optimal shape parameter of MQ for solving
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Table 8: RMSE and RMSEx obtained by different radial basis function, φ(r), for t = 1, 5 and 20.

√
r2 + c2 r5 r7 r9

t = 1
RMSE 8.08E-04 8.24E-04 8.27E-04 8.06E-04
RMSEx 2.13E-03 2.01E-03 2.06E-03 2.12E-03
t = 5
RMSE 2.49E-04 2.54E-04 2.57E-04 2.49E-04
RMSEx 7.02E-04 6.48E-04 6.65E-04 6.99E-04
t = 20
RMSE 6.46E-04 6.59E-04 6.60E-04 6.44E-04
RMSEx 1.69E-03 1.60E-03 1.64E-03 1.69E-03

time-dependent convection-diffusion equations.

4 Concluding remarks

Based on the idea of the one-stage scheme developed in [3], convection-diffusion par-
tial differential equations with variable coefficients can be successfully solved with
high accuracy using a time stepping algorithm. As a result, the MFS has been fur-
ther extended to solving time-dependent problems with variable coefficients. In the
past, a similar approach using the MFS and MPS could only deal with time-dependent
problems with constant coefficients [7,11]. In that sense, the MFS has made significant
progress toward solving a broader class of partial differential equations. In the current
one-stage scheme, due to the new formulation, the derivation of closed-form particu-
lar solutions only involve Laplacian and thus are easier to achieve. Similarly, we only
require ln ρ as the fundamental solution in the new formulated differential equation.
The tested examples show the numerical results are very stable and accurate. How-
ever, due to the ill-conditioning of the MFS, a regularization technique such as TSVD
is required to ensure its stability.

There are several parameters that may affect the accuracy of the solution. Based
on our extensive numerical tests, we conclude

1. The location of source points in the MFS does not have a major impact on the
solution.

2. The singular value in the TSVD has a good range of cut off values.
3. Apparently, there is not much of a difference in accuracy between using MQ or

conical RBFs, r2n−1. This alleviates the difficulty of choosing the optimal shape
parameter of MQ.

4. A small number of interpolation and boundary points are sufficient to produce
accurate results. This implies that the solution converges rapidly.

5. The length of the time step affects the accuracy.

The mentioned approach is meshless and is very easy to implement. The method
is especially attractive for three-dimensional problems. With the excellent numerical
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results presented in this paper, we believe the method can be further applied to more
challenging science and engineering problems.
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