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Abstract

In the paper, we analyze the L2 norm error estimate of lower order finite element

methods for the fourth order problem. We prove that the best error estimate in the L2

norm of the finite element solution is of second order, which can not be improved generally.

The main ingredients are the saturation condition established for these elements and an

identity for the error in the energy norm of the finite element solution. The result holds

for most of the popular lower order finite element methods in the literature including: the

Powell-Sabin C1
−P2 macro element, the nonconforming Morley element, the C1

−Q2 macro

element, the nonconforming rectangle Morley element, and the nonconforming incomplete

biquadratic element. In addition, the result actually applies to the nonconforming Adini

element, the nonconforming Fraeijs de Veubeke elements, and the nonconforming Wang-

Xu element and the Wang-Shi-Xu element provided that the saturation condition holds

for them. This result solves one long standing problem in the literature: can the L2 norm

error estimate of lower order finite element methods of the fourth order problem be two

order higher than the error estimate in the energy norm?

Mathematics subject classification: 65N10, 65N15, 35J25.

Key words: L2 norm error estimate, Energy norm error estimate, Conforming, Noncon-

forming, The Kirchhoff plate.

1. Introduction

We shall consider the L2 norm error estimate of the finite element method of the Kirchhoff

plate bending problem reads: Given g ∈ L2(Ω) find w ∈ W := H2
0 (Ω) with

a(w, v) = (g, v)L2(Ω) for all v ∈ W . (1.1)

The bilinear form a(w, v) reads

a(w, v) : = (∇2w,∇2v)L2(Ω) for any w , v ∈ W , (1.2)

where ∇2w is the Hessian of w. For this fourth order elliptic problem, there are a number of

conforming/nonconforming finite element methods in the literature, see for instance, [6, 8, 20]

and the references therein.
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Let Wh be some conforming or nonconforming finite element space defined over the trian-

gulation Th of the domain Ω ⊂ R
2 into rectangles or triangles, the discrete problem reads: Find

wh ∈ Wh such that

ah(wh, vh) = (g, vh)L2(Ω) for all vh ∈ Wh . (1.3)

The broken version ah(·, ·) follows

ah(wh, vh) : = (∇2
hwh,∇

2
hvh)L2(Ω) for any wh , vh ∈ W +Wh ,

where ∇2
h is the discrete counterpart of the Hessian operator ∇2, which is defined elementwise

with respect to the triangulation Th since Wh may be nonconforming. If Wh ⊂ W , we have

ah(wh, vh) = a(wh, vh) for wh, vh ∈ Wh.

Under some continuity condition of the discrete space Wh [6, 8, 20], the discrete problem

(1.3) will be well-posed and consequently admit a unique solution. Define the residual

Resh(vh) : = (g, vh)L2(Ω) − ah(w, vh) for any vh ∈ Wh . (1.4)

Then we have the following Strang Lemma:

‖∇2
h(w − wh)‖L2(Ω) ≤ C

(

sup
vh∈Wh

Resh(vh)

‖∇2
hvh‖L2(Ω)

+ min
vh∈Wh

‖∇2
h(w − vh)‖L2(Ω)

)

. (1.5)

Here and throughout this paper C is some generic positive constant which is independent of the

meshsize. We are interested in some lower order methods: the nonconforming Morley element

[15, 17, 21], the Powell-Sabin C1– P2 macro element [18], the C1– Q2 macro element [10], the

nonconforming rectangle Morley element [24], and the nonconforming incomplete biquadratic

element [16, 27]. For these discrete methods, it follows from the Strang Lemma that

‖∇2
h(w − wh)‖L2(Ω) ≤ Ch‖g‖L2(Ω), (1.6)

provided that w ∈ H3(Ω) ∩ H2
0 (Ω). Here and throughout this paper, h denotes the meshsize

which is defined by

h : = max
K∈Th

hK with hK the diameter of K. (1.7)

By the dual argument, we have

‖w − wh‖L2(Ω) + ‖∇h(w − wh)‖L2(Ω) ≤ Ch2‖g‖L2(Ω), (1.8)

provided that Ω is smooth or convex, where ∇h is the elementwise defined counterpart of the

gradient operator ∇. By the approximation property of the discrete space, we have

inf
vh∈Wh

‖w − vh‖L2(Ω) ≤ Ch3|w|H3(Ω), (1.9)

for all the methods under consideration. Compared to the approximation result (1.9), the L2

norm error estimate in (1.8) is obviously not optimal. Then one long standing problem for the

finite element method of the fourth order problem is: can the L2 norm error estimate of lower

order finite element methods of the fourth order problem be two order higher than the error

estimate in the energy norm? The aim of the paper is to prove that the L2 norm error estimate

in (1.8) can not be improved for these methods under consideration. The main ingredients are

the saturation condition and the identity of the error in the energy norm.
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This paper is organized as follows. In the following section, we introduce five lower order

finite element methods for the fourth order problem. In Section 3, we prove that the best

error estimate in the L2 norm of the finite element solution is of second order based on the

saturation condition, which will be established in Section 4. This paper ends with Section 5

where we present some conclusion and give some further comments on the other lower order

finite element methods in the literature.

2. The Finite Elements of the Kirchhoff Plate Problem

This section presents some lower order finite element methods for the fourth order problem.

Suppose that the closure Ω is covered exactly by a regular triangulation Th of Ω into (closed)

triangles or rectangles in 2D, that is

Ω = ∪Th and |K1 ∩K2| = 0 for K1,K2 ∈ Th with K1 6= K2 , (2.1)

where | · | denotes the volume (as well as the length of an edge and the modulus of a vector etc,

when there is no real risk of confusion). Let E denote the set of all edges in Th with E(Ω) the

set of interior edges. Given any edge E ∈ E(Ω) with length hE = |E| we assign one fixed unit

normal νE := (ν1, ν2) and tangential vector τE := (−ν2, ν1). For E on the boundary we choose

νE = ν the unit outward normal to Ω. Once νE and τE have been fixed on E, in relation to

νE one defines the elements K− ∈ Th and K+ ∈ Th, with E = K+ ∩K− and ωE = K+ ∪K−.

Given E ∈ E(Ω) and some R
d-valued function v defined in Ω, with d = 1, 2, we denote by

[v] := (v|K+
)|E − (v|K

−

)|E the jump of v across E, where v|K+
(resp. v|K

−

) is the restriction

of v on K+ (resp. K−).

2.1. The Powell-Sabin C1 − P2 macro element

This is a triangle macro-element. Let Mh be some regular triangulation of the domain

Ω into triangles. Then, refining each base triangle of Mh into 6, for example, connecting

the center of the inscribed circle of a triangle to its three vertices and the centers of three

neighboring triangles, cf. Figure 2.1, which results in the final mesh Th. Based on such a special

triangulation, the Powell-Sabin C1-P2 element was created in 1977, cf. [18]. The restriction on

each element K ∈ Th of the function in the Powell-Sabin C1-P2 element space WPS ⊂ W is a

polynomial of degree ≤ 2. The degrees of freedom are the values, and the first order derivatives

on the vertexes of the macro-mesh Mh.
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Fig. 2.1. The Morley element, and the C1-P2 Powell-Sabin element.
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2.2. The nonconforming Morley element

This is a triangle element. The discrete space of the Morley finite element method reads

[15, 17, 21]

WM :=

{

v ∈ M2,h,

∫

E

[∇v · νE ]ds = 0 on E ∈ E(Ω),

and

∫

E

∇v · νEds = 0 on E ∈ E ∩ ∂Ω

}

,

(2.2)

where M2,h is the space of piecewise polynomials of degree ≤ 2 over Th which are continuous

at all the internal nodes and vanish at all the nodes on the boundary ∂Ω.

2.3. The C1 −Q2 macro element

This is a rectangle element defined over the macro-mesh. We first let Mh be a shape

regular triangulation of Ω into rectangles. Then we divide each rectangle in Mh by the usual

red refinement into four sub-rectangles to obtain the mesh Th. Let the polynomial space of

separated degree k or less be

Qk : =

{

∑

0≤i,j≤k

cijx
iyj

}

.

The C1-Q2 macro element space is defined by [10]

WQ2
: =

{

vh ∈ C1(Ω), vh|K ∈ Q2 ∀K ∈ Th, and vh
∣

∣

∂Ω
= ∂νvh

∣

∣

∂Ω
= 0

}

. (2.3)
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Fig. 2.2. The C1-Q2 macro element.

2.4. The nonconforming rectangle-Morley element

This rectangle nonconforming finite element method is proposed in [24]. The shape function

space reads

QRM (K) : = P2(K) + span{x3, y3}, (2.4)

where P2(K) is the space of the polynomials of degree ≤ 2 over K. The rectangle-Morley

element space is defined by
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WRM : =

{

vh ∈ L2(Ω), vh|K ∈ QRM (K), the value of vh is continuous at all the internal

vertexes, and vanishes at all the boundary vertexes , and the normal derivative

is continuous at all the mid-points of the internal edges, and vanishes at all the

mid-points of the boundary edges

}

. (2.5)

Since ∇hvh · νE is a linear function on all the edges, we have

∫

E

[∇hvh]ds = 0 for any vh ∈ WRM for any internal edge E,

and
∫

E

∇hvhds = 0 for any vh ∈ WRM for any boundary edge E.

2.5. The nonconforming incomplete biquadratic element

This incomplete biquadratic nonconforming plate element is proposed in [27] and analyzed

in [16]. The shape functions space reads

QIB(K) : = P2(K) + span{x2y, y2x}. (2.6)

The incomplete biquadratic element space is defined by

WIB : ={vh ∈ L2(Ω), vh|K ∈ QIB(K), the value of vh is continuous at all the internal

vertexes, and vanishes at all the boundary vertexes , and the normal derivative

is continuous at all the mid-points of the internal edges, and vanishes at all the

mid-points of the boundary edges}.

(2.7)
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Fig. 2.3. The nonconforming rectangle-Morley element, and the nonconforming incomplete biquadratic

element.
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3. The Best L
2
Norm Error Estimate

In this section, we shall prove that the L2 norm error estimate is of second order and that

this estimate can not be improved. For the analysis, we need the following saturation condition:

Lemma 3.1. Let w ∈ H3(Ω)∩H2
0 (Ω) and wh be the solutions to the problems (1.1) and (1.3),

respectively. Then

βh ≤ ‖∇2
h(w − wh)‖L2(Ω), (3.1)

with a positive constant β which is independent of the meshsize for all the finite element methods

described in the previous section provided that the mesh size h is small enough.

We shall postpone the proof of this lemma to the next section. With the solutions w of the

continuous problem and wh of the discrete problem, we have the following identity

‖∇2
h(w − wh)‖

2
L2(Ω) = ah(w − wh, w − wh)

=(g, w − wh)L2(Ω) + 2((g, wh)− ah(wh, w)).
(3.2)

It follows from this identity and the saturation condition (3.1) that the following theorem

holds

Theorem 3.1. Let w ∈ H3(Ω) ∩ H2
0 (Ω) be the solution of the problem (1.1) and wh be the

solution of the problem (1.3) by the Powell-Sabin C1 − P2 macro element and the C1 − Q2

macro element from the previous section. There exists a positive constant α independent of the

meshsize h such that

αh2 ≤ ‖w − wh‖L2(Ω) (3.3)

when the meshsize h is sufficiently small.

Proof. The identity (3.2) will become

‖∇2
h(w − wh)‖

2
L2(Ω) = (g, w − wh)L2(Ω) (3.4)

for the conforming finite element method. Assume that the lower bound (3.3) is not true. Then

for arbitrary ǫ > 0 there exists sufficiently small h such that

‖w − wh‖L2(Ω)

h2
≤ ǫ2. (3.5)

It follows from (3.4) and the Cauchy-Schwarz inequality that

‖∇2
h(w − wh)‖L2(Ω)

h
≤ Cǫ, (3.6)

which contradicts with the saturation condition (3.1). 2

To analyze the nonconforming Morley element, we need the canonical interpolation operator

ΠM : W → WM defined by

(ΠM )v(p) = v(p) for any node p of Th,
∫

E

∂ΠMv

∂νE
ds =

∫

E

∂v

∂νE
ds for any edge E of Th,

(3.7)
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for any v ∈ W . We have the following properties for this interpolation [11, 15, 20, 21]

(∇2
hsh,∇

2
h(I −ΠM )v)L2(Ω) = 0 for any sh ∈ WM and v ∈ W, (3.8a)

‖(I −ΠM )v‖L2(Ω) ≤ Ch3|v|H3(Ω) for any v ∈ W ∩H3(Ω). (3.8b)

Let ΠRM : W → WRM be the Galerkin projection operator defined by

ah(v −ΠRMv, sh) = 0 for any sh ∈ WRM , (3.9)

for any v ∈ W . Let ΠIB : W → WIB be the Galerkin projection operator defined by

ah(v −ΠIBv, sh) = 0 for any sh ∈ WIB, (3.10)

for any v ∈ W .

Theorem 3.2. Let w ∈ H3(Ω) ∩ H2
0 (Ω) be the solution of the problem (1.1) and wh be the

solution of the problem (1.3) by the nonconforming Morley element (2.2), the nonconforming

rectangle-Morley element (2.5), and the nonconforming incomplete biquadratic element (2.7),

respectively. There exists a positive constant α independent of the meshsize h such that

αh2 ≤ ‖w − wh‖L2(Ω) + ‖w −Πhw‖L2(Ω), (3.11)

when the meshsize h is small enough. Here Πh = ΠM ,ΠRM ,ΠIB, respectively.

Proof. It follows from the discrete problem (1.3), the identity (3.2) and the definition of Πh

that

‖∇2
h(w − wh)‖

2
L2(Ω) = (g, w − wh)L2(Ω) + 2(g, wh −Πhw). (3.12)

In the case αh2 ≤ ‖w − Πhw‖L2(Ω), we have already gotten the desired result. On the other

side, we can follow the same line for the proof of (3.3) to obtain that αh2 ≤ ‖w − wh‖L2(Ω). 2

Remark 3.1. For the Morley element, this theorem and the estimate in (3.8b) show that

αh2 ≤ ‖w − wh‖L2(Ω), (3.13)

when the meshsize h is sufficiently small.

4. The Saturation Condition

Let w ∈ H3(Ω) ∩ H2
0 (Ω) be the solution of the fourth order elliptic problem. Let Wh be

some lower order conforming or nonconforming approximation space to H2(Ω) over the mesh

Th in the following sense:

sup
v∈H3(Ω)∩H2

0
(Ω)

inf
vh∈Wh

‖∇2
h(v − vh)‖L2(Ω) ≤ Ch|v|H3 . (4.1)

In the following we let ∇ℓv denote the ℓ-th order tensor of all ℓ-th order derivatives of v,

for instance, ℓ = 1 the gradient, and ℓ = 2 the Hessian matrix, and that ∇ℓ
h are the piecewise

counterparts of ∇ℓ defined element by element.

The following four conditions are sufficient for the saturation condition.
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H1. There exists a local interpolation operator Π from the space H3(Ω) to some higher

order finite element space than the finite element space Wh under consideration;

H2. The following Poincare inequality

‖∇2
h(w −Πw)‖L2(Ω) ≤ Ch‖∇3

h(w −Πw)‖L2(Ω), (4.2)

holds for the local interpolation operator Π;

H3. The following basic approximation property

‖∇3
h(w −Πw)‖L2(Ω) → 0 when h → 0, (4.3)

holds for the local interpolation operator Π;

H4. At least one fixed component of ∇3
hvh vanishes for all vh ∈ Wh and while the L2 norm

of the same component of ∇3w is nonzero.

Theorem 4.1. Suppose conditions H1-H4 hold for the discrete space Wh and the exact solution

w ∈ H3(Ω) ∩H2
0 (Ω). Then,

βh ≤ ‖∇2
h(w − wh)‖L2(Ω) with a positive constant β, (4.4)

when the mesh size h is small enough.

Proof. The detailed proof for the more general case can be found in [9, Theorem A.1]. For

the readers’ convenience, we only sketch the proof for the case under consideration. By the

condition H4, we let N denote the multi-index set of κ = (κ1, κ2) such that |κ| = κ1 + κ2 = 3

and that

∂|κ|vh|K
∂xκ1∂yκ2

≡ 0 for any K ∈ Th and vh ∈ Wh while

∥

∥

∥

∥

∂|κ|w

∂xκ1∂yκ2

∥

∥

∥

∥

L2(Ω)

6= 0. (4.5)

Hence it follows from the triangle inequality and the piecewise inverse estimate that

∑

κ∈N

∥

∥

∥

∥

∂|κ|w

∂xκ1∂yκ2

∥

∥

∥

∥

2

L2(Ω)

=
∑

κ∈N

∑

K∈Th

∥

∥

∥

∥

∂|κ|(w − wh)

∂xκ1∂yκ2

∥

∥

∥

∥

2

L2(K)

≤2
∑

κ∈N

∑

K∈Th

(∥

∥

∥

∥

∂|κ|(w −Πw)

∂xκ1∂yκ2

∥

∥

∥

∥

2

L2(K)

+

∥

∥

∥

∥

∂|κ|(Πw − wh)

∂xκ1∂yκ2

∥

∥

∥

∥

2

L2(K)

)

≤C
(

‖∇3
h(w −Πw)‖2L2(Ω) + h−2‖∇2

h(Πw − wh)‖
2
L2(Ω)

)

.

(4.6)

By the Poincare inequality in the condition H2 and the triangle inequality, it follows

∑

κ∈N

∥

∥

∥

∥

∂|κ|w

∂xκ1∂yκ2

∥

∥

∥

∥

2

L2(Ω)

≤ C
(

‖∇3
h(w −Πw)‖2L2(Ω) + h−2‖∇2

h(w − wh)‖
2
L2(Ω)

)

. (4.7)

Finally it follows from the condition H3 that

h2
∑

κ∈N

∥

∥

∥

∥

∂|κ|w

∂xκ1∂yκ2

∥

∥

∥

∥

2

L2(Ω)

≤ C‖∇2
h(w − wh)‖

2
L2(Ω), (4.8)
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when the meshsize is sufficiently small, which completes the proof. 2

Next we shall use the above theorem to prove the saturation condition for all the finite

element methods under consideration. The main tasks are to construct the local interpolation

operator Π and check the conditions H1-H4. For the Morley element, such an operator was

constructed in [9]. The conditions H1-H4 were checked therein. The same argument actually

applies to the conforming Powell-Sabin element. However, the argument therein can not be

extended to the other elements considered herein. In this section, we shall give a systematic

construction of such an operator.

Given any element K, define ΠKv ∈ P3(K) by
∫

K

∇ℓΠKvdxdy =

∫

K

∇ℓvdxdy, ℓ = 0, 1, 2, 3, (4.9)

for any v ∈ H3(K). Note that the operator ΠK is well-posed. Since
∫

K
∇2(v−ΠKv)dxdy = 0,

‖∇2(v −ΠKv)‖L2(K) ≤ ChK‖∇3(v −ΠKv)‖L2(K). (4.10)

Finally, define the global operator Π by

Π|K = ΠK for any K ∈ Th. (4.11)

This proves the conditions H1 and H2 for all the elements herein. It follows from the very

definition of ΠK in (4.9) that

∇3
hΠv = Π0∇

3v (4.12)

with Π0 the L2 piecewise constant projection operator with respect to Th. Since the piecewise

constant functions are dense in the space L2(Ω),

‖∇3
h(v −Πv)‖L2(Ω) → 0 when h → 0, (4.13)

which proves the condition H3. It remains to show the condition H4.

1. For the conforming Powell-Sabin C1 −P2 macro-element, and the nonconforming Morley

element, it holds that ∇3
hwh ≡ 0 for all discrete functions wh of these methods. Since

w ∈ W , there exists at least one component of ∇3w which is nonzero. This establishes

the condition H4 for these two methods.

2. For any vh ∈ WQ2
, we have ∂3vh

∂x3 = ∂3vh
∂y3 ≡ 0. Since w ∈ W , we have |∂

3w
∂x3 | + |∂

3w
∂y3 | 6=

0. This proves H4 for this element. A similar argument applies to the nonconforming

rectangle-Morley element and the nonconforming incomplete biquadratic element.

5. Conclusions and Comments

In this paper we analyze the L2 norm error estimate for five lower order finite element

methods for the fourth order problem and prove that it has the same convergence rate as the

H1 norm error estimate. The analysis equally applies to other lower order methods, for instance,

the Adini element [13], the Fraeijs de Veubeke elements [13], and the Wang-Xu element [23] and

the Wang-Shi-Xu element [25] provided that the saturation condition (3.1) holds for them. Note

that for the Adini element and the second Fraeijs de Veubeke element the saturation condition

(3.1) implies that the consistency error in the Strang Lemma dominates the approximate error.

For this case, the estimate (3.13) holds for them.

Some remarks on the conclusions are in order.



458 J. HU AND Z.-C. SHI

Remark 5.1. When the domain is smooth, we have the following regularity [5]

‖w‖H4(Ω) ≤ C‖f‖L2(Ω). (5.1)

This implies that the L2 norm error estimate of the higher order methods can be two order

higher than the error estimate in the energy norm for the smooth domain, see [6, 8]. When

Ω is a convex polygonal domain with interior angles ω1,· · · , ωℓ and ω : = max
i≤ℓ

ωi. Let s0 : =

min{Re(Z)| sin2(Ziω) = Z2
i sin

2(ω), i = 1, · · · , ℓ}. It follows from the shift theorem due to [2]

that

‖w‖H2+s0−ǫ(Ω) ≤ C‖f‖L2(Ω) for any ǫ > 0. (5.2)

In particular, when 0 < ω ≤ 0.7π, we have s0 = 2. Therefore, a similar dual argument in [6, 8]

proves that the L2 norm error estimate of the higher order methods can be s0 − ǫ order higher

than the error estimate in the energy norm.

As a summary, the L2 norm error estimate for finite element methods of the fourth order

problem is almost done.

Remark 5.2. The argument in this paper can be used to establish the lower bound of the

error estimates of the Morley-Wang-Xu elements for the 2m-th order problem [22]. In fact, we

have

αh2 ≤ ‖∇ℓ
h(w − wh)‖L2(Ω), ℓ = 0, · · · ,m− 1, (5.3)

where w and wh are the solutions of the continuous and discrete problems, respectively.

Remark 5.3. Let e ∈ H1
0 (Ω) be errors of the conforming finite element methods for the second

order elliptic problems. Suppose that the following error estimate holds, namely,

‖e‖H1(Ω) ≤ Chm‖u‖Hm+1(Ω) with the exact solution u, (5.4)

then for m ≥ 2 it holds that

‖e‖H1−m(Ω) : = sup
v∈Hm−1(Ω)

(e, v)L2(Ω)

‖v‖Hm−1(Ω)

≤ Ch2m‖u‖Hm+2(Ω). (5.5)

Such a kind of estimates are frequently used in the analysis for superconvergence of the finite

element methods, see, for instance, [7, 14] and [28]. It is usually assumed in the literature that

the above estimate can not be improved generally, namely,

αh2m ≤ ‖e‖H1−m(Ω) (5.6)

for some positive constant α. However, the rigorous proof is missed in the literature. We point

out that a similar argument herein can actually prove the above lower bound estimate provided

that we have the following saturation condition

βhm ≤ ‖e‖H1(Ω). (5.7)

Generally, it holds

αh2m ≤ ‖e‖H1−ℓ(Ω) for all ℓ ≥ m ≥ 1 and some positive constant α. (5.8)

Note that the saturation condition (5.7) holds for most of finite element methods in the litera-

ture. To this end, the readers only need to follow (4.9) to define a local interpolation operator

Π and then check the conditions in H1-H4.
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[12] M. Kř́ıžek, H. Roos and W. Chen, Two-sided bounds of the discretizations error for finite

elements, ESAIM: M2AN, 45 (2011), 915–924.

[13] P. Lascaux and P. Lesaint, Some nonconforming finite elements for the plate bending problem,

RAIRO Anal. Numer., 1 (1975), 9–53.

[14] Q. Lin and J. Lin, Finite Element Methods: Accuracy and Improvements, Science Press, Beijing,

2006.

[15] L.S.D. Morley, The triangular equilibrium element in the solutions of plate bending problem,

Aero. Quart., 19 (1968), 149–169.

[16] Z.C. Shi, On the convergence of the incomplete biqudratic nonconforming plate element, Math.

Numer., Sinica, 8 (1986), 53–62.

[17] Z.C. Shi, Error estimates for the Morley element, Chin. J. Numer. Math. Appl., 12 (1990),

102–108.

[18] M.J.D. Powell and M.A. Sabin, Piecewise quadratic approximations on triangles, ACM Trans-

actions on Mathematical Software, 3-4 (1977), 316–325.

[19] Q. Lin, H.H. Xie and J.C. Xu, Lower bounds of the discretization for piecewise polynomials,

arXiv:1106.4395v1 [Math.NA] 22 Jun 2011.

[20] Z.C. Shi and M. Wang, The Finite Element Method, Science Press, Beijing, 2010.

[21] M. Wang and J.C. Xu, The Morley element for fourth order elliptic equations in any dimensions,

Numer. Math., 103 (2006), 155–169.

[22] M. Wang and J.C. Xu, Minimal finite-element spaces for 2m-th order partial differential equa-

tions in Rn, Research Report 29(2006), School of Mathematical Sciences and Institute of Math-



460 J. HU AND Z.-C. SHI

ematics, Peking University, To appear in Mathematics of Computation.

[23] M. Wang and J.C.Xu, Some tetrahedron nonconforming elements for fourth order elliptic equa-

tions, Math. Comp., 76 (2007), 1-18.

[24] M. Wang, Z.C. Shi and J.C. Xu, Some n-rectangle nonconforming elements for fourth order

elliptic equations, J. Comput. Math., 25 (2007), 408–420.

[25] M. Wang, Z.C. Shi and J.C. Xu, A new class of Zienkiewicz-type nonconforming element in any

dimensions, Numer. Math., 106 (2007), 335–247.

[26] O. Widlund, On best error bounds for approximation by piecewise polynomial functions, Numer.

Math., 27 (1977), 327–338.

[27] M.Q. Wu, The incomplete biquadratic nonconforming plate element, Journal of Suzhou Univer-

sity, 1 (1983), 20–29.

[28] J.C. Xu, Two-grid discretization techniques for linear and nonlinear PDE, SIAM J. Numer.

Anal., 33 (1996), 1759–1777.


