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Abstract. This paper describes inverse eigenvalue problems that arise in studying
qualitative dynamics in systems biology models. An algorithm based on lift-and-
project iterations is proposed, where the lifting step entails solving a constrained
matrix inverse eigenvalue problem. In particular, prior to carrying out the iterative
steps, a-priori bounds on the entries of the Jacobian matrix are computed by relying
on the reaction network structure as well as the form of the rate law expressions
for the model under consideration. Numerical results on a number of models show
that the proposed algorithm can be used to computationally explore the possible
dynamical scenarios while identifying the important mechanisms via the use of
sparsity-promoting regularization.

AMS subject classifications: 65F18, 93B55, 65P30, 37N25, 15A29

Key words: Inverse eigenvalue problems, dynamical systems, bifurcation, biology, sparsity.

1 Introduction

Over the past decade, there has been much focus on the field of systems biology, with
the fundamental goal being to understand how genes act together to bring about the
wide-ranging regulatory functions within cells [1]. Various processes are controlled
by networks of genes, including the cell division cycle and the circadian rhythm clock
[12]; moreover, gene regulatory networks possess robust dynamical properties such
that they are able to withstand fluctuating environmental conditions and the impre-
cision of the underlying biochemical components [2]. To shed light on the many
questions that arise, various modeling paradigms have been developed, ranging from
boolean models, ODE, PDE, delay-differential equations to stochastic models [12].
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In this paper, we focus exclusively on ODE models of the form,

ẋ(t) = f (x(t), q), (1.1)

where x(t) denotes the n-dimensional state vector and q the m-dimensional parameter
vector. In systems biology modeling, one rarely has a detailed knowledge of the pa-
rameter values and sometimes even the knowledge of the network topology is incom-
plete. However, there often exist a direct relation between the qualitative dynamics of
system (1.1) as captured in the bifurcation diagram with the cell physiology [33]. In
this paper, we examine an inverse problem associated with the qualitative dynamics of
(1.1) which commonly arise at the initial stages of modeling gene regulatory networks,
namely: given a set of genes as well as their known and hypothetical interactions, can
the network be bistable or oscillatory for some choice of parameter values? If so, what
are the minimal sets of parameters that one could vary in order to obtain these dy-
namical phenotypes? Such questions are of practical relevance to the modelers, who
may wish to explore or eliminate different hypothetical reaction network topologies
and mechanisms. It needs to be emphasized that the dependence of qualitative dy-
namics on the choice of parameters cannot be neglected: it has been shown that even
with a fixed reaction network topology and biochemical mechanism, different choices
of parameters can result in oscillators of various qualitative types [7]. At the initial
modeling stage, there is no prior knowledge on the influence of its parameters and
inverse eigenvalue analysis could be a useful first step by bringing the system to a
relevant parameter regime where a more complete picture of its dynamical character-
istics would be obtained by carrying out a (forward) bifurcation analysis [19] followed
by possible inverse bifurcation analysis [22, 23].

This paper is organized as follows: In Section 2, we describe the underlying method-
ology and the proposed lift-and-project algorithm. In particular, we discuss in detail
the matrix inverse eigenvalue problem that arises and give an illustrative example us-
ing a MAP kinase model. In Section 3, we demonstrate the proposed algorithm by
applying to a number of systems biology models.The ODE systems for the numerical
examples are given in the Appendix.

2 Methodology and algorithms

Let (d f /dx) be the Jacobian matrix of the ODE system (1.1). Motivated by such a
need to explore qualitative dynamics of gene networks, a computational method has
been developed in the systems biology context [5] to find parameters that give rise to
limit-point (LP) and Hopf (H) bifurcations [19], which satisfy the spectral conditions
0 ∈ σ(d f /dx) and σ(d f /dx) ⊃ {±iω} respectively.

A minimization problem is formulated, with the objective being functions of eigen-
values of (d f /dx) whose minimum are attained by limit-point and Hopf bifurca-
tions [5]. To locate parameters that could bring about the corresponding bifurcations,
genetic algorithms are applied. The proposed method has been applied to a number
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Figure 1: Comparison of standard l2 with the sparsity-promoting regularization term.

of ODE models known to exhibit bistability or oscillations, where the algorithm has
been demonstrated to find parameters resulting in the desired qualitative behaviors
from random initial parameter values.

Our focus differs somewhat from [5] in that we not only wish to explore the possi-
bility for bifurcations but also identify (in a stable manner) the important biochemical
mechanisms that could give rise to the specified changes in the dynamics. Hence,
in solving these inverse eigenvalue problems we consider regularization strategies [11].
While stabilizing ill-posed problems, regularization strategies also bring a bias to the
identified solutions. In biological applications, one typically wish to identify the im-
portant governing mechanisms, out of the possibly many alternatives. For instance,
in analyzing gene expression data, sparse principal component analysis has been pro-
posed as way to attribute clustering to a few genes, hence making biological inter-
pretations easier [8] . In our case, we wish to identify a few important ”knobs” that
control the qualitative dynamical features of the system. The use of regularization
terms that promote the sparsity of identified solution has been studied and used in the
field of inverse problems [9, 27]. Here, we employ a non-convex, sparsity-promoting
regularization function as has been previously used in analyzing inverse bifurcation
problems [22]. In particular, we consider the following lp,ε-functional for 0 ≤ p < 1,

lp,ε(x) = ∑
i
(x2

i + ε)
p
2 , (2.1)

where 0<ε¿1 ensures differentiability of the function. For p<1, the function is clearly
non-convex; in fact, as illustrated in Fig. 2, it is only convex within the small box
{x : |xi| ≤

√
ε/(1− p)}. In the numerical examples, we choose the value of ε=0.012,
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hence any parameter that changes >1% lies within the concave region of the penalty
function and could be classified as having been identified by the algorithm.

While there is ongoing work on developing a mathematical theory for its regular-
ization properties of such lp,ε functional [37], it has been computationally shown to
be effective for obtaining sparse solutions in the context of inverse bifurcation prob-
lems [22].

2.1 Lift-and-project iterations

For the above mentioned class of inverse eigenvalue problems, we propose an algo-
rithm based on carrying out a series of alternating Lift-and-Project iterations. This
iterative solution method for finding the common intersection of sets has been an-
alyzed in the convex setting [4] but has also found applications in non-convex set-
tings including pole placement [35] as well as in solving least squares formulation of
partially-prescribed inverse eigenvalue problems [6]. We believe that the proposed
strategy of dividing the problem into lift and projection steps while using as much
structural information of the underlying reaction network as possible, can provide an
attractive alternative to the existing method of globally minimizing an objective func-
tion involving the eigenvalues of the Jacobian matrix [5], the computational effort of
which could become intensive in nonlinear problems of high dimensions.

Here, we consider the case of trying to locate a Hopf bifurcation with oscillation
frequency ω. In the proposed Algorithm 2.1, the first step consists of deriving linear
constraints on the lifting matrix Ã: entry-wise bounds of the form

LBij ≤ Ãij ≤ UBij,

and linear inequality constraints of the form C : Ã ≥ 0; note that this bounding pro-
cedure is done only once, the result of which is subsequently used in all the iterative
steps. These upper and lower bounds are derived via algebraic computation and the
linear constraints are obtained by identifying relationships between Jacobian entries;
this is illustrated by a specific example in Section 2.2.1. The main part of Algorithm 2.1
consists of the Lift-and-Project steps: the Lifting step entails the solution of an matrix
inverse eigenvalue problem, which is formulated as a bilinear program involving the
norm

‖x‖l1 = ∑
i
|xi|,

and is described in detail in Section 2.2. The Projection step is formulated as a non-
linear, constrained optimization problem where one tries to find parameter and state
solution, q and x, such that the mismatch of the Jacobian matrix (d f /dx) to the lifted
matrix Ã is minimized while satisfying the equilibrium constraint f (x, q)=0. To reg-
ularize the inverse problem, a sparsity-promoting penalty term is added, µlp,ε

(
(q −

q∗)/q∗
)

where µ is the regularization parameter, which has the effect of identifying
parameter solutions that entail changing as few entries as possible from the nominal
values of q∗. We note that the a-priori derived bounds and linear constraints placed on
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Ã go towards narrowing the possible gap between the lifted matrix and the space of
Jacobian matrices that can be realized by the system under consideration.

Algorithm: Find Oscillations (frequency ω, parameter box qL ≤ q ≤ qU)

Step 1. Obtain a-priori computable bounds and linear constraints on the matrix entries:

{LB, UB, C} ← DeriveConstraints
((d f

dx
)
, qL ≤ q ≤ qU

)
.

Step 2. Iterate:

(1) Lifting step: for details, refer to Section 2.2

A ←
(

d f
dx

)
, Ã ← arg min

Ã, v

∥∥A− Ã
∥∥

l1
,

s.t.

(
Ã−ωI

ωI Ã

)
· v = 0, LBij ≤ Ãij ≤ UBij , C : Ã ≥ 0, etc...

(2) Projection step:

q ← arg min
x, q

∥∥∥∥
(

d f
dx

)
− A

∥∥∥∥
l1

+ µlp,ε

(
q− q∗

q∗

)
,

s.t. f (x, q) = 0.

The presented algorithm has been implemented in Mathematica [28] as an add-on pack-
age to MathSBML [30], which reads and simulates models specified in the Systems Biol-
ogy Markup Language (SBML) format. The bilinear programming problem in the Lift-
ing step is solved via either the interior point method provided as a built-in routine of
Mathematica, or the branch-and-bound algorithm of MathOptimizer Professional [15];
the nonlinear optimization problem that arise in the Projection Step is solved with the
interior point algorithm of Mathematica.

2.2 Matrix inverse eigenvalue problem

Over the years, many types of inverse eigenvalue problems have been studied: issues
with regard to the existence and uniqueness of solutions have been addressed and
many algorithms have been developed; for a general overview, refer to the book by
Chu and Golub [6]. There continues to be work developing algorithms tailored to the
various situations that arise in applications. In [13], the authors describe a method
for solving structured inverse eigenvalue problems under the assumption that a few
eigenpairs are completely prescribed. While the assumption is satisfied for problems
of model updating, where a number of oscillatory modes as well as their associated
frequencies are observed, for application in the qualitative analysis of biological mod-
els this underlying assumption is not valid since the oscillatory modes are typically
not known a-priori. Alternatively, if the complete spectrum of the matrix is known or
specified but no eigenvector conditions are imposed, there also exist algorithms for
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these problems [16]. However, this assumption is also in vast contrast to our applica-
tion, where we would like to impose only a small number of eigenvalue conditions (or
the co-dimension of bifurcation) ranging from 1 up to 4: saddle-node and Hopf bifur-
cations have co-dimension 1, Bogdanov-Takens and Double Hopf have co-dimension
2 [19].

In the field of controls, algorithms have also been proposed for the related, so-
called pole placement problems [14,18,25,36], which arise from the need for the stabi-
lization of dynamic systems. Such pole placement problems are typically of the form:
given the state space matrices A∈Rn, B∈Rn×m, find the static output feedback ma-
trix K∈Rm such that spectrum of A + BKBT lies in some desired, closed convex sets,
λi(A + BKBT)∈Ci. For instance, in [35] the following problem is considered: the lo-
cation of a complex conjugate pair of eigenvalues in the left half plane is specified,
C1={c}, C2={c̄}, while requiring the remaining eigenvalues to lie within some convex
domain C3 = · · · = Cn = C. For solving such problems, iterative algorithms based on
alternating projection have been developed [35].

Although many algorithms for various problem classes have been proposed in the
fields of control and model identification, inverse eigenvalue problems that arise in
systems biology applications differ in a number of ways. Firstly, since the goal is to
infer important mechanisms that can give rise to different dynamics, we would like
to find sparse solutions: namely, those that involve changing as few entries of the
input matrix as possible. This motivates the use of l1 minimization, rather than l2
based formulation considered in almost all inverse eigenvalues so far. We note that
l1 based formulation has found applications in fields such as image processing [9]
and compressive sensing [10]. Some theoretical results under restricted assumptions
are available on the effectiveness of l1 minimization for sparsity: for instance, it has
been proved that under linear constraints, the minimum l1 objective can recover the
true solution provided it is sufficiently sparse [10]. Other than relying on a sparsity-
promoting objective, in order to narrow down the set of candidate matrices we utilize
as much structural information of the biochemical model as possible. For instance,
in many biological applications the entries of the Jacobian matrix are often rational
functions of the state variables. Hence, if one is searching over bounded parameter
boxes and if all values of chemical concentrations are assumed to be positive, non-
trivial entry-wise lower and upper bounds of the form

Ãij ≥ LBij, Ãij ≤ UBij,

can be computed via algebraic computation algorithms, for instance the cylindrical
algebraic decomposition [3]; we illustrate this method via a numerical example in
Section 2.2.1. Another useful piece of structural information which one can use is that
there is typically a reaction network graph underlying the ODE system, namely which
chemical species take part in what reactions [29]. By using patterns arising from the
graph structure, linear equalities and inequalities between matrix entries of the form
C : Ã ≥ 0 can be obtained. For instance, from chemical conservation laws stating
the sum of certain species is constant in time, one can derive that row sums of certain
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Jacobian entries should be zero. An algorithm has been implemented in Mathematica
that extract such linear relational bounds from the Jacobian entries; for an illustration,
refer to Section 2.2.1.

We formulate the eigenvalue conditions as bilinear constraints involving the ma-
trix to be identified, Ã, as well as the singular vector v: for the case of limit-point and
Hopf bifurcations, the constraints are

• Limit-point bifurcation: Ã · v = 0

• Hopf bifurcation:
(

Ã −ωI
ωI Ã

)
· v = 0,

where ω specifies the frequency of oscillation that one seeks; it could also be freed
as a variable while preserving the bilinear problem structure. With the constraints
stated above, to locate Hopf bifurcation for instance, we solve the following bilinear
program: given the input matrix A, the a-priori computed lower and upper bounds
on matrix entries LB, UB as well as the linear inequality constraints on entries via
the constraint matrix C, we minimize the l1 norm of mis-fit between A and Ã via the
auxiliary variables tij,

min
Ã∈Rn×n, t∈Rn×n, v∈Rn,‖v‖=1

∑
i,j

tij, (2.2)

s.t. − tij ≤ Aij − Ãij ≤ tij,(
Ã −ωI

ωI Ã

)
· v = 0,

Ãij ≤ UBij, ∀ij ∈ IUB,
Ãij ≥ LBij, ∀ij ∈ ILB,
C : Ã ≥ 0.

In some applications, in addition to the constraints as stated in (2.2), linear constraints
of the form K · v ≥ 0 for some matrix K may be placed on the critical eigenvector v.
As we illustate via biological examples in Section 3, these constraints may arise from
wishing to specify desired phase relationships in the oscillatory species or the type of
switching behavior in genes.

2.2.1 Numerical example: MAP Kinase (MAPK) cascade

In this example, we look at the Mitogen-Activated Protein Kinase (MAPK) cascade, in-
volved in signal transduction, relaying extracellular stimuli from the cell membrane to
cytoplasm and nucleus [17]. The MAPK pathway consists of several levels, where the
kinase at each level transfers phosphate groups to the kinase that lies at the subsequent
level. More specifically, the phosphorylated, active form of the kinase at each level
phosphorylates the kinase at the next level down the cascade, thereby turning it active.
For instance, MAPK is phosphorylated to MAPK-P by the doubly-phosphorylated
form of MAPK kinase (MKK-PP). The schematic of the model described in [17] is given
in Fig. 2. Note that the doubly phosphorylated MAPK-PP negatively feedbacks to the
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Figure 2: Schematic of MAP kinase model.

phosphorylation of MKKK; this feedback is shown as a blue arrow in Fig. 2. The ul-
trasensitivity brought about by the cascade together with the negative feedback can
bring about oscillations. In [17], Michaelis-Menten rate rule is used in the modeling of
phosphorylation steps, leading to the following ODE system [17]:

MAPK′(t) =
V10MAPKP(t)

KK10 + MAPKP(t)
− k7MAPK(t)MKKPP(t)

KK7 + MAPK(t)
,

MAPK′
P(t) = − k8MAPKP(t)MKKPP(t)

KK8 + MAPKP(t)
+

k7MAPK(t)MKKPP(t)
KK7 + MAPK(t)

− V10MAPKP(t)
KK10 + MAPKP(t)

+
V9MAPKPP(t)

KK9 + MAPKPP(t)
,

MAPK′
PP(t) =

k8MAPKP(t)MKKPP(t)
KK8 + MAPKP(t)

− V9MAPKPP(t)
KK9 + MAPKPP(t)

,

MKK′(t) =
V6MKKP(t)

KK6 + MKKP(t)
− k3MKK(t)MKKKP(t)

KK3 + MKK(t)
,

MKK′
P(t) = − k4MKKP(t)MKKKP(t)

KK4 + MKKP(t)
+

k3MKK(t)MKKKP(t)
KK3 + MKK(t)

− V6MKKP(t)
KK6 + MKKP(t)

+
V5MKKPP(t)

KK5 + MKKPP(t)
,

MKK′
PP(t) =

k4MKKP(t)MKKKP(t)
KK4 + MKKP(t)

− V5MKKPP(t)
KK5 + MKKPP(t)

,

MKKK′(t) =
V2MKKKP(t)

KK2 + MKKKP(t)
− V1MKKK(t)

(K1 + MKKK(t))
((

MAPKPP(t)
Ki

)
n + 1

) ,



J. Lu / Adv. Appl. Math. Mech., 6 (2009), pp. 711-728 719

MKKK′
P(t) =

V1MKKK(t)

(K1 + MKKK(t))
((

MAPKPP(t)
Ki

)
n + 1

) − V2MKKKP(t)
KK2 + MKKKP(t)

,

where the term describing negative feedback mechanism is shown in blue in Fig. 2.
At the nominal parameter values given as,

K1 = 10., k3 = 0.025, k4 = 0.025, k7 = 0.025, k8 = 0.025,
Ki = 25., KK10 = 15., KK2 = 8., KK3 = 15., KK4 = 15.,
KK5 = 15., KK6 = 15., KK7 = 15., KK8 = 15., KK9 = 15.,
V1 = 0.215835, V10 = 0.5, V2 = 0.25, V5 = 0.75, V6 = 0.75,
V9 = 0.5,

the Jacobian matrix at the equilibrium is,

A =




−0.0176 0.00475 0 0 0 0 0 −0.0102
0.0176 −0.0119 0.0000957 0 0 0 0 −0.00532
0 0.00723 −0.0000957 0 0 0 0 0.0155
0 0 0 −0.000183 0 −0.0233 0.00218 0
0 0 0.000655 0 −0.000301 0.00179 0 0
0 0 −0.000655 0 0.000301 −0.00179 0 0
0 0 0 0.000183 0 0.00358 −0.00403 0.00545
0 0 0 0 0 0.0197 0.00185 −0.00545




.

The spectrum of the above matrix contains a pair of eigenvalues lying close to the
imaginary axis, as shown in Fig. 3 (a). However, if the negative feedback is weakened
(by setting Ki : 25 → 25× 104 while decreasing V1 : 2.5 → 0.2158), the system loses
its oscillatory potential and all the eigevalues subsequently lie in the left-half-plane, as
indicated in Fig. 3 (b). Weakening the negative feedback via the 2 parameters Ki and
V1 affects only 2 values of the Jacobian matrix, the entries (5,3) and (6,3): ±0.000655 →
±7× 10−7. This example provides us with the following matrix inverse eigenvalue
problem: can we identify the matrix entries, corresponding to the indicated negative
feedback, so as to bring about an imaginary pair of eigenvalues as shown in Fig. 3 (a)?

Prior to solving the stated matrix inverse eigenvalue problem, we show the linear
equality and inequality constraints on the entries of the lifted matrix Ã that can be

-0.025 -0.020 -0.015 -0.010 -0.005 0.000

-0.004

-0.002

0.000

0.002

0.004

(a) With nominal negative feedback

-0.025 -0.020 -0.015 -0.010 -0.005 0.000

-0.004

-0.002

0.000

0.002

0.004

(b) Negligible negative feedback

Figure 3: Spectrum of Jacobian matrices.
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-¥<-0.000063<0 0<0.0031<330. 0 0 0 0 0 -2.5<-0.024<0

0<0.000063<¥ -¥<-0.0054<0 0<0.0081<330. 0 0 0 0 -2.5<0.0064<2.5

0 0<0.0023<¥ -330.<-0.0081<0 0 0 0 0 0<0.017<2.5

0 0 0 -¥<-0.000094<0 0 -2.5<-0.024<0 0<0.005<500. 0

0 0 0<7.3 ´ 10-7<0.0086 0 -220.<-0.00051<0 0<0.0023<310. 0 0

0 0 -0.0086<-7.3 ´ 10-7<0 0 0<0.00051<220. -310.<-0.0023<0 0 0
0 0 0 0<0.000094<¥ 0 -2.5<0.0066<2.5 -¥<-0.0086<0 0<0.013<500.

0 0 0 0 0 0<0.017<2.5 0<0.0036<¥ -500.<-0.013<0

Figure 4: Computed bounds on Jacobian entries.

derived. For the rate equations given above, assuming positivity of state variables
and kinetic constants lie within some bounded box, many of the Jacobian terms are
bounded. For instance, let us look at the expression of Jacobian entry (5, 3) describing
the negative feedback of MAPK-PP on the phosphorylation of MKKK,

(
d f
dx

)

(5,3)
=

MKKK(t)V1

Ki (MKKK(t) + K1)
(

MAPKPP(t)
Ki + 1

)
2

.

If the positivity of the chemical concentrations is assumed, MAPKPP(t) ≥ 0, MKKK(t) ≥
0, and the parameters are allowed to vary 2 orders of magnitude up and below its
nominal values,

1
10
≤ K1 ≤ 1000, 2500 ≤ Ki ≤ 25000000,

199
92200

≤ V1 ≤ 9950
461

,

using algebraic computation software (algorithm based on cylindrical algebra decom-
position as provided in Mathematica [34] is utilized in our current implementation) it
is readily calculated that

0 ≤ MKKK(t)V1

Ki (MKKK(t) + K1)
(

MAPKPP(t)
Ki + 1

)
2
≤ 199

23050
.

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

-0.0177 0.00475 ® 0.00704 0 0 0 0 0 -0.0102

0.0177 -0.012 0 0 0 0 0 -0.00533

0 0.00723 ® 0.00449 0 0 0 0 0 0.0156

0 0 0 -0.000182 0 -0.0234 0.00219 ® 0.0087 0

0 0 0 ® 0.000652 0 -0.000301 0.00179 0 0

0 0 0 ® -0.000652 0 0.000301 -0.00179 0 0

0 0 0 0.000182 0 0.00358 -0.00404 0.00546

0 0 0 0 0 0.0198 0.00191 -0.00546

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

(a) Minimization of l1-norm

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

-0.0177 0.00475 ® 0.00392 0 0 0 0 0 -0.0102 ® -0.00958

0.0177 -0.012 ® -0.0128 0.000246 0 0 0 0 -0.00533 ® -0.00473

0 0.00723 ® 0.00655 -0.000246 0 0 0 0 0.016

0 0 0 -0.000508 0 -0.0235 0.00239 0

0 0 0 ® 0.000769 0 -0.000306 0.0018 0 0

0 0 0 ® -0.000769 0 0.000306 -0.0018 0 0

0 0 0 0.000508 0 0.0035 -0.00417 0.00529

0 0 0 0 0 0.0197 0.00202 -0.00529

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

(b) Minimization of l2-norm

Figure 5: Identified matrix entries obtained by minimizing l1 and l2 objectives.
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For the MAP kinase model under consideration, out of the 26 non-zero Jacobian en-
tries, 22 non-trivial lower and upper bounds can be derived; see Fig. 4 for the bounds
that have been derived. Furthermore, 7 equality constraints have been extracted from
algebraically examining relationships between Jacobian entries. This is apparent if
one looks at the numerical entries of the matrix in (2.2.1): for instance, entry (1, 1) is
the negative that of (2, 1); similarly, between entries (4, 4) and (7, 4). Deriving these
relational constraints entail pattern matching across Jacobian entries and can be im-
plemented in symbolic environments such as Mathematica. After taking into account
these linear constraints, the bilinear programming problem (2.2) is solved, the matrix
obtained is shown in Fig. 5(a). The identified matrix entries are shown with an arrow
in the figure: we see that 5 entries (out of the 26 non-zero entries) have been changed.
This set of 5 entries includes the elements (5, 3) and (6, 3) that have been brought es-
sentially to 0 after weakening the negative feedback as previously described. As a
comparison, we also solve the problem using l2 objective rather than the proposed
l1 and the solution is shown in Fig. 5(b): we see that 7 entries are identified. This
demonstrates that the use of l1 objective in the lifting step can result in more sparse
solutions.

3 Example systems

3.1 MAPK cascade

The first example that we show is the same MAP kinase model as used in Section 2.2.
We start off from parameter values where the constant Ki, whose inverse describes the
negative feedback strength, has been increased by 4 orders of magnitude from that of
the published model [17]. The question, can the algorithm bring oscillations back into
the model and identify the negative feedback as the crucial mechanism?

To solve this problem, we set regularization parameter µ=10−4. After carrying
out 8 lift-and-project iterations, an oscillatory solution is achieved by varying 7 out of
the 23 parameters (defined as those changing more than 5% from their initial values),
namely: Ki : 2.5 × 105 → 100, KK9 : 15 → 5.816, KK4 : 15 → 11.2, KK8 : 15 →
13.76, V2 : 0.25 → 0.207, V6 : 0.75 → 0.660, V9 : 0.5 → 0.403. Using the parameter
values as identified by the algorithm gives the results shown in Fig. 6. Clearly, the
parameter that has been identified to be most crucial is that of Ki, which has been
changed by more than 4 orders of magnitude. Due to sparsity-promoting penalty, out
of the total number of 23 parameters in the model, 16 were essentially unchanged,
thereby allowing one to narrow down the list of possible mechanisms for inducing
oscillations.

3.2 Circadian rhythm

Circadian rhythms are free-running biological clocks that orchestrate the daily rhyth-
mic activity of many organisms. Via the coupling of theory and experiments, models
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(a) Using starting parameter set

(b) Using identified parameter set

Figure 6: MAP kinase model: time-course plots.

have been built that capture qualitative aspects of these clocks in organisms rang-
ing from Arabidopsis to Drosophila [20, 21]. In this example, we illustrate how inverse
eigenvalue analysis might shed light on whether a hypothetical model could be con-
sistent with some of the qualitative features in the data. We consider a tentative 10-
dimensional ODE model with 25 parameters developed by Oxsana Sorokina [31, 32];
the full system of equations is given in the Appendix. With nominal parameter val-
ues, this model exhibit the damped oscillatory behavior shown in Fig. 7 (a). Given
this solution, our question is: how to vary as few parameters as possible while get-
ting it to oscillate? Furthermore, we would like to see if it is possible for the species
rtAuc(t) and Ssn6uc(t) to oscillate with approximately π-radian phase difference be-
tween them. Hence, in addition to the eigenvalue constraint, in the lifting step we
place the following additional constraints on the critical eigenvector components: for
the specified phase angle difference φ, we impose:

vrtAuc, Re = cos(φ)vSsn6uc, Re − sin(φ)vSsn6uc, Im,
vrtAuc, Im = sin(φ)vSsn6uc, Re + cos(φ)vSsn6uc, Im.

It turns out that the minimization algorithms attempted failed to find a solution when
we requested φ=π. In this case, one could try to verify the non-existence of solution to
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(a) Using starting parameter set (b) Using identified parameter set

Figure 7: Circadian rhythm modeling: time-course plots for species rtTAc(t) and Ssn6c(t).

the bilinear constraints via polynomial programming methods such as SOSTOOLS [26].
However, for smaller values of φ, solutions can be found; in particular, for φ=6π/7,
the solution shown in Fig. 7(b) is obtained after 10 lift-and-project iterations. The
algorithm shows that only 6 out of the 24 parameters in the model need to be changed
in order to obtain the nearly-out-of-phase oscillation as shown.

3.3 Activator-inhibitor pair system

In the following example, we show how inverse eigenvalue analysis can be used to
explore the possibility of a single model to function either as a switch or an oscillator,
depending on the values of the parameters. Furthermore, we show how imposing ad-
ditional constraints on the critical eigenvector can be used to computationally explore
different scenarios of qualitative behaviors.
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Figure 8: Reversed switching of genes A1 and A2 over a range of signal values S.
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(a) (b)

(c)

Figure 9: Finding oscillations with specified
phase relationships between genes A1 and
A2. (a) Phase difference: 0. (b) Phase
difference: +π/2. (c) Phase difference:
−π/4.

We consider a 14-dimensional system of equations for an activator-inhibitor gene
model provided by Rainer Machné [24], shown in Appendix. The model consists of 2
genes, denoted as A1 and A2, which have opposite influences: gene A1 activates itself
as well as A2, while gene A2 inhibits itself as well as A1. Due to the self-activation
of A1, by intuitive reasoning one might correctly guess that there are parameter com-
binations such that the system undergoes a limit-point bifurcation, where both genes
A1 and A2 undergo a discontinuous jump upwards as the input signal S increases
over a certain threshold. Instead, we ask a question that is difficult to be addressed
by intuition alone: are there parameter values such that A1 jumps up but A2 jumps
down as S increases over a given threshold? Hence, we solve the inverse eigenvalue
problem with the following critical eigenvector constraint,

vA1 = −vA2.

The algorithm identifies a change of 8 out of the 44 parameters, giving rise to the
solution with bifurcation diagram shown in Fig. 8: we see that while for most values
of the signal the level of A2 increases with S, at the switching location (or limit-point
on the bifurcation diagram) one can in fact have the opposite occurring. Thus, the
algorithm can be used to bring the system to exhibit behaviors which might prove to
be rather counter-intuitive.

Owing to the inhibitory effect of gene A2, it would seem that oscillations could be
possible with this model. Indeed, oscillations can occur with various phase differences
between the genes A1 and A2. By imposing additional eigenvector constraints as
shown in Section 3.2, the algorithm identifies parameter values giving rise to these
different possibilities. Fig. 8 shows solutions obtained with various phase differences
imposed, from A1 and A2 being in-phase, φ=0, to out of phase by φ=+π/2 and
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φ=−π/4. It turns out the matrix inverse eigenvalue problem fails to find a solution for
φ=−π/2, but other methods of analysis would be necessary to confirm this finding.
To sum up, we have computationally found parameter regimes that give rise to a
variety of qualitative behaviors, which helps to develop insight into the model and
could be used in experimental verifications.

4 Conclusions

A new algorithm is proposed for tackling qualitative inverse problems that arise in
systems biology modeling. We have shown that the proposed method relying on l1-
based matrix inverse eigenvalue problem and lp sparsity-promoting penalty can be
successful in identifying sparse solutions that could be much more easily interpreted
in the biological context. While further work regarding stability analysis awaits and
several algorithmic extensions are possible, the proposed method has been shown to
be promising in allowing one to computationally address the type of questions that
arise in modeling gene networks.
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Appendix

A1. Circadian rhythm model system

Ace1Cu′(t) = CTKCp(Ace1tot−Ace1Cu(t))−KCdAce1Cu(t),

rrtTA′(t) =
nrtTAAce1Cu(t)4

(
grtTA4 + Ace1Cu(t)4

) (
Ssn6n(t)4

Ki4
+ 1

) − tTArrtTA(t),

rSsn6′(t) =
nSsn6rA2d(t)

gSsn6 + rA2d(t)
−msn6rSsn6(t),

rtTAc′(t) = −KdcrtTAc(t)2 + prtTArrtTA(t) + KddrtTAdimc(t),
rA2d′(t) = dotKdocrAd(t)− kdodrA2d(t),
rtTAdimc′(t) = KdcrtTAc(t)2 + K2rA(t)−K1rtTAdimc(t)−KddrtTAdimc(t),
rAd′(t) = dotKdocrA(t) + kdodrA2d(t)− dotKdocrAd(t)− kdodrAd(t),
rA′(t) = −K2rA(t)− dotKdocrA(t)−mTArA(t) + kdodrAd(t) + K1rtTAdimc(t),
Ssn6c′(t) = pSsn6rSsn6(t)−K3Ssn6c(t) + K4Ssn6n(t),
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Ssn6c′(t) = pSsn6rSsn6(t)−K3Ssn6c(t) + K4Ssn6n(t),
Ssn6n′(t) = K3Ssn6c(t)−K4Ssn6n(t)−mSsn6nSsn6n(t).

A2. Activator-inhibitor pair model system

A1′(t) =
1
3

(A1c(t)kimA1 −A1(t)kexA1)−A1(t)DA1,

A1c′(t) = −A1c(t)DA1c −UA1c(t)kassC1U + C1(t)kdissC1U

+
1

24
(A1(t)kexA1 −A1c(t)kimA1) + mA1(t)ktla1,

A2′(t) =
1
3

(A2c(t)kimA2 −A2(t)kexA2)−A2(t)DA2,

A2c′(t) = −A2c(t)DA2c −UA2c(t)kassC2U + C2(t)kdissC2U

+
1

24
(A2(t)kexA2 −A2c(t)kimA2) + mA2(t)ktla2,

C1′(t) = −C1(t)DC1U + UA1c(t)kassC1U −C1(t)kdissC1U,
C2′(t) = −C2(t)DC2U + UA2c(t)kassC2U −C2(t)kdissC2U,

GLN′(t) = −GLN(t)DGLN +
kimGLN

2
+

M(t)VmaxGLN

M(t) + KM
,

M′(t) = mM(t)ktlm − M(t)DM,

mA1′(t) =
1
24

rA1(t)kexa1 −
mA1(t)

(
GLN(t)DC1G + DmA1kdissC1G

kassC1G

)

GLN(t) + kdissC1G
kassC1G

,

mA2′(t) =
1
24

rA2(t)kexa2 −
mA2(t)

(
GLN(t)DC2G + DmA2kdissC2G

kassC2G

)

GLN(t) + kdissC2G
kassC2G

,

mM′(t) =
1
24

rM(t)kexm −mM(t)DmM,

rA1′(t) =
Va1A

(
A1(t)

ba1bA1KaA
+ actA2(t)

ba1bA2KaA

)
2

3
(

A1(t)
ba1bA1KaA

+ A2(t)
ba1bA2KaA

+ 1
)

2
− rA1(t)DrA1

−1
3

rA1(t)kexa1 +
Va1b

3
+

SVa1S

3 (S + ba1sKaS)
,

rA2′(t) =
Va2A

(
A1(t)

bA1ba2KaA
+ actA2(t)

ba2bA2KaA

)
2

3
(

A1(t)
bA1ba2KaA

+ A2(t)
ba2bA2KaA

+ 1
)

2
− rA2(t)DrA2

−1
3

rA2(t)kexa2 +
Va2b

3
+

SVa2S

3 (S + ba2sKaS)
,

rM′(t) =
VmA

(
A1(t)
KmA1

+ actA2(t)
KmA2

)
2

3
(

A1(t)
KmA1

+ A2(t)
KmA2

+ 1
)

2
− rM(t)DrM − 1

3
rM(t)kexm.
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