
Journal of Computational Mathematics

Vol.30, No.3, 2012, 262–278.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1109-m3567

A NEW TRUST-REGION ALGORITHM FOR FINITE MINIMAX
PROBLEM*

Fusheng Wang Chuanlong Wang

Department of Mathematics, Taiyuan Normal University, Taiyuan 030012, China

Email: fswang2005@163.com clwang218@126.com

Li Wang

Department of Mathematics, University of California, San Diego, USA

Email: agathapasley@gmail.com

Abstract

In this paper, a new trust region algorithm for minimax optimization problems is

proposed, which solves only one quadratic subproblem based on a new approximation

model at each iteration. The approach is different with the traditional algorithms that

usually require to solve two quadratic subproblems. Moreover, to avoid Maratos effect, the

nonmonotone strategy is employed. The analysis shows that, under standard conditions,

the algorithm has global and superlinear convergence. Preliminary numerical experiments

are conducted to show the effiency of the new method.
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1. Introduction

In this paper, we study the finite minimax problem of the form

(P ) : min
x∈Rn

max
1≤i≤m

fi(x), (1.1)

where fi : Rn → R are twice continuously differentiable. Many problems of interest in real

world applications can be modeled as finite minimax problems (P ). This class of problems

occur, for instance, in curve fitting, L1 and L∞ approximation problems, systems of nonlinear

equations [1], problems finding feasible points of systems of inequalities, nonlinear programming

problems, multiobjective problems, engineering design, optimal control and etc., which show

that the finite minimax problem is a very important class of nonsmooth optimization problems.

At present, many algorithms have been developed, which can be classified into two classes.

One is that, the problem (P ) can be viewed as an unconstrained nondifferentiable optimization

problems, so we can use the methods for solving general nondifferentiable optimization prob-

lems, such as subgradient methods, bundle methods and cutting plane methods to solve it(see

[2-7]). The other is that, in view of the particular structure of its nondifferentiability, it’s also

suitable to make use of smooth optimization methods which based on the well-known fact that

the problem (P ) is equivalent to a smooth optimization problem on the n+ 1 variables (x, z):
{

min
(x,z)∈Rn+1

z,

s.t. fi(x)− z ≤ 0, i = 1, · · · ,m,
(1.2)
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where x ∈ Rn and z ∈ R. Many line search algorithms were proposed by using this features (see

[8-16]), under mild assumptions, these methods have good properties of both global convergence

and locally superlinear convergence.

In history, most algorithms on minimax problems are line search rather than trust region

based [17]. It’s well known that trust-region methods are very efficient for smooth optimization

problems, and they usually induce strong global convergence. Fletcher [18, 19] first applied

trust-region methods to a class of composite nonsmooth optimization problems, and proposed

a good trust-region algorithm, where the minimax problem can be regarded as its special case.

Furthermore, Yuan [20] proved that it had a rate of superlinear convergence. However, it

requires to compute the exact Hessian matrices ∇2fi(x), i = 1, · · · ,m in the two subproblems

at each iteration, which causes many gradient evaluations. Other trust-region methods that

can be used to solve minimax problems were presented in [17], for example, Algorithm 11.3.1

thereof, but it is suitable to the general nonsmooth optimization problems.

Recently, the nonmonotone strategy has attracted attention from more and more researchers

(see[21-24]), since Panier and Tits [21] indicated that, as an improvement of strategy of mono-

tonic relaxation, it can prevent the Maratos effect when applied to the SQP algorithms for

smooth optimization problems. Xue [8] proposed a new approximation model to the objective

maximum function for minimax problems, which demonstrates some good properties. In addi-

tion, Wang and Zhang [25] proposed an algorithm based on trust region methods. Motivated

by [8, 21], in this paper we develop a new trust region algorithm for finite minimax problems.

On the one hand, unlike the line search methods such as [8–10,15] in which the approximation

Hessian matrices Bk have to be positive definite, the new algorithm does not require Bk to

keep positive definite. On the other hand, the new algorithm is also different from [25]. First,

it solves only one quadratic subproblem at each iteration. Second, it employs the nonmono-

tone strategy to overcome the Maratos effect. Third, it employs a new approximation model

proposed in [8], and the corresponding subproblem is more stable. Under mild conditions, the

global and superlinear convergence are obtained. Preliminary numerical experiments show that

the proposed algorithm is robust and efficient.

The paper is organized as follows: In Section 2, we briefly recall trust-region methods; The

algorithm is presented in Section 3. In Section 4, we analyze the global convergence and the

rate of local convergence. In Section 5, we report some numerical results. Finally, we end the

paper with conclusions.

We shall use the following notations and terminology. Unless otherwise stated, the vector

norm used in this paper is Euclidean vector norm on Rn, and the matrix norm is the induced

operator norm on Rn×n. In addition, we denote

φ(x) = max
1≤i≤m

fi(x), φk = φ(xk), (1.3a)

IA(x) =
{

i : fi(x) = φ(x)
}

, IN (x) = {i : fi(x) < φ(x)}, (1.3b)

f(x) = (f1(x), · · · , fm(x))T , ∇f(x) = (∇f1(x), · · · ,∇fm(x)), (1.3c)

F (x) = diag(f1(x), · · · , fm(x)), e = (1, · · · , 1)T , e ∈ Rm. (1.3d)

2. Trust Region Methods

Without loss of generality, in this section, we consider unconstrained optimization problem

min
x∈Rn

f(x).
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Trust-region methods have been paid much attention since their emergence ([17,26,27])

because of their strong global convergence. For easy reference, let us recall the trust-region

methods first. Trust region methods are based on a local quadratic model of f(xk + s)− f(xk)

around the k-th iterate xk defined by (2.1a), and they produce a trial step by solving the

following trust region subproblem:
{

min gTk s+
1
2s

TBks = mk(s),

s.t.‖s‖2 ≤ ∆k,

(2.1a)

(2.1b)

where step s ∈ Rn, gk = ∇f(xk), Bk is an n × n symmetric matrix which approximates the

Hessian of objective function or chosen to be the exact Hessian matrix Bk = ∇2f(xk), and ∆k >

0 is a trust-region radius. Let sk be the solution of subproblem (2.1), Predk = mk(0)−mk(sk)

be the predicted reduction in the approximate model mk(s), Aredk = f(xk) − f(xk + sk) be

the actual reduction in the objective function. The ratio between the actual reduction and

the predicted reduction rk = Aredk/Predk plays a very important role in the trust-region

methods, since this ratio is used to decide whether the trial step is accepted and how to adjust

the trust-region radius ∆k.

3. The Algorithm

For problem (P ), the Lagrangian function is defined by

L(x, λ) =
m
∑

i=1

λifi(x). (3.1)

In this paper, we intend to use (1.2) to develop a new SQP algorithm for problem (P ). According

to the idea of SQP algorithm, the QP subproblem is as follows
{

min
(d,z)∈Rn+1

1
2 〈d,Bkd〉+ z,

s.t. 〈∇fi(xk), d〉 − z ≤ φ(xk)− fi(xk), i = 1, · · · ,m.
(3.2)

In [8,9], Xue proposed SQP line search algorithms for solving finite minimax problems based

on a special subproblem
{

min
(d,z)∈Rn+1

1
2 〈d,Bkd〉+

γ
2 z

2 + z = mk(d, z),

s.t. 〈∇fi(xk), d〉 − z ≤ φ(xk)− fi(xk), i = 1, · · · ,m,
(3.3)

where γ ∈ (0, 1) is a small scalar, in practice a value of γ much closer to zero would be

used (typical value that we have used is γ = 10−5), Bk is an n × n symmetric matrix which

approximates to the Hessian matrix of Lagrangian function (3.1), and the notation 〈, 〉 is the

inner product of two vectors.

The approximation model of (3.3) has some advantages over that of (3.2) [8, 9]. In fact, in

the trust region subproblem (3.2), the Hessian matrix of its quadratic objective function is
(

Bk 0

0 0

)

, (3.4)

while in the trust region subproblem (3.3), the Hessian matrix of its quadratic objective function

is
(

Bk 0

0 γ

)

. (3.5)
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Obviously, (3.4) is a singular matrix even if Bk is positive definite, (3.5) is a positive definite

matrix when Bk is positive definite. Thus, subproblem (3.3) is more stable than subproblem

(3.2) in general.

In this paper, we employ model (3.3) to produce an algorithm. However, according to the

KKT conditions of problem (P ), we can not directly use the solution of (3.3) to be the trial

step of SQP algorithm, we need to make some transformations for them.

Let {xk} ⊂ Rn be a sequence generated by the algorithm, at kth iteration, we want to

compute an SQP trial step dk first, and then to set the next iterate xk+1 from xk. Suppose

that (d̃k, z̃k) is the solution of following trust-region subproblem











min
(d,z)∈Rn+1

1
2 〈d,Bkd〉+

γ
2 z

2 + z = mk(d, z),

s.t. 〈∇fi(xk), d〉 − z ≤ φ(xk)− fi(xk), i = 1, · · · ,m,

‖d‖∞ ≤ ∆k,

(3.6)

where γ ∈ (0, 1] is a scalar, and λ̃k is the corresponding multiplier. Set

dk =
d̃k

(1 + γz̃k)
, λk =

λ̃k

(1 + γz̃k)
. (3.7)

Then dk is just the SQP trial step which we need, (3.7) is called as standardization.

It is well-known that the trust-region methods induce global convergence if the objective

function φ is smooth. We will show below (Theorem 4.1) that it still makes sense even if φ is

not smooth. In addition, we employ φ(x) to be the merit function. Now we give the algorithm

as follows:

Algorithm 3.1.

step 0 Given initial values x0 ∈ Rn, ε > 0, some integer M̂ > 0, ∆max,

∆0 ∈ (0,∆max), B0 = I, τ > 0, 0 < τ1 < 1 < τ2, m(k) = 0, k := 0.

step 1 (Computation of trial step)

Solve the quadratic program (3.6).

Assume that (d̃k, z̃k) is the solution of (3.6), set

dk =
d̃k

(1 + γz̃k)
, λk =

λ̃k

(1 + γz̃k)
, zk = z̃k.

If ‖dk‖ ≤ ε, stop; Otherwise,

step 2 (Compute the ratio between the actual reduction and the predicted reduction using

nonmonotone strategy)

rk =
φ(xl(k))− φ(xk + dk)

mk(0, 0)−mk(dk, zk)
, (3.8)

where φ(xl(k) = max
0≤j≤m(k)

φ(xk−j).

step 3 If rk > τ , xk+1 = xk + dk; Otherwise, xk+1 = xk;

step 4 (Update ∆k)

If rk < 0.25,∆k+1 = τ1∆k; goto step 7 ;

if rk ≥ 0.75 and ‖dk‖ = ∆k, ∆k+1 = min(τ2∆k,∆max);

Otherwise, ∆k+1 = ∆k.
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step 5 m(k) = min(m(k − 1) + 1, M̂).

step 6 Update Bk

step 7 k := k + 1, return to step 1.

Remark 3.1. In [8–10], updating Bk to Bk+1 is restricted to use the Powell’s modification

of BFGS formula, which ensures that the matrices {Bk} keep positive definite. In Algorithm

3.1, however, there is no such strict restriction, and we can use any Quasi-Newton updating

formula.

We recall the following well-known result on minimax problems (see [7]).

Lemma 3.1. A point x∗ ∈ R
n is a critical point for problem (P ) if and only if there exists a

vector λ∗ ∈ R
m such that







m
∑

i=1

λ∗
i∇fi(x

∗) = 0,
m
∑

i=1

λ∗
i = 1,

λ∗
i ≥ 0, λ∗

i (fi(x
∗)− φ(x∗)) = 0, i = 1, · · · ,m.

(3.9)

Remark 3.2. Note that (3.9) is just the KKT conditions of problem (P ), which is the first-

order necessary conditions of problem (1.2) at the point (x∗, φ(x∗)). Provided that Assumption

2 (below in section 4) is satisfied.

Lemma 3.2. Suppose that (d̃k, z̃k) is the solution of SQP trust-region subproblem (3.6). If

d̃k = 0, then z̃k = 0 holds.

Proof. Since (d̃k, z̃k) is the solution of SQP trust-region subproblem (3.6), when d̃k = 0, the

quantity z̃k is feasible if and only if it is nonnegative. Hence, to be optimal, z̃k must be equal

to zero. �

In order to show that the stopping criterion is reasonable in Algorithm 3.1, we give the

following theorem:

Theorem 3.1. Suppose that {xk} and {dk} are generated by Algorithm 3.1. If dk = 0, then

xk is the KKT point of the problem (P).

Proof. Denote (d̃k, z̃k) is the solution of subproblem (3.6). Then there exists multipliers

λ̃k ∈ Rm and uk ∈ R satisfying

(Bk + ukI)d̃k +∇f(xk)λ̃k = 0, (3.10a)

(γz̃k + 1)− eT λ̃k = 0, (3.10b)

(F (xk) + diag(∇f1(xk)
T d̃k, · · · ,∇fm(xk)

T d̃k)− (φ(xk) + z̃k)I)λ̃k = 0, (3.10c)

uk(‖d̃k‖ −∆k) = 0, (3.10d)

∇f(xk)
T d̃k − z̃ke ≤ φ(xk)e − f(xk), (3.10e)

‖dk‖ ≤ ∆k, λ̃k ≥ 0, uk ≥ 0. (3.10f)

By the second equation in (3.7) and (3.10b), we have

m
∑

i=1

λk,i = 1, (3.11)
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If dk = 0, it follows from (3.7) that d̃k = 0 holds. By Lemma 3.2, z̃k = 0 holds too, which gives

λk = λ̃k. Substituting d̃k = 0 into (3.10a) yields

m
∑

i=1

λk,i∇fi(xk) = 0. (3.12)

It follows from (3.10c) and (3.10f) that

λk,i ≥ 0, λk,i(fi(xk)− φ(xk)) = 0, i = 1, · · · ,m.

By Lemma 3.1, xk is the KKT point of the problem (P). �

Remark 3.3. It is worth pointing out that, the denominators in (3.7) are not equal to zero

when the algorithm does not stop. In fact, if 1 + γz̃k = 0, it follows from (3.10a)-(3.10b) that

λ̃k = 0, and d̃k = 0, which means that dk = 0. By the terminal criterion, the algorithm is

stopping.

4. Convergence Analysis

4.1. Global convergence

We suppose that the following standard assumptions hold throughout the analysis.

Assumption 1. For any point x0 ∈ Rn, the level set L(x0) = {x ∈ Rn : φ(x) ≤ φ(x0)} is

compact.

Assumption 2. For each x ∈ L(x0), the vectors

(

∇fi(x)

−1

)

, i ∈ IA(x),

are linearly independent.

Assumption 3. {Bk} is uniformly bounded, in the sense that, there exists M > 0 such that

‖Bk‖ ≤ M holds, for k = 1, 2, · · · .

Remark 4.1. Assumptions 1 and 2 are common assumptions in the literature on the minimax

problems, where Assumption 1 is introduced in order to ensure the existence of a solution to

problem (P ) and Assumption 2 is a condition that ensures the constrained problem (1.2) and

the original problem (P ) have the same first-order necessary conditions (3.9). Assumption 3 is

generally required for global convergence in the context of trust-region methods.

Theorem 4.1. Suppose that {xk} and {dk} are generated by Algorithm 3.1, and Assumptions

1-3 are satisfied. If the algorithm does not stop in finite steps, then every accumulation point

of {xk} is a KKT point of problem (P).

Proof. Since Assumption 2 holds, problem (P ) and problem (1.2) have the same KKT

conditions (3.9). Thus, we can draw support from the KKT point of problem (1.2) to investigate

the KKT point of original problem (P ). By Assumption 1, the sequence {xk} is contained in the

compact set L(x0), and hence it converges to the set of its accumulation points if the algorithm

does not stop in a finite step.

Suppose on contrary that the conclusion does not hold. First, we claim that ∆k → 0 holds.



268 F. S. WANG, C. L. WANG AND L. WANG

In fact, if ∆k does not converge to zero, then there exist δ > 0 and infinite k, for sake of

simplicity, we denote its set by K0, such that

∆k ≥ δ and rk ≥ 0.25, ∀k ∈ K0. (4.1)

Without loss of generality, suppose that

lim
k∈K0,k→∞

xk = x̄.

By hypothesis, x̄ is not the KKT point of problem (1.2). Therefore, (0, 0) is not the solution of

following problem:











min
(d,z)∈Rn+1

z + M
2 ‖d‖2,

s.t. 〈∇fi(x̄), d〉 − z ≤ φ(x̄)− fi(x̄), i = 1, · · · ,m,

‖d‖∞ ≤ δ
2 .

(4.2)

We denote that (d̄, z̄) is the solution of above problem (4.2). Since (0, 0) is a feasible solution

of problem (4.2), we have

z̄ +
M

2
‖d̄‖2 < 0. (4.3)

Denote

µ̄ = −z̄ −
M

2
‖d̄‖2.

It follows from (4.3) that µ̄ > 0. It’s not difficult to prove the following inequality

mk(0, 0)−mk(dk, zk) = −zk −
γ

2
z2k −

1

2
〈dk, Bkdk〉 >

1

2
µ̄ > 0, (4.4)

which holds for sufficiently large k ∈ K0. In fact, since (d̄, z̄) is the solution of problem (4.2)

and (dk, zk) is the solution of problem (3.6), it follows from (4.1) that (d̄, z̄) is a feasible solution

of subproblem (3.6). By Assumption 3, we obtain

zk +
γ

2
z2k +

1

2
〈dk, Bkdk〉 ≤ z̄ +

γ

2
z̄2 +

1

2
〈d̄, Bkd̄〉 ≤ z̄ +

γ

2
z̄2 +

M

2
‖d̄‖2.

Thus, for a sufficiently large k ∈ K0, we have

−zk −
γ

2
z2k −

1

2
〈dk, Bkdk〉 ≥ −z̄ −

γ

2
z̄2 −

M

2
‖d̄‖2 = µ̄−

γ

2
z̄2.

Since γ is a given scalar, we can choose γ small enough, such that µ̄ − γ
2 z̄

2 > 1
2 µ̄. Hence, the

statement (4.4) is correct.

Consequently, it follows from (4.1) and (4.4) that

φ(xl(k))− φ(xk+1) ≥
1

4

(

mk(0, 0)−mk(dk, zk)
)

≥
1

8
µ̄

holds for a sufficiently large k ∈ K0. This contradicts with limk→∞ φ(xk) = φ(x̄), and implies

that ∆k → 0. Furthermore, we have

lim
k→∞

‖dk‖ = 0. (4.5)
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Since ∆k → 0, there exists a subsequence K1 ⊆ K0, such that

rk < 0.25, ∀k ∈ K1. (4.6)

We may as well suppose that

lim
k∈K1,k→∞

xk = x̂.

By the hypothesis, x̂ is not a KKT point of problem (1.2). Let (d̂, ẑ) is the solution of the

following problem:

{

min
(d,z)∈Rn+1

z + M
2 ‖d‖2,

s.t. 〈∇fi(x̂), d〉 − z ≤ φ(x̂)− fi(x̂), 1 ≤ i ≤ m, ‖d‖∞ ≤ 1.
(4.7)

We obtain

ẑ +
M

2
‖d̂‖2 < 0.

Denote

µ̂ = −ẑ −
M

2
‖d̂‖2 > 0.

It can be verified that (∆kd̂,∆kẑ) is a feasible solution of problem











min
(d,z)∈Rn+1

z + M
2 ‖d‖2,

s.t. 〈∇fi(x̂), d〉 − z ≤ φ(x̂)− fi(x̂), i = 1, · · · ,m,

‖d‖∞ ≤ ∆k, (∆k < 1).

(4.8)

Hence, there holds

ẑ +
M

2
‖d̂‖2 ≤ ∆kẑ +

1

2
∆2

kM‖d̂‖2,

which immediately yields that

(1−∆k)ẑ ≤ −
1

2
M(1−∆k)(1 + ∆k)‖d̂‖

2.

By simplification, we have

ẑ ≤ −
1

2
M(1 + ∆k)‖d̂‖

2.

Therefore, we obtain

µ̂ = −ẑ −
M

2
‖d̂‖2 ≥

1

2
M∆k‖d̂‖

2. (4.9)

It follows that

mk(0, 0)−mk(dk, zk)

= −zk −
γ

2
z2k −

1

2
〈dk, Bkdk〉 ≥ −ẑ −

γ

2
ẑ2 −

M

2
‖d̂‖2

≥
1

2
(−ẑ −

M

2
‖d̂‖2) ≥

1

4
M∆k‖d̂‖

2. (4.10)
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In addition, we have

φ(xj+1)− φ(xj) = max
1≤i≤m

fi(xj + dj)− φ(xj)

= max
1≤i≤m

{fi(xj) + 〈∇fi(xj), dj〉+
1

2
〈dj , Bjdj〉+ o(‖dj‖)} − φ(xj)

≤ max
1≤i≤m

{φ(xj) + zj +
1

2
〈dj , Bjdj〉+ o(‖dj‖)} − φ(xj)

= zj +
1

2
〈dj , Bjdj〉+ o(‖dj‖), (4.11)

where the inequality holds, as ‖∇2fi(xj) − Bj‖ is bounded and 〈∇fi(xj), dj〉 − zj ≤ φ(xj) −

fi(xj), i = 1, · · · ,m. It follows from (4.11) that

Aredk = φ(xl(k))− φ(xk+1)

=
(

φ(xl(k))− φ(xl(k)+1)
)

+
(

φ(xl(k)+1)− φ(xl(k)+2)
)

+ · · ·+
(

φ(xk)− φ(xk+1)
)

≥
(

− zl(k) −
1

2
〈dl(k), Bl(k)dl(k)〉+ o(‖dl(k)‖)

)

+ · · ·+
(

− zk −
1

2
〈dk, Bkdk〉+ o(‖dk‖)

)

=
(

− zl(k) −
γ

2
z2l(k) −

1

2
〈dl(k), Bl(k)dl(k)〉+

γ

2
z2l(k) + o(‖dl(k)‖)

)

+ · · ·

+
(

− zk −
γ

2
z2k −

1

2
〈dk, Bkdk〉+

γ

2
z2k + o(‖dk‖)

)

≥ Predk + o(‖dk‖), (4.12)

where k −M ≤ k −m(k) ≤ l(k) ≤ k. In the last inequality we have used the facts

Predk = −zk −
γ

2
z2k −

1

2
〈dk, Bkdk〉,

and for every j = l(k), l(k) + 1, · · · , k − 1,

−zj −
γ

2
z2j −

1

2
〈dj , Bjdj〉 ≥ 0.

It follows from (4.5), (4.10) and (4.12) that

lim
k→∞

rk = lim
k→∞

Aredk
Predk

≥ 1,

which contradicts (4.6). Hence the theorem is proved. �

Remark 4.2. Similarly, just as the case of smooth optimization, Assumption 3 in Theorem

4.1 can be replaced by the following condition:

∞
∑

k=1

1

1 + max
1≤i≤k

‖Bk‖
= +∞.

Proposition 4.1. Suppose that Assumption 2 is satisfied, the sequence {xk} is generated by

Algorithm 3.1, and {λk} is the corresponding sequence of their multipliers. Then, the convergent

subsequence {xkl
} implies that the corresponding multiplier’s subsequence {λkl

} is convergent.

Furthermore, if {xk} is convergent, then {λk} is also convergent.
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Proof. By Algorithm 3.1, {xk} has a convergent subsequence {xkl
}. For simplicity, denote

{xkl
} by {xk}, and x∗ is its limit point; Denote {λkl

} by {λk}. By Theorem 4.1, x∗ is a KKT

point of problem (P ).

Note that {λk} is in the compact set

∧

=
{

λ ∈ Rm :

m
∑

i=1

λi = 1 and λi ≥ 0, ∀i = 1, 2, · · · ,m
}

,

there exist a subsequence {λki
} and λ∗ ∈

∧

such that λki
→ λ∗, as i → ∞. We claim that

the sequence {λk} converges to λ∗. In fact, on the contrary, there exists another subsequence

{λkj
} and λ̄∗ ∈

∧

, (λ̄∗ 6= λ∗), such that λkj
→ λ̄∗, as j → ∞. It follows from lim

k→∞
xk = x∗ and

Lemma 3.1 that
m
∑

i=1

λ∗
i∇fi(x

∗) = 0,

m
∑

i=1

λ∗
i = 1,

m
∑

i=1

λ̄∗
i∇fi(x

∗) = 0,
m
∑

i=1

λ̄∗
i = 1.

This yields that
m
∑

i=1

(λ̄∗
i − λ∗

i )

(

∇fi(x)

−1

)

= 0.

By Assumption 2, we immediately obtain

λ̄∗
i = λ∗

i , i = 1, · · · ,m,

which contradicts λ̄∗ 6= λ∗. In addition, if {xk} is convergent, it is clear, from the above process,

that {λk} is also convergent. Hence the proposition is proved. �

4.2. Locally Superlinear Convergence

To discuss superlinear convergence, we need to make the following assumption.

Assumption 4. For every initial point x0 ∈ Rn, ∇2fi(x), i = 1, · · · ,m are Lipschitz uniformly

continuous on the level set L(x0), that is, there exist positive scalars Li, i = 1, · · · ,m, for every

x1, x2 ∈ L(x0), it holds

‖∇2fi(x1)−∇2fi(x2)‖ ≤ Li‖x1 − x2‖, i = 1, 2, · · · ,m. (4.13)

Now we establish a necessary and sufficient conditions for the rate of superlinear convergence.

Theorem 4.2. Suppose that

(1). {xk} and {dk} are generated by Algorithm 3.1, {xk} converges to x∗, and x∗ is the

KKT point of problem (P).

(2).
m
∑

i=1

λ∗
i∇

2fi(x
∗) is nonsingular.

Then the convergence rate is superlinear if and only if

lim
k→∞

‖
m
∑

i=1

λ∗
i∇fi(xk + dk)‖

‖dk‖
= 0. (4.14)
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Proof. Since x∗ is the KKT point of problem (P ), we have

m
∑

i=1

λ∗
i∇fi(x

∗) = 0. (4.15)

Note that
∑m

i=1 λ
∗
i∇

2fi(x
∗) is nonsingular, expanding

∑m
i=1 λ

∗
i∇fi(xk + dk) around x∗ gives

∥

∥

∥

m
∑

i=1

λ∗
i∇fi(xk + dk)

∥

∥

∥

=
∥

∥

∥

m
∑

i=1

λ∗
i∇fi(x

∗) +

m
∑

i=1

λ∗
i∇

2fi(ξk)(xk + dk − x∗)
∥

∥

∥

= O(‖xk + dk − x∗‖). (4.16)

Sufficiency: If (4.14) holds, it suffices to prove that

lim
k→∞

‖xk + dk − x∗‖

‖xk − x∗‖
= 0. (4.17)

In fact, it follows from (4.16) that

lim
k→∞

‖xk + dk − x∗‖

‖dk‖
= 0. (4.18)

Denote δk = ‖xk + dk − x∗‖/‖xk − x∗‖, we have

‖xk + dk − x∗‖

‖dk‖
≥

‖xk + dk − x∗‖

‖xk + dk − x∗‖+ ‖xk − x∗‖
=

δk
1 + δk

.

According to (4.18), we have limk→∞ δk = 0. Hence, (4.17) holds.

Necessary: If (4.17) holds, since

‖xk − x∗‖ − ‖xk + dk − x∗‖

‖xk − x∗‖
≤

‖dk‖

‖xk − x∗‖
≤

‖xk − x∗‖+ ‖xk + dk − x∗‖

‖xk − x∗‖
,

we have

lim
k→∞

‖dk‖

‖xk − x∗‖
= 1.

It follows from (4.16) and (4.17)that

lim
k→∞

∥

∥

∥

m
∑

i=1

λ∗
i∇fi(xk + dk)

∥

∥

∥

‖dk‖

= lim
k→∞

O(‖xk + dk − x∗‖)

‖dk‖

= lim
k→∞

O(‖xk + dk − x∗‖)

‖xk − x∗‖

= 0.

Thus, (4.14) holds, and the theorem is proved. �
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Theorem 4.3. Suppose that

(1). Assumption 4 is satisfied.

(2). {xk} and {dk} are generated by Algorithm 3.1, {xk} converges to x∗, and x∗ is the

KKT point of problem (P).

(3).
∑m

i=1 λ
∗
i∇

2fi(x
∗) is nonsingular, and

∥

∥

∥

m
∑

i=1

(λk,i − λ∗
i )∇fi(xk)

∥

∥

∥
= o(‖dk‖).

(4). The multipliers uk → 0, as k → ∞.

Then the convergence rate is superlinear if and only if

lim
k→∞

‖(Bk −
m
∑

i=1

λ∗
i∇

2fi(x
∗))dk‖

‖dk‖
= 0. (4.19)

Proof. Firstly, since ‖
m
∑

i=1

(λk,i − λ∗
i )∇fi(xk)‖ = o(‖dk‖), we obtain

∥

∥

∥
(Bk −

m
∑

i=1

λ∗
i∇

2fi(x
∗))dk

∥

∥

∥
= o(‖dk‖)

⇔
∥

∥

∥
(Bk −

m
∑

i=1

λ∗
i∇

2fi(x
∗))dk +

m
∑

i=1

(λk,i − λ∗
i )∇fi(xk)

∥

∥

∥
= o(‖dk‖). (4.20)

Secondly, from (3.7), (3.10a) and (3.10b) we have

(Bk + ukI)dk +
m
∑

i=1

λk,i∇fi(xk) = 0. (4.21)

It follows that

(Bk −

m
∑

i=1

λ∗
i∇

2fi(x
∗))dk +

m
∑

i=1

(λk,i − λ∗
i )∇fi(xk)

= (Bk + ukI)dk +
m
∑

i=1

λk,i∇fi(xk)−
m
∑

i=1

λ∗
i∇

2fi(x
∗)dk − ukdk −

m
∑

i=1

λ∗
i∇fi(xk)

= −

m
∑

i=1

λ∗
i∇

2fi(x
∗)dk − ukdk −

m
∑

i=1

λ∗
i∇fi(xk)

=

m
∑

i=1

λ∗
i (∇fi(xk + dk)−∇fi(xk)−∇2fi(x

∗)dk)−

m
∑

i=1

λ∗
i∇fi(xk + dk)− ukdk.(4.22)

By Assumption 4, denoting L = 1
2

m
∑

i=1

λ∗
iLi gives

∥

∥

∥

m
∑

i=1

λ∗
i (∇fi(xk + dk)−∇fi(xk)−∇2fi(x

∗)dk)
∥

∥

∥

≤
1

2

m
∑

i=1

λ∗
iLi

(

‖xk − x∗‖+ ‖xk+1 − x∗‖
)

‖dk‖

= L
(

‖xk − x∗‖+ ‖xk+1 − x∗‖
)

‖dk‖

= o(‖dk‖). (4.23)
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Since ‖ukdk‖/‖dk‖ ≤ ‖uk‖ and uk → 0, we have

‖ukdk‖ = o(‖dk‖). (4.24)

It follows from (4.22)– (4.24) that

(

Bk −

m
∑

i=1

λ∗
i∇

2fi(x
∗)
)

dk +

m
∑

i=1

(

λk,i − λ∗
i

)

∇fi(xk)‖ = o(‖dk‖)

⇔
∥

∥

∥

m
∑

i=1

λ∗
i∇fi(xk + dk)

∥

∥

∥
= o(‖dk‖). (4.25)

By Theorem 4.2, the convergence rate is superlinear if and only if

∥

∥

∥

m
∑

i=1

λ∗
i∇fi(xk + dk)

∥

∥

∥
= o(‖dk‖). (4.26)

Therefore, it follows from (4.20), (4.25) and (4.26) that the conclusion is correct, and the proof

is complete. �

5. Numerical Results

In order to validate the proposed approach from a computational point of view, some pre-

liminary numerical experiments were carried out. The algorithm was coded in MATLAB 6.5,

and the tests were performed on a PC computer with CPU Pentium 4, 2.00GHz. In the im-

plementation, ∆0 = 1,∆max = 50, τ1 = 0.5, τ2 = 2, γ = 10−5, τ = 10−3, M̂ = 5, B0 = I(the

identity matrix), and the tolerance was set to ε = 1.0e−05. The program terminates if ‖d‖ ≤ ε

is satisfied.

The test results are shown in Tables 1 and 2. In Table 1, the performance of our proposed

Algorithm 3.1 (NTR) is compared with that of Algorithm 11.3.1 proposed in [17] (CGT), the

algorithm in [8] (Xue), the algorithm in [10] (JQH) and the algorithm in [25] (WZH), where

the test results for “CGT” algorithm were obtained by the program coded in MATLAB 6.5,

the test results for “Xue”, “JQH” and “WZH” were directly quoted from [8], [10] and [25]

respectively. In addition, to make such comparison meaningful, the approximation matrices

Bk were all updated by the Powell’s modification of BFGS formula in Table 1. In Table 2, to

show the advantage of Algorithm 3.1 over line search algorithms in the choice of approximation

matrices Bk, instead of using Powell’s modification of BFGS formula, SR1 update formula is

employed, which make a comparison between Algorithm 3.1 and “Xue”, where the test results

for “Xue” were obtained by the program coded in MATLAB 6.5.

In the tables, “NI”, “NF” and “NG” represent the total number of iteration, the total

number of function evaluations and the total number of gradient evaluations respectively; φ(x)

and ‖d‖ stand for the optimal value of objective function and the norm of the solution of SQP

subproblem respectively.

In addition, we also set a maximum iteration number of 50(n+m) to terminate the compu-

tation when this limit is reached, and mark the character “x” on all output items; The character

“F” will be marked in case that the algorithm fails, and the character “-” represents that such

items were lacked in the results of relevant algorithms. The tested examples were all from [25].

As is demonstrated in Tables 1 and 2, we can see that:
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Table 1: Test Results obtained by Algorithm 3.1 and other relearnt algorithms.
Fun. n/m Methods NI NF NG φ(x) ‖d‖

1 2/3

NTR 6 6 6 1.9522 2.6382e-06

CGT 6 11 6 1.9522 1.0273e-07

Xue 6 11 6 1.9522 2.9694e-06

JQH 7 - - 1.9522 7.2261e-07

WZH 6 6 6 1.9522 8.2341e-07

2 2/3

NTR 5 5 5 2.0000 9.7055e-10

CGT 3 5 3 2.0000 7.5480e-07

Xue 5 9 5 2.0000 4.7033e-09

JQH 5 - - 2.0000 6.2246e-08

WZH 5 5 5 2.0000 9.7022e-10

3 4/4

NTR 11 13 11 -43.0000 1.5189e-07

CGT 15 29 7 -43.0000 3.9833e-06

Xue 10 23 10 -44.0000 3.7726e-05

JQH 11 - - -44.0000 2.0230e-07

WZH 11 15 11 -44.0000 1.4745e-06

4 2/3

NTR 10 12 10 0.6164 5.8861e-06

CGT 12 23 8 0.6164 4.8023e-07

Xue 8 15 8 0.6164 1.1560e-06

JQH 8 - - 0.6164 7.2757e-08

WZH 10 20 10 0.6164 2.4353e-06

5 3/6

NTR 9 9 9 3.5997 3.7477e-06

CGT 22 43 10 3.5997 7.4495e-06

Xue 10 19 10 3.5997 4.3608e-07

JQH 11 - - 3.5997 1.0469e-06

WZH 11 11 11 3.5997 3.9095e-07

6 7/5

NTR 19 23 19 6.7868e+02 6.0676e-07

CGT 31 61 18 6.7868e+02 4.5610e-06

Xue 14 40 14 6.8063e+02 1.0945e-05

JQH - - - - -

WZH 19 44 19 6.7868e+02 4.1400e-06

7 10/9

NTR 15 16 15 24.3062 8.0741e-07

CGT 15 29 13 24.3062 6.5809e-07

Xue 17 34 17 24.3062 2.7316e-05

JQH 38 - - 24.3062 7.9208e-06

WZH 16 24 16 24.3062 8.9702e-07

8 20/18

NTR 23 29 23 1.3125e+02 1.3058e-06

CGT 36 71 23 1.3125e+02 1.3254e-06

Xue 24 53 24 1.3261e+02 7.9283e-06

JQH 74 - - 1.3261e+02 1.6223e-05

WZH 21 48 21 1.3125e+02 1.3537e-06

9 3/30

NTR 15 28 15 0.0508 3.9540e-06

CGT 8 15 8 0.0508 6.3160e-11

Xue 8 15 8 0.0508 2.5070e-07

JQH - - - - -

WZH 7 7 7 0.0508 4.2244e-06

10 2/20

NTR 8 11 8 4.6934 5.4319e-07

CGT 20 39 8 4.6934 1.5302e-05

Xue - - - - -

JQH - - - - -

WZH 10 31 10 4.6934 5.2753e-07

11 4/40

NTR 12 12 12 1.1571e+02 1.2666e-07

CGT 10 19 10 1.1571e+02 5.8611e-07

Xue - - - - -

JQH - - - - -

WZH 13 13 13 1.1571e+02 5.4233e-07
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Table 2: comparisons of NTR and Xne

Fun. n/m Methods NI NF NG φ(x) ‖d‖

1 2/3
NTR 6 6 6 1.9522245548 1.8106851102e-06

Xue 6 12 6 1.9522245163 5.0113823266e-07

2 2/3
NTR 5 5 5 2.0000000042 9.7054950921e-10

Xue 5 10 5 2.0000000041 9.4141059916e-10

3 4/4
NTR 10 13 10 -43.9999999970 7.6867194355e-09

Xue 9 23 9 -43.9999999778 2.5805395664e-07

4 2/3
NTR 11 11 11 0.6164324356 1.3771568725e-010

Xue F F F F F

5 3/6
NTR 9 9 9 3.5997193004 7.8459691769e-08

Xue 10 20 10 3.5997193324 2.8809727197e-07

6 7/5
NTR 16 18 16 6.7867963789e+02 7.1887200299e-06

Xue 16 49 16 6.7867963788e+02 1.7692068617e-06

7 10/9
NTR 17 18 17 24.3062090718 1.4384595588e-09

Xue 11 27 11 24.3062103112 2.7280903150e-07

8 20/18
NTR 17 23 17 1.3124767075e+02 4.6726726354e-06

Xue F F F F F

9 3/30
NTR 13 25 13 0.0508163280 1.8303080727e-07

Xue 8 16 8 0.0508163265 5.0470039777e-07

10 2/20
NTR 9 16 9 4.6934565606 3.6812892634e-06

Xue 9 22 9 4.6935277641 3.0250953851e-05

11 4/40
NTR 14 15 14 1.15706439521e+02 1.6105869108e-07

Xue F F F F F

1. From Table 1, under the condition of using Powell’s modification of BFGS formula in

all algorithms which can guarantee that the update matrix Bk keeps positive definite, the new

algorithm (NTR) performs much better than the “CGT”, “Xue” and “JQH” algorithms in

terms of the number of iterations, function evaluations and gradient evaluations in general.

When comparing the new algorithm (NTR) and the algorithm in [25](WZH), we observe

that:

(i) Though the performance is the same in all terms for problems 1 and 2, “NTR” algorithm

performed much better than “WZH” algorithm in all terms for problems 7, 8, 10 and 11;

(ii) For problems 3, 4 and 6, though the performance is the same in terms of the number

of iterations and gradient evaluations, the number of function evaluations required by

“NTR” is smaller than that of “WZH” ;

(iii) For problems 3 and 5, “WZH” requires fewer iterations, function and gradient evaluations,

but the difference is not significant. This means that in most cases, the new algorithm

performs better than the algorithm in [25].

2. From Table 2, we can find that, under the condition of using SR1 update formula in

all algorithms which can not guarantee that the update matrix Bk keeps positive definite,

for all test problems, although Bk may be indefinite, the new algorithm (NTR) worked very

well, but “Xue” algorithm failed for problems 4, 10 and 11. The reason is that the latter is a

line-search based algorithm, and it requires that the approximation Hessian matrix Bk keeps

positive definite.
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Through above preliminary tests, it is clear that the new algorithm proposed in this paper

is robust and competitive.

6. Conclusions

In this paper, we described a new trust-region algorithm for finite minimax problems. The

algorithm uses a new approximation model in trust region scheme, and solves only one quadratic

subproblem at each iteration. In particular, it does not require Bk to be positive definite. In

addition, it employs nonmonotone strategy to avoid Maratos effect. The analysis shows that,

under mild conditions, the new algorithm has strong global convergence and a rate of superlinear

convergence. Preliminary numerical tests indicate that the new algorithm is robust and efficient.
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