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Abstract. A discontinuous Galerkin Method based on a Bhatnagar-Gross-Krook
(BGK) formulation is presented for the solution of the compressible Navier-Stokes
equations on arbitrary grids. The idea behind this approach is to combine the ro-
bustness of the BGK scheme with the accuracy of the DG methods in an effort to
develop a more accurate, efficient, and robust method for numerical simulations of
viscous flows in a wide range of flow regimes. Unlike the traditional discontinu-
ous Galerkin methods, where a Local Discontinuous Galerkin (LDG) formulation is
usually used to discretize the viscous fluxes in the Navier-Stokes equations, this DG
method uses a BGK scheme to compute the fluxes which not only couples the con-
vective and dissipative terms together, but also includes both discontinuous and
continuous representation in the flux evaluation at a cell interface through a simple
hybrid gas distribution function. The developed method is used to compute a va-
riety of viscous flow problems on arbitrary grids. The numerical results obtained
by this BGKDG method are extremely promising and encouraging in terms of both
accuracy and robustness, indicating its ability and potential to become not just a
competitive but simply a superior approach than the current available numerical
methods.
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1 Introduction

The accuracy of many finite-volume and finite-element methods currently used in
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computational science and engineering is at best second order. There are a number of
situations where these numerical methods do not reliably yield engineering-required
accuracy. The development of a practical higher-order (>2nd) solution method could
help alleviate this accuracy problem by significantly decreasing time required to achieve
an acceptable error level. Unfortunately, numerous reasons exist for why current
finite-volume algorithms are not practical at higher order and have remained second-
order. The root cause of many of these difficulties lies in the extended stencils that
these algorithms employ. By contrast, discontinuous Galerkin (DG) finite element for-
mulation introduces higher-order effects compactly within the element. While DG
was originally introduced by Reed and Hill [1] for solving the neutron transport equa-
tion back in 1973, major interest did not focus on it until the nineties [2–5]. Nowadays,
it is widely used in the computational fluid dynamics, computational aeroacoustics,
and computational electromagnetics, to name just a few [6–17]. The discontinuous
Galerkin methods (DGM) combine two advantageous features commonly associated
with finite element and finite volume methods (FVM). As in classical finite element
methods, accuracy is obtained by means of high-order polynomial approximation
within an element rather than by wide stencils as in the case of FVM. The physics of
wave propagation is, however, accounted for by solving the Riemann problems that
arise from the discontinuous representation of the solution at element interfaces. In
this respect, the methods are therefore similar to FVM. What is known so far about this
method offers a tantalizing glimpse of its full potential. Indeed, what sets this method
apart from the crowd is many attractive features it possesses: (1) It has several useful
mathematical properties with respect to conservation, stability, and convergence. (2)
The method can be easily extended to higher-order (>2nd) approximation. (3) The
method is well suited for complex geometries since it can be applied on unstructured
grids. In addition, the method can also handle non-conforming elements, where the
grids are allowed to have hanging nodes. (4) The method is highly parallelizable, as
it is compact and each element is independent. Since the elements are discontinuous,
and the inter-element communications are minimal, domain decomposition can be ef-
ficiently employed. The compactness also allows for structured and simplified coding
for the method. (5) It can easily handle adaptive strategies, since refining or coarsen-
ing a grid can be achieved without considering the continuity restriction commonly
associated with the conforming elements. The method allows easy implementation of
hp-refinement, for example, the order of accuracy, or shape, can vary from element to
element. (6) It has the ability to compute low Mach number flow problems without re-
course to the time-preconditioning techniques normally required for the finite volume
methods.

In contrast to the enormous advances in the theoretical and numerical analysis of
the DGM, the development of a viable, attractive, competitive, and ultimately supe-
rior DG method over the more mature and well-established second order methods is
relatively an untouched area. This is mainly due to the fact that DGM have a number
of weaknesses that have to be addressed, before they can be applied to flow problems
of practical interest in a complex configuration environment. In particular, how to ef-
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ficiently discretize diffusion terms required for the Navier-Stokes equations remains
one of unresolved issues in the DGM. DG methods is indeed a natural choice for the
solution of hyperbolic problems, such as the compressible Euler equations. However,
the DG formulation is far less certain and advantageous for the compressible Navier-
Stokes equations, where dissipative fluxes exist. A severe difficulty raised by the ap-
plication of the DG methods to the Navier-Stokes equations is the approximation of
the numerical fluxes for diffusion terms, that has to properly resolve the discontinu-
ities at the interfaces. Taking a simple arithmetic mean of the solution derivatives from
the left and right is inconsistent, because the arithmetic mean of the solution deriva-
tives does not take in account a possible jump of the solutions. A number of numerical
methods have been proposed in the literature, such as those by Bassi and Rebay [18],
Cockburn and Shu [19], Baumann and Oden [20] and many others. Arnold et al. have
analyzed a large class of discontinuous Galerkin methods for second-order elliptic
problems in a unified formulation in [21]. All these methods have introduced in some
way the influence of the discontinuities in order to define correct and consistent dif-
fusive fluxes. More recently, van Leer and Lo [22] proposed a recovery-based DG
method for the diffusion equation using the recovery principle, and Gassner et al. [23]
introduced a numerical scheme based on the exact solution of the diffusive general-
ized Riemann problem for the discontinuous Galerkin methods. Unfortunately, all
these methods seem to require substantially more computational effort than the clas-
sical continuous finite element methods, which are naturally suited for the discretiza-
tion of elliptic problems.

Alternatively, the numerical fluxes at the interface for the Navier-Stokes equations
in the DG methods can be evaluated using a gas-kinetic formulation [24, 25], which
treats the convection and dissipation effects together. The gas-kinetic formulation
uses a gas-kinetic distribution function to construct the numerical fluxes, which au-
tomatically obtain the convection and dissipation effects due to the intrinsic connec-
tion between the gas-kinetic BGK model and the Navier-Stokes equations. In the BGK
formulation, the fluxes at the interface for the Euler and Navier-Stokes equations are
constructed based on the integral solution of the BGK model, which requires both con-
servative variables and their derivatives. In this regard, the BGK formulation bears a
strong resemblance to the generalized Riemann solver in the evolution of fluxes at
the interface, and the initial condition theoretically can be any high order polynomials
on both sides of a cell interface. The BGK formulation offers a much deeper physical
insight in the construction of a DG method for the convection-diffusion problems. It
should be pointed out that the BGK scheme, recognized as being expensive in com-
parison with the traditional upwind methods for computing numerical fluxes, makes
a comeback in the context of DG formulation, as it does not require a separate compu-
tation of viscous fluxes at the interfaces.

Recently, the present authors have developed a DG method based on a Taylor ba-
sis for the solution of compressible Euler equations on arbitrary grids [13]. Unlike the
traditional discontinuous Galerkin methods, where either standard Lagrange finite
element or hierarchical node-based basis functions are used to represent numerical
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polynomial solutions in each element, this DG method represents the numerical poly-
nomial solutions using a Taylor series expansion at the centroid of the cell. As a result,
this new formulation [13] has a number of distinct, desirable, and attractive features
and advantages in developing a DG method from a practical perspective, which can be
effectively used to overcome some of the disadvantages of DGM. The objective of ef-
fort discussed in this paper is to further extend this high-order discontinuous Galerkin
method for computing viscous flow problems using the BGK formulation based on the
success and cornerstone of this DG method. The idea behind this approach is to com-
bine the robustness of the BGK scheme with the accuracy of the DG methods in an
effort to develop a more accurate, efficient, and robust method for the solution of the
compressible Navier-Stokes equations in a wide range of flow regimes. BGKDG for-
mulation is especially attractive for the Navier-Stokes equations, as there is no need
to compute the viscous fluxes at the interfaces, thus significantly reducing the compu-
tational costs. The developed method is applied to compute a variety of viscous flow
problems for a wide range of flow conditions, from subsonic to hypersonic flows. Our
numerical results obtained by the BGKDG method are extremely promising and en-
couraging, demonstrating its ability and potential to become not just a competitive but
simply a superior approach than either BGK-based and upwind-based finite volume
methods or LDG methods.

2 Numerical method

Assume that we want to solve the following Navier-Stokes equations using a discon-
tinuous Galerkin method

∂U(x, t)
∂t

+
∂Fk(U(x, t))

∂xk
= 0, (2.1)

where U is the conservative variable vector, and F is the flux vector, which con-
tains both convective and diffusive terms. To formulate the discontinuous Galerkin
method, we first introduce the following weak formulation, which is obtained by mul-
tiplying the above conservation law by a test function W, integrating over the domain
Ω and performing an integration by parts

∫

Ω

∂U
∂t

WdΩ +
∫

Γ
FknkdΓ −

∫

Ω
Fk

∂W
∂xk

dΩ = 0, ∀W ∈ V, (2.2)

where Γ (=∂Ω) denotes the boundary of Ω, and nj the unit outward normal vector
to the boundary. Assume that the domain Ω is subdivided into a collection of non-
overlapping elements Ωe, which can be triangles, quadrilaterals, polygons, or their
combinations in 2D and tetrahedral, prism, pyramid, and hexahedral or their combi-
nations in 3D. We introduce the following broken Sobolev space Vp

h

Vp
h = {νh ∈ [L2(Ω)]m : νh|Ωe ∈ [Vm

p ], ∀Ωe ∈ Ω}, (2.3)
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which consists of discontinuous vector-values polynomial functions of degree p, and
where m is the dimension of unknown vector and

Vm
p = span{∏ xαi

i : 1 ≤ αi ≤ p, 0 ≤ i ≤ d}, (2.4)

where α denotes a multi-index and d is the dimension of space. Then, we can obtain
the following semi-discrete form by applying weak formulation on each element Ωe.
Find Uh ∈ Vp

h such as

d
dt

∫

Ωe

UhWhdΩ +
∫

Γe

Fk(Uh)nkWhdΓ −
∫

Ωe

Fk(Uh)
∂Wh

∂xk
dΩ, ∀Wh ∈ Vp

h , (2.5)

where Uh and Wh represent the finite element approximations to the analytical solu-
tion U and the test function W respectively, and are approximated by piecewise poly-
nomial function of degrees p, which are discontinuous between the cell interfaces.
Assume that B is the basis of polynomial function of degrees p, this is then equivalent
to the following system of N equations

d
dt

∫

Ωe

UhBidΩ +
∫

Γe

Fk(Uh)nkBidΓ −
∫

Ωe

Fk(Uh)
∂Bi

∂xk
dΩ, 1 ≤ i ≤ N, (2.6)

where N is the dimension of the polynomial space.
In the traditional DGM, numerical polynomial solutions U in each element are

expressed using either standard Lagrange finite element or hierarchical node-based
basis as following

Uh =
N

∑
i=1

Ui(t)Bi(x), (2.7)

where Bi are the finite element basis functions. As a result, the unknowns to be solved
are the variables at the nodes Ui, as illustrated in Fig. 1 for linear and quadratic poly-
nomial approximations.

Figure 1: Representation of polynomial solutions using finite element shape functions.

On each cell, a system of N × N has to be solved, where polynomial solutions are
dependent on the shape of elements. For example, for a linear polynomial approxi-
mation in 2D as shown in Fig. 1, a linear polynomial is used for triangular elements
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and the unknowns to be solved are the variables at the three vertices and a bi-linear
polynomial is used for quadrilateral elements and the unknowns to be solved are the
variables at the four vertices. However, the numerical polynomial solutions U can be
expressed in other forms as well. In the present work, the numerical polynomial so-
lutions are represented using a Taylor series expansion at the centroid of the cell. For
example, if we do a Taylor series expansion at the centroid of the cell, the quadratic
polynomial solutions can be expressed as following

Uh = Uc +
∂U
∂x
|c(x− xc) +

∂U
∂y
|c(y− yc) +

∂2U
∂x2 |c

(x− xc)2

2

+
∂2U
∂y2 |c

(y− yc)2

2
+

∂2U
∂x∂y

|c(x− xc)(y− yc), (2.8)

which can be further expressed as cell-averaged values and their derivatives at the
centroid of the cell:

Uh = Ũ +
∂U
∂x
|c(x− xc) +

∂U
∂y
|c(y− yc) +

∂2U
∂x2 |c

[ (x− xc)2

2
− 1

Ωe

∫

Ωe

(x− xc)2

2
dΩ

]

+
∂2U
∂y2 |c

[ (y− yc)2

2
− 1

Ωe

∫

Ωe

(y− yc)2

2
dΩ

]

+
∂2U
∂x∂y

|c
[
(x− xc)(y− yc)− 1

Ωe

∫

Ωe

(x− xc)(y− yc)dΩ

]
, (2.9)

where Ũ is the mean value of U in this cell. The unknowns to be solved in this for-
mulation are the cell-averaged variables and their derivatives at the center of the cells,
regardless of element shapes, as shown in Fig. 2.

Figure 2: Representation of polynomial solutions using a Taylor series expansion for a cell-centered scheme
(left) and vertex-centered scheme (right).

In this case, the dimension of the polynomial space is six and the six basis functions
are B1 = 1, B2 = x− xc, B3 = y− yc and

B4 =
(x− xc)2

2
− 1

Ωe

∫

Ωe

(x− xc)2

2
dΩ, B5 =

(y− yc)2

2
− 1

Ωe

∫

Ωe

(y− yc)2

2
dΩ,

B6 = (x− xc)(y− yc)− 1
Ωe

∫

Ωe

(x− xc)(y− yc)dΩ, (2.10)
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and the discontinuous Galerkin formulation then leads to the following six equations

d
dt

∫

Ωe

ŨdΩ +
∫

Γe

Fk(Uh)nkdΓ = 0, i = 1, (2.11a)

M5×5
d
dt

(∂U
∂x
|c ∂U

∂y
|c ∂2U

∂x2 |c
∂2U
∂y2 |c

∂2U
∂x∂y

|c
)T

+ R5×1 = 0. (2.11b)

Note that in this formulation, equations for the cell-averaged variables are decoupled
from equations for their derivatives due to the judicial choice of the basis functions
and the fact that ∫

Ωe

B1BidΩ = 0, 2 ≤ i ≤ 6. (2.12)

In the implementation of this DG method, the basis functions are actually normalized
in order to improve the conditioning of the system matrix. The details can be found
in [13]. This is especially helpful and important to alleviate the stiffness of the system
matrix for higher-order DG approximations.

Theoretically, this formulation allows us to clearly see the similarity and difference
between DG and FV methods, and provides the evidence why the DG methods are
superior to their FV counterparts. In fact, the discretized governing equations for the
cell-averaged variables and the assumption of polynomial solutions on each cell are
exactly the same for both methods. In other words, this DG method provides a uni-
fied formulation, where the existing finite volume methods can be recovered virtually.
For example, the application of this DG method to the median dual control volume of
a given mesh will lead to the classic vertex-centered finite volume scheme as shown
in the right of Fig. 2, while the application of this DG method to the cell itself of
any given mesh will lead to the classic cell-centered finite volume scheme as shown
in the left of Fig. 2. The only difference between them is the way how they obtain
high-order (>1st) polynomial solutions. In the finite volume methods, the polyno-
mial solution of degrees p are reconstructed using information from cell-averaged
values of the flow variables, which can be obtained using either TVD/MUSCL or
ENO/WENO reconstruction schemes. Unfortunately, the multi-dimensional MUSCL
approach, which are praised to achieve high-order accuracy for multi-dimensional
problems, suffer from two shortcomings in the context of unstructured grids: (1) un-
certainty and arbitrariness in choosing the stencils and methods to compute the gradi-
ents in the case of linear reconstruction; This explains why a nominally second-order
finite volume scheme is hardly able to deliver a formal solution of second order accu-
racy in practice for unstructured grids. The situation becomes more evident, severe,
and profound, when a highly stretched tetrahedral grid is used in the boundary lay-
ers. Many studies, as reported by many researchers [27–29] have demonstrated that
it is difficult to obtain a second-order accurate flux reconstruction on highly stretched
tetrahedral grids and that for the discretization of inviscid fluxes, the classic 1D-based
upwind schemes using median-dual finite volume approximation suffer from exces-
sive numerical diffusion due to such skewing. (2) Extended stencils required for the
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reconstruction of higher-order (>1st) polynomial solutions. This is exactly the rea-
son why the current finite-volume methods using the TVD/MUSCL reconstruction
are not practical at higher order and have remained second-order on unstructured
grids. When the ENO/WENO reconstruction schemes are used for the construction
of a polynomial of degree p on unstructured grids, the dimension of the polynomial
space N=N(p, d) depends on the degree of the polynomials of the expansion p, and
the number of spatial dimensions d. One must have three, six, and ten cells in 2D
and four, ten, and twenty cells in 3D for the construction of a linear, quadratic, cubic
Lagrange polynomial, respectively. Undoubtedly, it is an overwhelmingly challeng-
ing, if not practically impossible, task to judiciously choose a set of admissible and
proper stencils that have such a large number of cells on unstructured grids especially
for higher order polynomials and higher dimensions. This explains why the appli-
cation of higher-order ENO/WENO methods hardly exists on unstructured grids, in
spite of their tremendous success on structured grids and their superior performance
over the MUSCL/TVD methods. Unlike the FV methods, where the derivatives are
reconstructed using the mean values of the neighboring cells, the present DG method
computes the derivatives in a manner similar to the mean variables. This is com-
pact, rigorous, and elegant mathematically in contrast with arbitrariness characteriz-
ing the reconstruction schemes with respect how to compute the derivatives and how
to choose the stencils used in the FV methods. It is our believe that this is one of the
main reasons why the second order DG methods are more accurate than the FV meth-
ods using either TVD/MUSCL or ENO/WENO reconstruction schemes, which has
been demonstrated numerically. Furthermore, the higher order DG methods can be
easily constructed by simply increasing the degree p of the polynomials locally, in con-
trast to the finite volume methods which use the extended stencils to achieve higher
order of accuracy. Many other methods such as ADER scheme [26], compact finite
differencing scheme [27], and CE/SE scheme [28] also solve the governing equations
for the derivatives instead of using the reconstruction schemes.

Practically, this formulation has a number of attractive, distinct, and useful fea-
tures in the context of DGM, that can be exploited to develop an accurate and robust
DG method for conservation laws. First, cell-averaged variables and their deriva-
tives are handily available in this formulation. This makes implementation of WENO
limiter straightforward and efficient [15], which is required to eliminate nonphysical
oscillations in the vicinity of discontinuities. Secondly, the basis functions are hier-
archic. This greatly facilitates implementation of p-multigrid methods [16, 17] and p-
refinement. Thirdly, cell-averaged variable equations are decoupled from their deriva-
tives equations in this formulation. This makes development of fast, low-storage im-
plicit methods possible. Last, the same numerical polynomial solutions are used for
any shapes of elements, which can be triangle, quadrilateral, and polygon in 2D, and
tetrahedron, pyramid, prism, and hexahedron in 3D. Using this formulation, DGM
can be easily implemented on arbitrary meshes. The numerical method based on this
formulation has the ability to compute 1D, 2D, and 3D problems using the very same
code, which greatly alleviates the need and pain for code maintenance and upgrade.
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Furthermore, it is relatively simple and straightforward to convert an existing sec-
ond order finite volume code into a higher-order DG code with minimal modification,
which can be achieved by solving the equations for the derivatives instead of using the
reconstruction schemes. This can be done for either cell-centered or vertex-centered
scheme finite volume methods. It should be stressed that the property of this DG for-
mulation is especially important and desirable for the wide acceptance of DG meth-
ods in industries from an application point of view, as any industries are reluctant to
rewrite a DG-based code from scratch, considering the investments in their existing
production codes based on a second-order finite volume method.

By taking full advantage of these features, we have developed an accurate, effi-
cient, and robust DG method for the numerical solution of the compressible Euler
equations on arbitrary grids [13]. In our implementation of this DG method, an accu-
rate representation of the boundary normals based on the definition of the geometries
is used for imposing solid wall boundary conditions for curved geometries [14]. A
weighted essentially non-oscillatory reconstruction scheme based on Hermite polyno-
mials [15] is used and applied as a limiter for the discontinuous Galerkin finite element
method on unstructured grids. A physics-based shock detector [14] is introduced to
effectively make a distinction between a smooth extremum and a shock wave. The
limiter can be chosen to only apply to these regions identified by this shock detector
in order to reduce the computational cost and maintain the high order accuracy of the
DG methods. A fast, low-storage p-multigrid method [16, 17] is used to obtain steady
state solutions, and the explicit three-stage third-order TVD Runge-Kutta scheme is
used to advance solution in time for the unsteady flow problems. A distinct feature
of this p-multigrid method [16, 17] is the application of an explicit smoother [2] on
the higher level approximations (p>0) and an implicit smoother [29,30] on the lowest
level approximation (p=0), resulting in a fast as well as low storage method that can be
efficiently used to accelerate the convergence to a steady state solution. Furthermore,
this p-multigrid method can be naturally applied to compute the flows with discon-
tinuities, where a monotonic limiting procedure is usually required for discontinuous
Galerkin methods.

Using the BGK formulation, the extension of this DG method for solving the com-
pressible Navier-Stokes equations is simple and straightforward, as the computation
of the numerical fluxes at the element interfaces is performed through a simple hybrid
gas distribution function. There are two approaches that can be used to construct the
numerical fluxes: one is the directional splitting method [31] and the other is the fully
multidimensional method [24]. The less costly directional splitting method is used to
construct the numerical fluxes at the interfaces for the Navier-Stokes equations. In this
approach, the partial derivatives of the conservative variables in the direction normal
to the cell interfaces, as well as the flow variables on the right and left of the interfaces
will be used in the flux evaluation. It is worth to point out the fundamental difference
between the BGK scheme and the upwind methods for the construction of Riemann
flux function. Upwind schemes only use the flow variables on the left and right of cell
interfaces to construct the Euler flux, while the BGK scheme requires both flow vari-
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ables and their derivatives in order to evaluate the numerical fluxes at the interfaces.
This explains why the fluxes obtained by the BGK scheme contain both the convective
and dissipative terms, which is similar to the generalized Riemann solver in the evo-
lution of fluxes at the interface. However, the BGK formulation offers a much deeper
physical insight in the construction of a DG method for the convection-diffusion prob-
lems. A remarkable feature of the gas-kinetic BGK scheme in the context of the DG for-
mulation is that a Navier-Stokes flux at the cell interfaces is obtained directly from the
the flow variables and their derivatives, avoiding a separate computation of viscous
fluxes at the interfaces normally required in the LDG formulation and alike approach.

3 Examples

A few examples are presented here to illustrate the high accuracy and robustness of
this DG method for a wide range of flow regimes from subsonic to hypersonic.

3.1 Accuracy test for 1D Navier-Stokes equations

The first test is to solve the NavierCStokes equations with the following initial data:

ρ(x, 0) = 1 + 0.2 sin(πx), u(x, 0) = 1, p(x, 0) = 1. (3.1)

The dynamical viscosity coefficient is µ=0.0005, the Prandtl number is Pr=2/3, and
the specific heat ratio is c=5/3. The computational domain is [0, 2] and the periodic
boundary condition is used. We compute the viscous solution up to time t=2 with a

Table 1: The error and convergence order for P1 case.

N L∞-error Order L1-error Order L2-error Order
10 3.05E-2 - 1.76E-2 - 1.99E-2 -
20 5.68E-3 2.42 3.36E-3 2.39 3.79E-3 2.39
40 1.03E-3 2.46 6.31E-4 2.41 7.07E-4 2.42
80 2.08E-4 2.31 1.28E-4 2.30 1.44E-4 2.30

Table 2: The error and convergence order for P2 case.

N L∞-error Order L1-error Order L2-error Order
10 2.48E-3 - 1.51E-3 - 1.62E-3 -
20 2.76E-4 3.16 1.66E-4 3.18 1.86E-4 3.12
40 2.50E-5 3.47 1.54E-5 3.43 1.73E-5 3.42
80 2.54E-6 3.30 1.47E-6 3.39 1.64E-6 3.40

Table 3: The error and convergence order for P3 case.

N L∞-error Order L1-error Order L2-error Order
10 9.05E-5 - 5.37E-5 - 5.67E-5 -
20 8.89E-6 3.35 4.23E-6 3.67 4.90E-6 3.53
40 4.90E-7 4.18 2.81E-7 3.91 3.17E-7 3.95
80 3.26E-8 3.91 1.42E-8 4.30 1.70E-8 4.22
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small time step to guarantee that the spatial discretization error dominates. No limiter
is used in this case. Since there is no exact solution for this problem, we evaluate the
numerical error between the solutions by two successively refined meshes and use the
error to estimate the numerical convergence rates. The results are shown in Tables 1, 2
and 3. From these results we can clearly notice that a (k + 1)th-order convergence rate
can be obtained for Pk (k=1, 2, 3) schemes for smooth solutions.

3.2 Laminar flow past a flat plate

The laminar boundary layer over a unit flat plate is considered in this test case. This
simple problem is chosen to assess the accuracy of the numerical solution obtained by
the BGKDG method for solving the Navier-Stokes equations. The mesh used to com-
pute the flat plate boundary layer is shown in Fig. 3 and contains 120 cells and 30 cells
in the x and y-directions, respectively. The numerical solution is presented at a Mach
number of 0.2, and Reynolds number of 100, 000 based on the freestream velocity and
the length of the flat plate using DG (P1) and DG (P2) methods. Fig. 4 compares the
profiles of velocity component in the x-direction at five locations obtained by DG (P1)
and DG (P2) solutions with Blasius solution, respectively, while the velocity profiles in
the y-direction obtained by DG (P1) and DG (P2) solutions are compared with Blasius
solution in Fig. 5. Both DG (P1) and DG (P2) solutions resolve boundary layers very
accurately, even with as few as four cells in the boundary layer. What demonstrates
the high accuracy of DG solutions is that they give the accurate prediction of velocity
profiles not only in the x-direction, but also in the y-direction, which is extremely dif-
ficult to compute accurately. The computed skin friction coefficient along the flat plate
is shown in Fig. 4, which is in a good agreement with the Blasius solution, indicating
the high accuracy of DG methods for computing NS solutions.

Figure 3: Mesh used for computing the laminar flow past a flat plate.

3.3 Shock boundary layer interactions

The interaction of an oblique shock wave with a laminar boundary layer is considered
in this test case. The shock makes a 32.6◦ angle with the wall, which is located at y=0
and x>0, and hits the boundary layer on the wall at Xs=10. The Mach number of
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Figure 4: Comparison of the velocity profiles in the x-direction at different x-locations obtained using the
DG (P1) (left) and DG (P2) (right) solutions with Blasius solution.

Figure 5: Comparison of the velocity profiles in the y-direction at different x-locations obtained using the
DG (P1) (left) and DG (P2) (right) solutions with Blasius solution.

Figure 6: Comparison of computed skin friction coefficient distribution along the flat plate obtained using
DG solutions with the Blasius solution.

the shock wave is equal to 2 and the Reynolds number based on the upstream flow
condition and the characteristic length Xs is equal to 2.96×105. The Sutherland’s law
is used to compute the dynamic viscosity. The computation was conducted on a rect-
angular domain [−1.05≤x≤16.09]×[0≤y≤10.16]. A nonuniform mesh with 106×73
cells, similar to the laminar boundary layer problem, is used in the computation. The
computed pressure contours obtained by DG (P1) and DG (P2) solutions are shown in
Fig. 7. As expected, the DG (P2) solution produces a sharper numerical shock transi-
tion than the one from DG (P1) solution due to less numerical dissipation introduced
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Figure 7: Computed pressure contours in the flow field for shock boundary layer interaction obtained by the
DG (P1) (left) and DG (P2) (right) solutions.

Figure 8: Computed skin friction (left) and pressure (right) distributions on the surface of the plate for the
shock boundary layer interaction.

by weaker discontinuities at the cell interfaces. The skin friction and pressure distri-
butions at the plate surface are shown in Fig. 8, where a fair agreement between the
current numerical results and experimental data [32] is observed for both DG (P1) and
DG (P2) solutions, and the DG (P2) solution performs slightly better than the DG (P1)
solution. The discrepancy between the experimental and numerical results is mainly
due to the assumption that the flow is laminar whereas the real physical one could be
turbulent.

3.4 Lid-driven cavity problem

The two-dimensional lid-driven cavity flow problem was studied extensively and
served as a benchmark test case for the incompressible Navier-Stokes calculations.
This test case is chosen to study the accuracy and effectiveness of the DG method for
computing low Mach number flows. The grid used in the computation is shown in
Fig. 9. It contains 5398 elements, 2800 grid points and 200 boundary points. The
computation is performed at a Mach number of 0.05 and a Reynolds number of 400
using DG (P1) method. Fig. 10 shows the computed velocity in the flow field. The
u-velocity component along the vertical centerline is shown in Fig. 11. The solution of
Ghia et al. [33], which is considered a standard benchmark solution, used a very fine
129×129 grid points, and is also shown for comparison. The virtually identical agree-
ment indicates that the DG method had the ability of obtaining an accurate solution to
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Figure 9: Mesh for lid-driven cavity problem. Figure 10: Computed velocity contours for lid-driven
cavity problem at M∞=0.05, Re=400.

Figure 11: Computed x-direction velocity distribution along vertical geometric centerline at M∞=0.05,
Re=400.

the low Mach number flows without recourse to the time-preconditioning techniques
normally required for the finite volume methods.

3.5 Hypersonic laminar flow past a circular cylinder

This test case, taken from the experiment done by Wieting [34], where the flow con-
dition is given as M∞=8.03, T∞=124.94K, TW=294.44K, Re=1.835×105, is chosen to
demonstrate the robustness of the BGKDG method for accurate and reliable predic-
tion of heat flux in the hypersonic regime. The application of the LDG method (Bassi-
Rebay II scheme) for this hypersonic flow problem is not encouraging, as shown in Fig.
12, where the mesh used in the computation, the computed pressure and temperature
contours in the flow field, are presented. Note that different approximate Riemann
solvers have been tried to compute the inviscid fluxes in an attempt to improve the
numerical solutions. However, all solutions obtained are not as accurate as the one
obtained using the BGKDG method, as demonstrated in Fig. 13 where the computed
pressure, Mach number and temperature contours in the flow field are shown. Fig. 14
compares the computed normalized pressure and heat flux at the cylindrical surface
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Figure 12: Computed mesh (left), computed Mach number (middle) and temperature (right) contours in
the flow field obtained using LDG (P1) solution.

Figure 13: Computed pressure (left), Mach number (middle) and temperature (right) contours in the flow
field obtained using BGKDG (P1) solution.

Figure 14: Comparison of the computed head flux (left) and pressure distributions obtained by the BGKDG
solution along the cylindrical surface with the experimental data.

with the experimental data, where a fairly good agreement can be observed. This ex-
ample clearly indicates the potential and promise of the DG method for accurate and
reliable prediction of heat flux in the hypersonic regime.
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4 Conclusions and Outlook

A discontinuous Galerkin method based on a Taylor basis has been extended for
solving the compressible Navier-Stokes equations on arbitrary grids. Unlike the tra-
ditional discontinuous Galerkin methods which normally use a local discontinuous
Galerkin formulation to discretize the viscous fluxes, the present DG method uses
BGK formulation for the discretization of the Navier-Stokes equations, which has the
ability of treating both convective and dissipative effects together using a gas-kinetic
distribution function. As a result, there is no need to compute the viscous fluxes at
the interfaces separately, thus significantly reducing the computational costs. The de-
veloped method has been used to compute a variety of viscous flow problems on
arbitrary grids. The numerical results obtained by the BGKDG method are extremely
promising and encouraging, indicating its ability and potential to become not just
a competitive but simply a superior approach than the current available numerical
methods. Further effort will be focused on conducting a systematic study on accuracy,
convergence, and cost between BGKDG and LDG methods for solving the Navier-
Stokes equations and extending this BGKDG method for three dimensional problems.
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[30] H. LUO, D. SHAROV, J. D. BAUM AND R. LÖHNER, A class of matrix-free implicit methods

for compressible flows on unstructured grids, Proceedings of the First International Confer-
ence on Computational Fluid Dynamics, Kyoto, Japan, 10-14, July 2000.

[31] K. XU, A gas kinetic BGK scheme for the Navier-Stokes equations and its connection with artifi-
cial dissipation and Godunov method, J. Comput. Phys., No. 1, 171 (2001), pp. 289–335.

[32] R. J. HAKKINEN, L. GREBER, L. TRILLING AND S. S. ABARBANEL, The Intersection of an
Oblique Shock Wave with a Laminar Boundary Layer, NASA Memo. 2-18-59W, NASA,
1959.

[33] U. GHIA, K. N. GHIA AND C. T. SHIN, High-resolution for incompressible flow using the
Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), pp. 87–411.

[34] A. R. WIETING, Experimental Study of Shock Wave Interface Heating on a Cylindrical
Leading Edge, NASA TM-100484, 1987.


