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Abstract

Error reduction, convergence and optimality are analyzed for adaptive mixed finite

element methods (AMFEM) for diffusion equations without marking the oscillation of

data. Firstly, the quasi-error, i.e. the sum of the stress variable error and the scaled error

estimator, is shown to reduce with a fixed factor between two successive adaptive loops,

up to an oscillation. Secondly, the convergence of AMFEM is obtained with respect to the

quasi-error plus the divergence of the flux error. Finally, the quasi-optimal convergence

rate is established for the total error, i.e. the stress variable error plus the data oscillation.

Mathematics subject classification: 65N30, 65N15, 65N12, 65N50.
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1. Introduction and Main Results

Let Ω be a bounded polygonal in R
2. We consider the following diffusion problem with

homogeneous Dirichlet boundary value:

{
−div(A∇u) = f in Ω,

u = 0 on ∂Ω,
(1.1)

where the diffusion tensor A ∈ L∞(Ω;R2×2) is a symmetric and uniformly positive definite

matrix, and f ∈ L2(Ω). The choice of boundary conditions is made for ease of presentation,

since similar results are valid for other boundary conditions.

Adaptive methods for the numerical solution of PDEs are now standard tools in science

and engineering to achieve better accuracy with minimum degrees of freedom. The adaptive

procedure of (1.1) consists of loops of the form

SOLV E → ESTIMATE →MARK → REFINE. (1.2)

A posteriori error estimation (ESTIMATE) is an essential ingredient of adaptivity. We refer

to [1, 2, 7, 17, 30] for related works on this topic. The analysis of convergence and optimality of

the whole algorithm (1.2) is still in its infancy.
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The convergence analysis of standard adaptive finite element method (AFEM) started with

Döfler [16]. Döfler introduced a crucial marking, and proved the strict energy error reduction

of the standard AFEM for the Laplacian under the condition that the initial mesh T0 satisfies

a fineness assumption. Morin et al. [24, 25] showed that such strict energy error reduction can

not be expected in general. Introducing the concept of data oscillation and the interior node

property, they proved convergence of the standard AFEM without fineness restriction on T0
which is valid only for A in (1.1) being piecewise constant on T0. Inspired by the work by

Chen and Feng [11], Mekchay and Nochetto [22] extended this result to general second elliptic

operators and proved that the standard AFEM is a contraction for the total error, namely the

sum of the energy error and oscillation. Recently, Cascon, et al. [10] presented a new error

notion, the so-called quasi-error, namely the sum of the energy error and the scaled estimator,

and showed without the interior node property for the self-adjoint second elliptic problem that

the quasi-error is strictly reduced by the standard AFEM even though each term may not be.

Very recently, in [20, 21] Hu et al. first proved the convergence of adaptive conforming and

nonconforming finite element methods without marking the oscillation of data.

Besides convergence, optimality is another important issue in AFEM which was first ad-

dressed by Binev et al. [4] and further studied by Stevenson [28, 29], who showed optimality

without additional coarsening required in [4, 5]. These papers [4, 5, 28, 29] are restricted to

Laplace operator and rely on suitable marking by data oscillation and the interior node prop-

erty. Cascon et al. [10] succeeded in establishing quasi-optimality of the AFEM without both

the assumption of the interior node property and marking by data oscillation for the self-

adjoint second elliptic operator. Very recently, in [20,21] Hu et al. first analyzed the optimality

of adaptive conforming or nonconforming finite element methods without using the algorithm

that separates the error and the reduction of data oscillation.

However, for the convergence and optimality of AMFEM, the present works are carried

out only for Poisson equations: In [8], Carstensen and Hoppe proved the error reduction and

convergence for only the lowest-order Raviart-Thomas element. Chen et al. [12] showed the

convergence of the quasi-error and the optimality of the flux error while marking the data

oscillation. In [3,9,18], the convergence and optimality were analyzed for only the lowest-order

Raviart-Thomas element where the local refinement was performed by using simply either the

estimators or the data oscillation term.

Since the approximation of the mixed finite element methods is a saddle point of the cor-

responding energy, there is no orthogonality available, as is one of main difficulties for the

convergence and optimality of AMFEM. Since the stress variable is of interest in many appli-

cations, we especially concern the stress variable error. In this paper, our main contribution

is that we develop a novel technique and show, for more general elliptic problems and more

general mixed elements, the reduction property of the quasi-error (i.e., the saturation property),

the convergence of the quasi-error plus the divergence of the flux error, and the quasi-optimal

convergence rate of the total error with only the Dörfler Marking and without marking the

oscillation.

To summarize our main results, let {Tk, (Mk, Lk), pk, ηk}k≥0 be the sequence of the meshes,

a pair of finite element spaces with divMk = Lk, the approximation solutions, the estimators

produced by AMFEM in the k-th step. We prove in Section 5 that the quasi-error uniformly

reduces with a fixed rate between two successive meshes, up to an oscillation of data f , namely

E2
k+1 + γη2k+1 ≤ α2(E2

k + γη2k) + Cosc2(f, Tk),
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where α ∈ (0, 1), γ > 0, E2
k := ||A−1/2(p− pk)||

2
L2(Ω), and osc(f, Tk) is the oscillation of f over

Tk (see Section 2.3). We point out here that in some cases, even though the stress variable error

is monotone, strict error reduction for Ek may fail. On the other hand, the residual estimator

ηk := ηk(pk, Tk) exhibits strict reduction even when pk = pk+1 but no monotone behavior in

general. The orthogonality for the divergence of the flux leads to the convergence result:

E2
k+1 + γ1||hk+1div(p− pk+1)||

2
L2(Ω) + γ2η

2
k+1 ≤ Cinβ

2(k+1),

where constants γ1, γ2 > 0, 0 < β < 1, and Cin denotes the error on the initial mesh, and hk+1

is the mesh-size function with respect to Tk+1.

Since all decisions of AMFEM in MARK are based on the estimator ηk, a decay rate for

the true error is closely related to the quality of the estimator, which is described by the global

lower bound η2k . E2
k + osc2k. Hereafter, following the idea in [10,22], we refer to (E2

k + osc2k)
1/2

as the total error. The lower bound demonstrates that the estimator is controlled by the error

except up to an oscillation term and one can observe the difference between Ek and ηk only

when oscillation is large. Furthermore, from the upper bound E2
k . η2k and osc2k ≤ η2k it follows

E2
k + osc2k . η2k. This implies that the total error, which is the quantity reduced by AMFEM,

is controlled by the estimator. Since the estimator itself is an upper bound for the quasi-error,

in view of the global lower bound it holds E2
k + osc2k ≈ η2k ≈ E2

k + γη2k.

In short, the behavior of AMFEM is intrinsically bonded to the total error, which measures

the approximability of both the flux p = A∇u and data encoded in the oscillation term. Note

that when A−1ph is a piecewise polynomial vector, oscillation will reduce to approximation of

the right-hand side term f of (1.1) (see Section 2.3). In general case, approximation of data A

in osc2k couples in nonlinear fashion with the discrete solutions pk.

In Section 6, we introduce an approximation class As (see [14, 15]) based on the total

error. Using a quasi-monotonicity property of oscillation and a localized discrete upper bound,

we prove the following quasi-optimal convergence rate for the AMFEM in terms of DOFs by

assuming the marking parameter θ ∈ (0, θ∗) with 0 < θ∗ < 1 (see Theorem 6.2):

(E2
k + γ2osc

2
Tk
(pk, Tk))

1/2 ≤ Θ(s, θ,As)(#Tk −#T0)
−s.

The rest of this paper is organized as follows. Section 2 gives some preliminaries and details

on notations. Section 3 shows an efficiency result of the a posteriori error estimator. Section 4

provides some auxiliary results for convergence and optimality. We derive in section 5 the error

reduction and convergence of AMFEM, and prove in Section 6 the quasi-optimal convergence

rate of AMFEM.

2. Preliminaries and Notations

2.1. Weak formulation

By splitting (1.1) into two equations, the mixed formulation is given as

{
−div p = f and p = A∇u in Ω

u = 0 on ∂Ω.
(2.1)

Since the diffusion tensor A is symmetric and uniformly positive definite, by the Lax-Milgram

theorem, there exists a unique solution u ∈ H1
0 (Ω) to the problem (2.1). Moreover, the weak
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formulation of (2.1) reads as: Find (p, u) ∈ H(div,Ω)× L2(Ω) such that

(A−1p, q)0,Ω + (div q, u)0,Ω = 0 for all q ∈ H(div,Ω),

(div p, v)0,Ω = −(f, v)0,Ω for all v ∈ L2(Ω),
(2.2)

where H(div,Ω) := {q ∈ L2(Ω)2 : div q ∈ L2(Ω)}, and (·, ·)0,Ω denotes L2 inner product on Ω.

Let Th be a shape regular triangulation of the domain Ω in the sense of [13], and let

Mh and Lh denote finite dimensional subspaces of H(div,Ω) and L2(Ω), respectively, such as

well-known Raviart-Thomas (RT), Brezzi-Douglas-Marini (BDM), and Brezzi-Douglas-Fortin-

Marini (BDFM) mixed finite element spaces (see [6]). Note that Mh and Lh are indeed the

spaces of the piecewise polynomials of total degree at most l+ 1 and l with l ≥ 0, respectively.

In the step SOLV E a mixed finite element method reads as: Find (ph, uh) ∈ Mh × Lh such

that

(A−1ph, qh)0,Ω + (div qh, uh)0,Ω = 0 for all qh ∈Mh,

(div ph, vh)0,Ω = −(fh, vh)0,Ω for all vh ∈ Lh,
(2.3)

where fh is the L2− projection of f over Lh.

It is well-known that the existence and uniqueness of the solution of (2.2) hold true, and that

the discrete problem (2.3) has a unique solution since a discrete inf-sup-condition is satisfied

by these discrete spaces Mh and Lh (cf. [6]). Suppose that the module SOLV E outputs a pair

of discrete solutions over Th, namely, (ph, uh) = SOLV E(Th).

In what follows, for each T ∈ Th we denote the mesh size hT := |T |1/2 with |T | the area of

T . Let εh be the set of element edges in Th, J(v)|E := (v|T+
)|E − (v|T−

)|E denote the jump

of v ∈ H1(
⋃
Th) over an interior edge E := T+ ∩ T− of length hE := diam(E), shared by

the two neighboring (closed) triangles T± ∈ Th. Especially, J(v)|E := (v|T )|E if E = T ∩ ∂Ω.

Furthermore, for T ∈ Th, we denote by ωT the union of all elements in Th sharing one point

with T , and define the patch of E ∈ εh by

ωE :=
⋃

{T ∈ Th : E ⊂ T}.

Denote Γh :=
⋃
εh, and note that J : H1(

⋃
Th) → L2(Γh) be an operator with H1(

⋃
Th) :=

{v ∈ L2(Ω) : ∀T ∈ Th, v|T ∈ H1(T )}.

Throughout the paper, the local versions of the differential operators div,∇, curl are under-

stood in the distribution sense, i.e., in D′(Ω), namely, divh, curlh : H1(
⋃
Th)

2 → L2(Ω) and

∇h : H1(
⋃
Th) → L2(Ω)2 are defined such that, e.g., divhv|T := div(v|T ) in D′(T ), for all

T ∈ Th.

2.2. A posteriori error estimators

For all E ∈ εh, let τ be the unit tangential vector along E, and ph ∈ Mh be the approxi-

mation solution to the flux of (2.3) with respect to the triangulation Th. For convenience we

define the stress variable error by

E2
h := ||A−1/2(p− ph)||

2
L2(Ω),
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and define the local and global error estimators (see [6]) respectively as

η2Th
(ph, T ) := h2T ||f + div ph||

2
L2(T ) + h2T ||curl(A

−1ph)||
2
L2(T )

+ hT ||J(A
−1ph · τ)||

2
L2(∂T ),

η2Th
(ph, Th) :=

∑

T∈Th

η2Th
(ph, T ).

Here curlψ := ∂ψ2

∂x1
− ∂ψ1

∂x2
for ψ = (ψ1, ψ2)

T . Note that in this paper, the Curls of a scalar

function φ are involved as

Curlφ := (−
∂φ

∂x2
,
∂φ

∂x1
)T .

We assume that, for a given triangulation Th and a corresponding discrete solution ph ∈Mh,

the module ESTIMATE for the stress variable outputs the indicators

{η2Th
(ph, T )}T∈Th

= ESTIMATE(ph, Th).

From [6], for the stress variable error the estimate

E2
h ≤ C1η

2
Th
(ph, Th) (2.4)

holds with C1 a constant independent of the mesh size.

2.3. Oscillation of data

For an integer n ≥ l + 1, we denote by Π2
n the L2−best approximation operator onto the

set of piecewise polynomials of degree ≤ n over T ∈ Th or E ∈ εh, denote by id the identity

operator, and set P 2
n := id−Π2

n. We define the oscillation of data as

osc2Th
(ph, T ) := h2T ||P

2
ncurl(A

−1ph)||
2
L2(T ) + hT ||P

2
n+1J(A

−1ph · τ)||
2
L2(∂T )

+ h2T ||f − fh||
2
L2(T ) for all T ∈ Th.

Especially, for any subset T ′
h ⊂ Th, we set

osc2Th
(ph, T

′
h) :=

∑

T∈T ′
h

osc2Th
(ph, T ) and osc2h := osc2Th

(ph, Th).

We also define the oscillation of f as

osc2(f, Th) := ||h(f − fh)||
2
L2(Ω).

Remark 2.1. Let Th be a triangulation, qh ∈ Mh be given. By substituting ph with qh in

the definitions of ηTh
(ph, T ) and oscTh

(ph, T ), we can see that the indicator ηTh
(qh, T ) controls

oscillation oscTh
(qh, T ), i.e., oscTh

(qh, T ) ≤ ηTh
(qh, T ) for all T ∈ Th. In addition, for the stress

variables, the definitions of the error indicator and oscillation are fully localized to T , which

means ηTH
(qH , T ) = ηTh

(qH , T ) and oscTH
(qH , T ) = oscTh

(qH , T ) for any refinement Th of TH
with T ∈ Th ∩ TH and qH ∈ MH . Moreover, a combination of the monotonicity of local mesh

sizes and properties of the local L2−projection yields

ηTh
(qH , Th) ≤ ηTH

(qH , TH) and oscTh
(qH , Th) ≤ oscTH

(qH , TH) ∀qH ∈MH .

We note that in this paper, the triangulation Th means a refinement of TH , all notations

with respect to the mesh TH are defined similarly. Throughout the rest of the paper we use the

notation A . B to represent A ≤ CB with a mesh-size independent, generic constant C > 0.

Moreover, A ≈ B abbreviates A . B . A.
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2.4. Adaptive algorithm

In the MARK step of (1.2), by relying on Dörfler marking, we select the elements to mark

according to the indicators for the stress variables, namely, given a grid TH with the set of

indicators {ηTH
(pH , T )}T∈TH

and marking parameter θ ∈ (0, 1], the module MARK outputs a

subset of making elements MH ⊂ TH , i.e.,

MH =MARK({ηTH
(pH , T )}T∈TH

, TH , θ),

such that MH satisfies Dörfler property

ηTH
(pH ,MH) ≥ θηTH

(pH , TH). (2.5)

In the REFINE step of (1.2), we suppose that the refinement rule, such as the newest

vertex bisection [23], is guaranteed to produce conforming and shape regular mesh. Given two

fixed integers b0 > b ≥ 1, a mesh TH , and a subset MH ⊂ TH of marked elements, a conforming

triangulation Th is output by

Th = REFINE(TH ,MH),

where all elements of MH are at least bisected b times and at most b0 times. Note that not only

marked elements get refined but also additional elements are refined to recovery the conformity

of triangulations. Let R := RTH→Th
:= TH/(TH ∩Th) denote the set of refined elements, which

means MH ⊂ RTH→Th
. Here, we quote a result about complexity of refinement, its proof can

be found in [29].

Lemma 2.1. (Complexity of refinement) Assume that T0 satisfies condition (b) of section 4

in [29]. Let {Tk}k≥0 with cardinality #Tk be any conforming triangulation sequence refined from

a shape regular triangulation T0, Tk+1 be generated from Tk by Tk+1 = REFINE(Tk,Mk) with

a subset Mk ⊂ Tk. Then it holds

#Tk −#T0 .

k−1∑

j=0

#Mj for all k ≥ 1.

We now describe the algorithm of the AMFEM of the stress variables. In doing this, we

replace the subscript H (or h) by an iteration counter called k ≥ 0. Let T0 be a shape

regular triangulation, η0 := ηT0
(p0,T0

) denote the error indicator onto the initial mesh T0, with

a marking parameter θ ∈ (0, 1]. The basic loop of AMFEM is then given by the following

iterations:

AMFEM

Set k = 0, ηk = η0 and iterate

(1) (pk, uk) = SOLV E(Tk);

(2) {ηk(pk, T )}T∈Tk
= ESTIMATE(pk, Tk);

(3) Mk =MARK({ηk(pk, T )}T∈Tk
, Tk, θ);

(4) Tk+1 = REFINE(Tk,Mk), k = k + 1.

We note that the AMFEM for the stress variables is a standard algorithm in which it employs

only the error estimator {ηTk
(pk, T )}T∈Tk

, does not mark the oscillation, and does not need the

interior node property.
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3. Efficiency of Estimator

In [6] the efficiency of the proposed estimator was derived under the constraint that A−1 is

a piecewise polynomial matrix. Here, by introducing the oscillation of data, we shall show the

efficiency without the constraint on A−1.

Using the property of L2-best approximation and standard arguments we easily have the

following two lemmas.

Lemma 3.1. Let ph ∈ Mh be an approximation solution to the stress variable of (2.3), P 2
n

denote the operator defined in Section 2.3, and ǫ := p− ph be the error of the flux. Then, for

all T ∈ Th, it holds

hT ||curl(A
−1ph)||L2(T ) . ||A−1/2ǫ||L2(T ) + hT ||P

2
ncurl(A

−1ph)||L2(T ). (3.1)

Lemma 3.2. Let ph ∈Mh be the approximation solution to the flux of (2.3), P 2
n+1 denote the

operator defined in Section 2.3, and ǫ be the same as in Lemma 3.1. Then, for all E ∈ εh, it

holds

h
1/2
E ||J(A−1ph · τ)||L2(E)

.h
1/2
E ||P 2

n+1J(A
−1ph · τ)||L2(E) + hE ||P

2
ncurlh(A

−1ph)||L2(ωE) + ||A−1/2ǫ||L2(ωE). (3.2)

We now prove the efficiency of the estimator ηTh
(ph, Th) by using the above two lemmas.

Theorem 3.1. Let p ∈ H(div,Ω) and ph ∈Mh be the solutions of (2.2) and (2.3), respectively,

and let ηTh
(ph, Th), Eh, and osch be defined as in Sections 2.2 and 2.3. Then, for the estimator

of the stress variables for the RT, BDM, and BDFM elements, there exists a constant C2

independent of mesh-size such that

C2ηTh
(ph, Th)

2 ≤ E2
h + osc2h. (3.3)

Proof. Since f +div ph = f − fh, combining Lemmas 3.1-3.2, and summing over all T ∈ Th
and E ∈ εh, we obtain the desired result (3.3). �

4. Auxiliary Results for Convergence and Optimality

4.1. Quasi-orthogonality

Following the same line as in the proof of (Lemma 4.2, [12]), we have the following result:

Lemma 4.1. Let Th and TH be two nested triangulations, ΠLH
be the L2(Ω) −projection op-

erator onto LH , and (ph, uh) ∈Mh × Lh be the solutions of (2.3). Then for any T ∈ TH , there

exists a positive constant C0 depending only on the shape regularity of TH such that

||uh −ΠLH
uh||L2(T ) ≤

√
C0HT ||A

−1/2ph||L2(T ). (4.1)

In order to prove the quasi-orthogonality, we need to introduce a pair of auxiliary solutions.

We denote by fH the L2−projection of f over LH , and consider the following problem: Find

(p̃h, ũh) ∈Mh × Lh such that

(A−1p̃h, qh)0,Ω + (div qh, ũh)0,Ω = 0 for all qh ∈Mh,

(div p̃h, vh)0,Ω = −(fH , vh)0,Ω for all vh ∈ Lh.
(4.2)
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In fact, the solution (p̃h, ũh) of this auxiliary problem may be regarded as another approxi-

mation to the flux and displacement (p, u).

Lemma 4.2. Let Th and TH be two nested triangulations, osc(fh, TH) denote the oscillation

of fh over TH , ph and p̃h be the solution of (2.3) and (4.2), respectively. Then there exists a

constant C0 depending only on the shape regularity of TH such that

||A−1/2(ph − p̃h)||L2(Ω) ≤
√
C0osc(fh, TH .) (4.3)

Proof. The conclusion follows from Lemma 4.1 and the same line as in the proof of (Theorem

4.3, [12]). �

We state the property of quasi-orthogonality as follows.

Theorem 4.1. (Quasi-orthogonality) Given f ∈ L2(Ω) and two nested triangulations Th and

TH , let ph and pH be the solutions of (2.3) with respect to Th and TH , respectively. Then it

holds

(A−1(p− ph), ph − pH)0,Ω ≤ C
1/2
0 ||A−1/2(p− ph)||L2(Ω)osc(fh, TH). (4.4)

Furthermore, for any δ1 > 0, it holds

(1− δ1)||A
−1/2(p− ph)||

2
L2(Ω)

≤||A−1/2(p− pH)||2L2(Ω) − ||A−1/2(ph − pH)||2L2(Ω) + C0δ
−1
1 osc2(fh, TH). (4.5)

Proof. Let (p̃h, ũh) solve the problem (4.2). Then we have

(A−1(p− ph), p̃h − pH)0,Ω

=− (div(p̃h − pH), u− ũh)0,Ω = (fH − fH , u− ũh)0,Ω = 0. (4.6)

From the above identity (4.6) and Lemma 4.2, we obtain

(A−1(p− ph), ph − pH)0,Ω = (A−1(p− ph), ph − p̃h)0,Ω

≤ ||A−1/2(p− ph)||L2(Ω)||A
−1/2(ph − p̃h)||L2(Ω)

≤ C
1/2
0 ||A−1/2(p− ph)||L2(Ω)osc(fh, TH), (4.7)

which implies the first result (4.4). Furthermore, notice that

||A−1/2(p− ph)||
2
L2(Ω) = ||A−1/2(p− pH)||

2
L2(Ω) − ||A−1/2(ph − pH)||

2
L2(Ω)

− 2(A−1(p− ph), ph − pH)0,Ω. (4.8)

Then for any δ1 > 0, from (4.7) and Young’s inequality we have

||A−1/2(p− ph)||
2
L2(Ω) ≤ ||A−1/2(p− pH)||

2
L2(Ω) − ||A−1/2(ph − pH)||

2
L2(Ω)

+ δ1||A
−1/2(p− ph)||

2
L2(Ω) +

C0

δ1
osc2(fh, TH),

which implies the estimate (4.5). �

Although the oscillation of fh over the triangulation TH appears in the estimate of quasi-

orthogonality, it is dominated by osc(f, TH). We refer to [12] for the proof of the following

observation.

Lemma 4.3. Let fh denote the L2−projection of f over Lh. Then it holds

osc(fh, TH) ≤ osc(f, TH).
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4.2. Reduction of estimators and oscillation

In this subsection, we aim at the reduction of the estimators and oscillation. To this end,

we relate the error indicators and oscillation of two nested triangulations to each other. The

link involves weighted maximum-norms of the inverse matrix, A−1, and its oscillation.

For a nonnegative integer m = n− l, any given triangulation TH , and v ∈ L∞(Ω), we denote

by Π∞
mv the best L∞(Ω)−approximation of v in the space of piecewise polynomials of degree

≤ m, and denote by ωT the patch of element T defined in Section 2.1. We further set

Π∞
−1v := 0, P∞

m v := (id−Π∞
m )v,

η2TH
(A−1, T ) := H2

T (||Curl A
−1||2L∞(T ) +H−2

T ||A−1||2L∞(ωT )) for all T ∈ TH ,

osc2TH
(A−1, T ) := H2

T (||P
∞
m−1Curl A

−1||2L∞(T ) +H−2
T ||P∞

m A−1||2L∞(ωT )).

Noticing that P∞
m is defined elementwise, for any subset T ′

H ⊂ TH we set

ηTH
(A−1, T ′

H) := max
T∈T ′

H

ηTH
(A−1, T ), oscTH

(A−1, T ′
H) := max

T∈T ′
H

oscTH
(A−1, T ).

Remark 4.1. (Monotonicity) The use of best approximation in L∞ in the definition of ηTH

(A−1, TH) and oscTH
(A−1, TH) implies the following monotonicity: for any refinement Th of

TH , it holds

ηTh
(A−1, Th) ≤ ηTH

(A−1, TH) and oscTh
(A−1, Th) ≤ oscTH

(A−1, TH).

To avoid any smoothness assumptions on the diffusion coefficient matrix, we need to quote

a result about implicit interpolation, whose proof can be found in [10]. Let m be a nonnegative

integer, ι be a positive integer, and ω be a one- or two-dimensional simplex. We denote P̃ jm :=

id−Πjm, where Π
j
m : Lj(ω,Rι) → Pm(ω,Rι) is the operator of best Lj−approximation in ω for

j = 2,∞.

Lemma 4.4. (Implicit interpolation) Let m and n be two nonnegative integer. Then for all

v ∈ L∞(ω,Rι), V ∈ Pn(ω,R
ι) and m ≥ n, it holds

||P̃ 2
m(vV )||L2(ω) ≤ ||P̃∞

m−nv||L∞(ω)||V ||L2(ω). (4.9)

Lemma 4.5. Let TH be a triangulation. For all T ∈ TH and any pair of discrete functions

σH , τH ∈MH , there exists a constant Λ̄1 > 0 depending only on the shape regularity of T0, the

polynomial degree l + 1, and the eigenvalues of A−1, such that

ηTH
(σH , T ) ≤ ηTH

(τH , T ) + Λ̄1ηTH
(A−1, T )||A−1/2(σH − τH)||L2(ωT ), (4.10)

oscTH
(σH , T ) ≤ oscTH

(τH , T ) + Λ̄1oscTH
(A−1, T )||A−1/2(σH − τH)||L2(ωT ). (4.11)

Proof. We only prove the second estimate (4.11), since the first one (4.10) is somewhat

simpler and can be derived similarly. We denote by L2(ΓH) the square integrable function

spaces on ΓH :=
⋃
εH . The jump of the tangential component defines a linear mapping

J : MH → L2
ΓH

by J(qH) = J(A−1qH · τ) for all qH ∈ MH from MH into L2
ΓH

. Recalling

P̃ 2
n = id−Π2

n with Π2
n being the L2−projection, denoting qH := σH −τH and using the triangle

inequality, we have

oscTH
(σH , T ) ≤ oscTH

(τH , T ) +HT ||P̃
2
ncurl(A

−1qH)||L2(T )

+H
1/2
T ||P̃ 2

n+1J(A
−1qH · τ)||L2(∂T ). (4.12)
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We split the curl term as

curl(A−1qH) = Curl A−1 · qH +A−1 : c̃url qH ,

where Curl A−1 is a vector whose every component is the curl of the corresponding column

vector of A−1, and c̃url qH is a matrix whose column vector is the Curl of the corresponding

component of qH . Invoking Lemma 4.4 with ω = T and noticing that polynomial degree of qH
is l + 1, we infer for the first term that

||P̃ 2
n(Curl A

−1 · qH)||L2(T ) . ||P̃∞
n−l−1Curl A

−1||L∞(T )||A
−1/2qH ||L2(T ). (4.13)

Since c̃url qH is a polynomial of degree ≤ l, applying (4.9) again in conjunction with an inverse

inequality, we obtain for the second term that

||P̃ 2
n(A

−1 : c̃url qH)||L2(T )

≤ ||P̃∞
n−lA

−1||L∞(T )||c̃url qH ||L2(T ) ≤ ||P̃∞
n−lA

−1||L∞(T )|qh|H1(T )

. H−1
T ||P̃∞

n−lA
−1||L∞(T )||A

−1/2qH ||L2(T ). (4.14)

We now deal with the jump residual. Let T ′ ∈ TH share an interior edge E with T . We

write J(A−1qH · τ) = ((A−1qH)|T − (A−1qH)|T ′) · τ and use the linearity of Π2
n+1, Lemma 4.4

with ω = E, and the inverse inequality ||qH ||L2(E) . H
−1/2
T ||qH ||L2(T ) to deduce

||P̃ 2
n+1((A

−1qH)|T · τ)||L2(E)

= ||(P̃ 2
n+1(A

−1qH |T )) · τ ||L2(E) ≤ ||P̃ 2
n+1(A

−1qH |T )||L2(E)

≤ ||P̃∞
n−lA

−1|T ||L∞(E)||qH ||L2(E) . H
−1/2
T ||P̃∞

n−lA
−1||L∞(T )||qH ||L2(T ). (4.15)

Since TH is shape-regular, we can replace H ′
T by HT , a similar argument leads to

||P̃ 2
n+1((A

−1qH)|T ′ · τ)||L2(E) . H
−1/2
T ||P̃∞

n−lA
−1||L∞(T ′)||qH ||L2(T ′). (4.16)

A combination of (4.15) and (4.16) yields

||P̃ 2
n+1J(A

−1qH · τ)||L2(E)

= ||P̃ 2
n+1(((A

−1qH)|T − (A−1qH)|T ′) · τ)||L2(E)

≤ ||P̃ 2
n+1((A

−1qH)|T · τ)||L2(E) + ||P̃ 2
n+1((A

−1qH)|T ′ · τ)||L2(E)

. H
−1/2
T ||P̃∞

n−lA
−1||L∞(ωE)||A

−1/2qH ||L2(ωE). (4.17)

By summing over all edges of element T , from the above inequality (4.17), we get

||P̃ 2
n+1J(A

−1qH · τ)||L2(∂T ) . H
−1/2
T ||P̃∞

n−lA
−1||L∞(ωT )||A

−1/2qH ||L2(ωT ). (4.18)

Finally, the desired result (4.11) follows from (4.12)-(4.14) and (4.18). �

The following two corollaries are global forms of the above lemma.

Corollary 4.1. (Estimator reduction) For a triangulation TH with MH ⊂ TH , let Th be a

refinement of TH obtained by Th := REFINE(TH ,MH). Denote Λ1 := 3Λ̄2
1 with Λ̄1 given in

Lemma 4.5, and λ := 1− 2−b/2 > 0 with b given in Section 2.4. Then it holds

η2Th
(σh, Th) ≤(1 + δ2){η

2
TH

(σH , TH)− λη2TH
(σH ,MH)}

+ (1 + δ−1
2 )Λ1η

2
T0
(A−1, T0)||A

−1/2(σH − σh)||
2
L2(Ω) (4.19)

for all σH ∈MH , σh ∈Mh and any δ2 > 0.
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Proof. The desired result follows from Lemma 4.5, Remark 2.1, Remark 4.1, and the same

line as in the proof of Corollary 3.4 in [10]. �

Corollary 4.2. (Perturbation of oscillation) Let Th be a refinement of TH , and let Λ1 be the

same as in Corollary 4.1. Then for all σH ∈Mh, σh ∈Mh, it holds

osc2TH
(σH , TH ∩ Th)

≤2osc2Th
(σh, TH ∩ Th) + 2Λ1osc

2
T0
(A−1, T0)||A

−1/2(σh − σH)||2L2(Ω). (4.20)

Proof. Remark 2.1 yields oscTH
(σH , T ) = oscTh

(σH , T ) for all T ∈ TH ∩ Th. Hence, by the

estimate (4.11) and Young’s inequality, we get

osc2TH
(σH , T ) ≤ 2osc2Th

(σh, T ) + 2Λ̄2
1osc

2
Th
(A−1, T )||A−1/2(σh − σH)||2L2(ωT ). (4.21)

By summing (4.21) over T ∈ TH ∩Th and using the monotonicity property oscTh
(A−1, Th) ≤

oscT0
(A−1, T0) stated in Remark 4.1, the inequality (4.21) indicates the desired assertion. �

5. Convergence of AMFEM

In this section, we first prove that the quasi-error uniformly reduces with a fixed rate on

two successive meshes, up to an oscillation term of f . This means AMFEM is a contraction

with respect to the quasi-error. We then prove that AMFEM is convergent with respect to

the quasi-error plus the divergence of the flux error. To this end, subsequently we replace the

subscripts H,h respectively with iteration counters k, k + 1, and denote by

Ek := ||A−1/2(p− pk)||L2(Ω) and ηk := ηTk
(pk, Tk)

the stress variable error and the estimator over the whole mesh Tk,respectively.

Theorem 5.1. (Contraction property) Given θ ∈ (0, 1], let {Tk; (Mk, Lk); pk}k≥0 be the se-

quence of meshes,a pair of finite element spaces, and the approximation solutions produced by

AMFEM. Then there exits constants γ > 0, 0 < α < 1, and C > 0 depending solely on the

shape-regularity of T0, b, ηT0(A−1,T0), and the marking parameter θ, such that

E2
k+1 + γη2k+1 ≤ α2(E2

k + γη2k) + Cosc2(f, Tk). (5.1)

Proof. For convenience, we use the notations Ek := pk − pk+1, ηk(Mk) := ηTk
(pk,Mk),

η0(A
−1) := ηT0

(A−1, T0). Applying the estimator reduction (Corollary 4.1) to (4.5), we get for

any γ̄ ≥ 0,

(1− δ1)E
2
k+1 + γ̄η2k+1 ≤ E2

k − ||A−1/2Ek||
2
L2(Ω) + γ̄(1 + δ2){η

2
k − λη2k(Mk)}

+γ̄(1 + δ−1
2 )Λ1η

2
0(A

−1)||A−1/2Ek||
2
L2(Ω) +

C0

δ1
osc2(fk+1, Tk).

In what follows we choose γ̄ := 1/
(
(1 + δ−1

2 )Λ1η
2
0(A

−1)
)
so as to obtain

(1− δ1)E
2
k+1 + γ̄η2k+1 ≤ E2

k + γ̄(1 + δ2)

(
η2k − λη2k(Mk)

)
+
C0

δ1
osc2(fk+1, Tk).
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By using the reliable estimation (2.4) of the stress variable error, and invoking Dörfler marking

property (2.5), the above inequality yields for any constant α,

(1− δ1)E
2
k+1 + γ̄η2k+1

≤ α2(1− δ1)E
2
k + (1− α2(1− δ1))E

2
k + γ̄(1 + δ2){η

2
k − λη2k(Mk)} +

C0

δ1
osc2(fk+1, Tk)

≤ α2(1− δ1)E
2
k + (1− α2(1− δ1))C1η

2
k + γ̄(1 + δ2)(1− λθ2)η2k +

C0

δ1
osc2(fk+1, Tk)

≤ α2{(1− δ1)E
2
k +

(1 − α2(1 − δ1))C1 + γ̄(1 + δ2)(1 − λθ2)

α2
η2k}+

C0

δ1
osc2(fk+1, Tk). (5.2)

We choose α such that (1− α2(1− δ1))C1 + γ̄(1 + δ2)(1− λθ2) = α2γ̄, which gives

α2 =
(1− δ1)C1 + γ̄(δ1C1/γ̄ + (1 + δ2)(1 − λθ2))

(1− δ1)C1 + γ̄
.

We now choose δ3 and δ1 such that

δ2 ≤ λθ2/2(1− λθ2) and δ1 < min{1,
(1− λθ2)δ2γ̄

C1
}.

Then it follows

δ1C1/γ̄ + (1 + δ2)(1 − λθ2)

<(1− λθ2)δ2 + (1 + δ2)(1 − λθ2) ≤ (1− λθ2)(1 +
λθ2

1− λθ2
) = 1,

which leads to α2 < 1. Finally we set γ = γ̄/(1− δ1). Then the desired result (5.1) follows from

(5.2) and lemma 4.3. �

We note that the oscillation, osc(f, Tk), of the right-hand side term f measures intrinsic

information missing in the average process associated with finite elements, but fails to detect

fine structures of f . Since the oscillation occurs in the quasi-orthogonality for the stress variable,

we shall use an equivalent term, ||hkdiv(p− pk)||, to offset it so as to derive the convergence of

AMFEM without marking the oscillation.

Theorem 5.2. (Convergence result) Given θ ∈ (0, 1], let {Tk; (Mk, Lk); pk)}k≥0 be the sequence

of meshes, a pair of finite element spaces, and the approximation solutions produced by AMFEM,

and denote Cin the error on the initial mesh by

Cin := E2
0 + γ1||h0div(p− p0)||

2
L2(Ω) + γ2η

2
0 .

Then there exits constants γ1, γ2, β with γ1, γ2 > 0 and 0 < β < 1, depending solely on the

shape-regularity of T0, b, ηT0(A−1,T0), and the marking parameter θ, such that

E2
k+1 + γ1||hk+1div(p− pk+1)||

2
L2(Ω) + γ2η

2
k+1 ≤ Cinβ

2(k+1). (5.3)

Proof. Notice that the second equation of (2.2) and (2.3) implies the following orthogonality

for the divergence of the flux on each element

(div(p− pk+1), div(pk+1 − pk))T = 0 for all T ∈ Tk+1.



Adaptive Mixed Finite Element Methods for Diffusion Equations 495

This orthogonality leads to

||div(p− pk+1)||
2
L2(T )

=||div(p− pk)||
2
L2(T ) − ||div(pk+1 − pk)||

2
L2(T ) − 2(div(p− pk+1), div(pk+1 − pk))T

=||div(p− pk)||
2
L2(T ) − ||div(pk+1 − pk)||

2
L2(T ). (5.4)

Since the marked elements are at most bisected b0 times, from the monotonicity of the mesh-size

function, and summing (5.4) over all element T ∈ Tk+1, we obtain

||hk+1div(p− pk+1)||
2
L2(Ω)

=
∑

T∈Tk+1

h2k+1||div(p− pk)||
2
L2(T ) −

∑

T∈Tk+1

h2k+1||div(pk+1 − pk)||
2
L2(T )

≤
∑

T∈Tk

{h2k||div(p− pk)||
2
L2(T ) − 2−(b0+1)h2k||div(pk+1 − pk)||

2
L2(T )}

= ||hkdiv(p− pk)||
2
L2(Ω) − 2−(b0+1)||hkdiv(pk+1 − pk)||

2
L2(Ω). (5.5)

Let fk+1 and fk denote the L2−best approximation of f over Lk+1 and Lk, respectively,

and ΠLk
be the L2−projection operator over Lk. Notice that div pk+1 = −fk+1, div pk = −fk.

From the property of the L2−best approximation, we get

osc2(fk+1, Tk) =
∑

T∈Tk

h2T ||fk+1 −ΠLk
fk+1||

2
L2(T ) ≤

∑

T∈Tk

h2T ||fk+1 − fk||
2
L2(T )

=||hkdiv(pk+1 − pk)||
2
L2(Ω). (5.6)

Applying (5.6) to (4.5), combining the estimator reduction (Corollary 4.1) and (5.5), and in-

voking Dörfler marking property (2.5), we get for any γ̄1, γ̄2 > 0,

(1− δ1)E
2
k+1 + γ̄1||hk+1div(p− pk+1)||

2
L2(Ω) + γ̄2η

2
k+1

≤ E2
k + γ̄1||hkdiv(p− pk)||

2
L2(Ω) + {γ̄2(1 + δ−1

3 )Λ1η
2
0(A

−1)− 1}||A−1/2Ek||
2
L2(Ω)

+ (C0δ
−1
1 − γ̄12

−(b0+1))||hkdiv Ek||
2
L2(Ω) + γ̄2(1 + δ3)(1 − λθ2)η2k,

where η0(A
−1) := ηT0

(A−1, T0) and Ek := pk − pk+1. We now choose γ̄1 and γ̄2 such that

C0δ
−1
1 − γ̄12

−(b0+1) = 0, γ̄2(1 + δ−1
3 )Λ1η

2
0(A

−1)− 1 = 0.

This choice leads to

(1− δ1)E
2
k+1 + γ̄1||hk+1div(p− pk+1)||

2
L2(Ω) + γ̄2η

2
k+1

≤ E2
k + γ̄1||hkdiv(p− pk)||

2
L2(Ω) + γ̄2(1 + δ3)(1− λθ2)η2k

≤ β2
1

(
E2
k + γ̄1||hkdiv(p− pk)||

2
L2(Ω) + γ̄2η

2
k

)
+ (1− β2

1)C1η
2
k

+ (1− β2
1)γ̄1η

2
k +

(
γ̄2(1 + δ3)(1 − λθ2)− γ̄2β

2
1

)
η2k.

We then choose δ3 and β2
1 such that

δ3 <
λθ2

1− λθ2
, β2

1 :=
γ̄2(1 + δ3)(1 − λθ2) + (γ̄1 + C1)

γ̄2 + (γ̄1 + C1)
< 1,
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so as to obtain

(1 − δ1)E
2
k+1 + γ̄1||hk+1div(p− pk+1)||

2
L2(Ω) + γ̄2η

2
k+1

≤ β2
1

(
E2
k + γ̄1||hkdiv(p− pk)||

2
L2(Ω) + γ̄2η

2
k

)
.

Let 0 < β2
1 < β2 < 1, and set γ3 = 1 − δ1 = β2

1/β
2. This means δ1 = 1 − β2

1/β
2. Whence, we

have

γ3E
2
k+1 + γ̄1||hk+1div(p− pk+1)||

2
L2(Ω) + γ̄2η

2
k+1

≤ β2

(
γ3E

2
k + γ3γ̄1||hkdiv(p− pk)||

2
L2(Ω) + γ3γ̄2η

2
k

)

≤ β2

(
γ3E

2
k + γ̄1||hkdiv(p− pk)||

2
L2(Ω) + γ̄2η

2
k

)
.

We finally choose γ1 = γ̄1/γ3, γ2 = γ̄2/γ3, so as to obtain

E2
k+1 + γ1||hk+1div(p− pk+1)||

2
L2(Ω) + γ2η

2
k+1 ≤ β2

(
E2
k + γ1||hkdiv(p− pk)||

2
L2(Ω) + γ2η

2
k

)
,

which implies the desired result (5.3). �

6. Optimality of AMFEM

6.1. Auxiliary results

In this subsection, we aim at the discrete upper bound, which is one key to the proof for

the quasi-optimal convergence rate. Simultaneously, we shall quote a counting result for the

overlay of two conforming meshes.

Theorem 6.1. (Discrete upper bound) Let Th and TH be two nested conforming triangulations,

ph ∈ Mh and pH ∈ MH be the discrete solutions with respect to the meshes Th and TH ,

respectively, and FH := {T ∈ TH : T is not included in Th}. Then there exists a positive

constant C3 depending only on the shape regularity of TH such that

||A−1/2(ph − pH)||2L2(Ω) ≤ C3η
2
TH

(pH ,FH), (6.1)

#FH ≤ #Th −#TH . (6.2)

Proof. The second inequality, i.e., (6.2), follows from the definition of FH . To prove the

first one, we introduce the solution (p̃h, ũh) ∈ Mh × Lh to the problem (4.2). From (2.3) and

(4.2), we obtain div(p̃h − pH) = 0, which implies
∫

∂Ω

(p̃h − pH) · νds = 0, (6.3)

where ν is the outward unit normal vector along ∂Ω. Thus p̃h − pH satisfies the conditions of

Theorem 3.1 in [19] on the polygonal domain Ω, namely it is divergence-free and fulfills (6.3).

As a result, there exists ψh ∈ H1(Ω) with Curl ψh = p̃h − pH . Since p̃h − pH ∈Mh, this leads

to

ψh ∈ Sl+2
h :=

{
ψh ∈ C(Ω) : ψh|T ∈ Pl+2(T ) for all T ∈ Th

}
.
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From (4.2) with qh = p̃h − pH , we get

||A−1/2(p̃h − pH)||2L2(Ω) = (A−1(p̃h − pH), p̃h − pH)0,Ω

= (A−1p̃h, p̃h − pH)0,Ω − (A−1pH , p̃h − pH)0,Ω

= −(A−1pH , p̃h − pH)0,Ω = −(A−1pH ,Curl ψh)0,Ω. (6.4)

Since div(Curl ψH) = 0 for any ψH ∈ Sl+2
H , from (2.3) with qH = Curl ψH , we have

(A−1pH ,Curl ψH)0,Ω = −(div Curl ψH , uH)0,Ω = 0 for all ψH ∈ Sl+2
H . (6.5)

Here the definition of Sl+2
H is analogous to Sl+2

h .

To connect Sl+2
h with Sl+2

H , we denote the Scott-Zhang interpolation operator (see [27]) by

IH : Sl+2
h → Sl+2

H , and recall that IH is local in the sense that if T ∈ Th ∩ TH or E ∈ εh ∩ εH
(i.e., T or E is not refined), then (ψh −IHψh)|T = 0 or (ψh −IHψh)|E = 0. Consequently, the

following estimates hold:

||ψh − IHψh||L2(E) . H
1/2
E |ψh|H1(ωE) for all E ∈ εH , (6.6)

||ψh − IHψh||L2(T ) . HT |ψh|H1(ωT ) for all T ∈ TH . (6.7)

By taking ψH = IHψh and using integration by parts, a combination of (6.4)- (6.7) yields

||A−1/2(p̃h − pH)||2L2(Ω) =
∑

T∈TH

−

∫

T

A−1pH · Curl(ψh − ψH)

=
∑

T∈TH

∫

T

curl(A−1pH)(ψh − ψH)−
∑

E∈εH

∫

E

J(A−1pH · τ)(ψh − ψH)

. ηTH
(pH ,FH)|ψh|H1(Ω) ≤ C

1/2
4 ηTH

(pH ,FH)||A−1/2(p̃h − pH)||L2(Ω),

which implies

||A−1/2(p̃h − pH)||L2(Ω) ≤ C
1/2
4 ηTH

(pH ,FH). (6.8)

On the other hand, from p̃h − pH ∈Mh we have

(A−1(ph − p̃h), p̃h − pH)0,Ω = −(div(p̃h − pH), uh − ũh)0,Ω = 0. (6.9)

Then a combination of (6.8), (6.9) and Lemma 4.2 shows

||A−1/2(ph − pH)||2L2(Ω) = (A−1(ph − pH), ph − pH)0,Ω

= (A−1(ph − p̃h + p̃h − pH), ph − p̃h + p̃h − pH)0,Ω

= ||A−1/2(ph − p̃h)||
2
L2(Ω) + ||A−1/2(p̃h − pH)||

2
L2(Ω)

≤ C4η
2
TH

(pH ,FH) + C0osc
2(fh, TH). (6.10)

We note that it holds

osc2(fh, TH) =
∑

T∈TH

H2
T ||fh −ΠLH

fh||
2
L2(T ) =

∑

T∈FH

H2
T ||fh −ΠLH

fh||
2
L2(T )

≤
∑

T∈FH

H2
T ||fh − fH ||2L2(T ) =

∑

T∈FH

H2
T ||ΠLh

(f −ΠLH
f)||2L2(T )

≤
∑

T∈FH

H2
T ||f −ΠLH

f ||2L2(T ) ≤ ||H(f − fH)||2L2(FH), (6.11)
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where ΠLh
and ΠLH

are the L2−projection operator onto Lh and LH , respectively. As a result,

the desired result (6.1) follows from (6.10)–(6.11) with C3 := C4 + C0. �

In what follows, we shall quote a counting conclusion from [28] for the overlay T := T1⊕T2 of

two conforming triangulations T1 and T2, which shows T is the smallest conforming triangulation

for the triangulations T1 and T2.

Lemma 6.1. (Overlay of meshes) For two conforming triangulations T1 and T2 the overlay

T := T1 ⊕ T2 is conforming, and satisfies

#T ≤ #T1 +#T2 −#T0.

6.2. Quasi-optimal convergence rate

In this subsection, we prove the quasi-optimal convergence rate of the AMFEM with respect

to the total error. To this end, we need to introduce a nonlinear approximation class As. Let

PN be the set of all triangulations T which is refined from T0 and #T ≤ N . For a given

triangulation T and any constant ζ > 0, which is determined below, denote by hT the mesh-

size function with respect to T , and denote by pT the approximation solution to the flux with

respect to T . For (q, f, A) ∈ H(div,Ω) × L2(Ω) × L∞(Ω;R2×2) and s > 0, we define the

nonlinear approximation As as

As := {(q, f, A)| |(q, f, A)|s := sup
N>N0=#T0

Nsσ(N ; q, f, A) <∞},

where

σ(N ; q, f, A) := inf
T ∈PN

{||A−1/2(q − pT )||
2
L2(Ω) + ζosc2T (pT , T )}1/2.

We now prove that the approximation pk generated by the AMFEM concerning the stress

variable converges to p in a weighted norm with the same rate (#Tk − #T0)
−s as the best

approximation described by As up to a multiplicative constant. We need to count elements

added by handling hanging nodes to keep mesh conformity (see Lemma 2.1), as well as those

marked by the estimator (the cardinality of Mk). To this end, we impose more stringent

requirements than for convergence of AMFEM. Note that we follow the ideas in [20, 21] to

prove the optimality, without using the algorithm that separates the error and the reduction of

data oscillation developed in [12].

Assumption 6.1. (Optimality) We assume the following properties of AMFEM:

(a) The marking parameter θ satisfies θ ∈ (0, θ∗), where θ∗ is determined in Lemma 6.2 below;

(b) Procedure MARK selects a set Mk of marked elements with minimal cardinality;

(c) The distribution of refinement edges on T0 satisfies condition (b) of Section 4 in [29].

The following lemma establishes a link between nonlinear approximation theory and AM-

FEM through the Dörfler marking strategy. Roughly speaking, we prove that, if an approx-

imation satisfies a suitable total error reduction from TH to Th (Th is a refinement of TH),

the error indicators of the coarser solutions must satisfy a Dörfler property on the set R of

refined elements. In other words, the total error reduction and Dörfler marking are intimately

connected.

Lemma 6.2. (Optimality marking) Assume that the marking parameter θ verifies (a) of As-

sumption 6.1. Let TH be an shape regular triangulation of Ω, pH ∈ MH be the approximation
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solution to the flux of (2.3). Set 0 < µ < 1/2, denote ζ ≥ 1 a constant, which is determined

in Lemma 6.3 below, and let Th∗
be any refinement of TH such that the approximation solution

ph∗
∈Mh∗

satisfies

E2
h∗

+ ζosc2Th∗
(ph∗

, Th∗
) ≤ µ{E2

H + ζosc2TH
(pH , TH)}. (6.12)

Then the set R := RTH→Th∗
satisfies the Dörfler property ηTH

(pH ,R) ≥ θηTH
(pH , TH).

Proof. A combination of the lower bound (3.3) and (6.12) yields

(1− 2µ)C2η
2
TH

(pH , TH) ≤(1− 2µ){E2
H + osc2TH

(pH , TH)}

≤(1− 2µ){E2
H + ζosc2TH

(pH , TH)}

≤E2
H + ζosc2TH

(pH , TH)− E2
h∗

− 2ζosc2Th∗
(ph∗

, Th∗
).

(6.13)

For any δ0 > 0 which is to be determined below, according to the quasi-orthogonality (4.4),

(6.11), and Young inequality, we get

E2
H − E2

h∗
≤ ||A−1/2(ph∗

− pH)||
2
L2(Ω) + δ0E

2
h∗

+ δ−1
0 C0||H(f − fH)||

2
L2(R). (6.14)

For the oscillation term we argue according to whether or not an element T ∈ TH belongs to

the set of refined elements R. For T ∈ R we use the dominance osc2TH
(pH , T ) ≤ η2TH

(pH , T )

(see Remark 2.1). For T ∈ TH ∩ Th∗
, Corollary 4.2 (Perturbation of oscillation), together with

σH = pH and σh = ph∗
, yields

osc2TH
(pH , TH ∩ Th∗

)− 2osc2Th∗
(ph∗

, TH ∩ Th∗
)

≤2Λ1osc
2
T0
(A−1, T0)||A

−1/2(ph∗
− pH)||2L2(Ω). (6.15)

Combining (6.1) and (6.15), we have

osc2TH
(pH , TH)− 2osc2Th∗

(ph∗
, Th∗

)

= osc2TH
(pH ,R) + osc2TH

(pH , TH ∩ Th∗
)− 2osc2Th∗

(ph∗
, TH ∩ Th∗

)− 2osc2Th∗
(ph∗

, Th∗
\ TH)

≤ osc2TH
(pH ,R) + 2Λ1osc

2
T0
(A−1, T0)||A

−1/2(ph∗
− pH)||2L2(Ω)

≤ (1 + 2C3Λ1osc
2
T0
(A−1, T0))η

2
TH

(pH ,R). (6.16)

The convergence result and upper bound imply

E2
h∗

≤β2{E2
H + γ1||Hdiv(p− pH)||2L2(Ω) + γ2η

2
TH

(PH , TH)}

≤β2(C1 + γ1 + γ2)η
2
TH

(PH , TH). (6.17)

Applying the discrete upper bound (6.1) to (6.14), and combing (6.13)-(6.14), (6.16)-(6.17), we

arrive at
(
(1 − 2µ)C2 − β2(C1 + γ1 + γ2)δ0

)
η2TH

(PH , TH) ≤ g(δ0)η
2
TH

(PH ,R),

where g(δ0) is the value of the function g(δ) := C3 + δ−1C0 + (1 + 2C3Λ1osc
2
T0
(A−1, T0))ζ at

the point δ0. This inequality means

η2TH
(PH ,R) ≥ θ2∗η

2
TH

(PH , TH) ≥ θ2η2TH
(PH , TH),
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where θ2∗ = ((1 − 2µ)C2 − β2(C1 + γ1 + γ2)δ0)/g(δ0). This implies that θ2∗ is chosen as the

maximum value of the function

θ2∗(δ) = ((1− 2µ)C2 − β2(C1 + γ1 + γ2)δ)/g(δ)

on the interval (0, (1−2µ)C2/(β
2(C1+γ1+γ2))), and that δ0 is the corresponding the maximum

value point. This completes the proof. �

The fact that procedure MARK selects the set of marked elements Mk with minimal cardi-

nality, establishes a link between the best mesh and triangulations generated by AMFEM, and

forms crucial idea of AFEM (see [28]). In what follows we shall use this fact.

Lemma 6.3. (Cardinality of Mk) Assume that the marking parameter θ verifies (a) of As-

sumption 6.1, and procedure MARK satisfies (b) of Assumption 6.1. Let p solve the problem

(2.1), and let {Tk; (Mk, Lk); pk; Ek}k≥0 be the sequence of meshes, finite element spaces, the

discrete solution produced by AMFEM, and the stress variable error. If (p, f, A) ∈ As, then the

following estimate is valid:

#Mk . µ−1/2s|(p, f, A)|1/ss C
1/2s
A {E2

k + ζosc2Tk
(pk, Tk)}

−1/2s. (6.18)

Proof. Let µ be the same as defined in Lemma 6.2, for any positive constant ζ, which is

determined below, we set

ε2 := 4−1C−1
A µ(E2

k + ζosc2Tk
(pk, Tk)),

where the constant CA is defined by

CA := max{(1− δ4)
−1, 2 + 2Λ2

1osc
2
T0
(A−1, T0)C0δ

−1
4 }

with any 0 < δ4 < 1. Let [ε−1/s|(p, f, A)|
1/s
s ] denote the integer component of ε−1/s|(p, f, A)|

1/s
s ,

set Nε := [ε−1/s| (p, f, A)|
1/s
s ] + 1. Recall

σ(Nε +#T0 − 1; p, f, A) := inf
T ∈PNε+#T0−1

{E2
T + ζosc2T (pT , T )}1/2.

Denote ε̃ := min{1, ε}. There exists Tε ∈ PNε+#T0−1 with #Tε ≤ Nε +#T0 − 1 such that

{E2
hε

+ ζosc2Tε
(pε, Tε)}

1/2 ≤ (1 + ε̃)σ(Nε +#T0 − 1; p, f, A),

where pε is the discrete flux approximation to p = A∇u with respect to the mesh Tε, E
2
hε

:=

||A−1/2(p− pε)||
2
L2(Ω). This inequality leads to

Ns
ε {E

2
hε

+ ζosc2Tε
(pε, Tε)}

1/2 ≤ (Nε +#T0 − 1)s{E2
hε

+ ζosc2Tε
(pε, Tε)}

1/2

≤(1 + ε̃)(Nε +#T0 − 1)sσ(Nε +#T0 − 1; p, f, A)

≤(1 + ε̃) sup
N>0

Nsσ(N ; p, f, A) = (1 + ε̃)|(p, f, A)|s. (6.19)

From the above inequality (6.19), we obtain

{E2
hε

+ ζosc2Tε
(pε, Tε)}

1/2 ≤
(1 + ε̃)|(p, f, A)|s

Ns
ε

≤ 2ε, (6.20)

#Tε −#T0 ≤ Nε − 1 ≤ ε−1/s|(p, f, A)|1/ss . (6.21)
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Let T∗ := Tε ⊕ Tk be the overlay of Tε and Tk, h∗ be the mesh-size function with respect to

T∗, and p∗ be the approximation solution to the flux onto T∗. We show that there is a reduction

with a factor µ of the total error between p∗ and pk. Notice that T∗ is a refinement of Tε, and

recall that E2
h∗

:= ||A−1/2(p − p∗)||
2
L2(Ω), by the quasi-orthogonality (4.4) and Lemma 4.3, for

any δ4 > 0, we have

E2
h∗

≤ E2
hε

− ||A−1/2(p∗ − pε)||
2
L2(Ω) + δ4E

2
h∗

+ C0δ
−1
4 osc2Tε

(pε, Tε). (6.22)

By the second inequality (4.11) of Lemma 4.5 with pε, p∗ ∈Mh∗
, for all T ∈ T∗, we have

osc2T∗
(p∗, T ) ≤ 2osc2T∗

(pε, T ) + 2Λ̄2
1osc

2
T∗
(A−1, T )||A−1/2(p∗ − pε)||

2
L2(ωT ).

Summing on T∗, the monotonicity of the data oscillation (see Remarks 2.1 and 4.1), we get

osc2T∗
(p∗, T∗) ≤2osc2T∗

(pε, T∗) + 2Λ2
1osc

2
T∗
(A−1, T∗)||A

−1/2(p∗ − pε)||
2
L2(Ω)

≤2osc2Tε
(pε, Tε) + 2Λ2

1osc
2
T0
(A−1, T0)||A

−1/2(p∗ − pε)||
2
L2(Ω). (6.23)

Set ζ̄ := (2Λ2
1osc

2
T0
(A−1, T0))

−1, a combination of (6.22)-(6.23) yields

E2
h∗

+ ζ̄osc2T∗
(p∗, T∗) ≤ E2

hε
+ δ4E

2
h∗

+ (C0δ
−1
4 + 2ζ̄)osc2Tε

(pε, Tε). (6.24)

We then choose ζ = ζ̄(1−δ4)
−1, which indicates that δ4 satisfies ζ̄(1−δ4)

−1 ≥ 1. The inequality

(6.24) and (6.20) imply

E2
h∗

+ ζosc2T∗
(p∗, T∗) ≤CA{E

2
hε

+ ζosc2Tε
(pε, Tε)}

≤4ε2CA = µ{E2
k + ζosc2Tk

(pk, Tk)}. (6.25)

Hence, we deduce from optimality marking (Lemma 6.2) that the subset R := RTk→T∗
⊂ Tk

verifies the Dörfler property (2.5) for θ < θ∗. The fact that procedure MARK selects a subset

Mk ⊂ Tk with minimal cardinality satisfying the same property (2.5), and (6.21) leads to

#Mk ≤ #R ≤ #T∗ −#Tk ≤ #Tε +#Tk −#T0 −#Tk

=#Tε −#T0 ≤ |(p, f, A)|1/ss ε−1/s

≤(4CA)
1/2sµ−1/2s|(p, f, A)|1/ss {E2

k + ζosc2Tk
(pk, Tk)}

−1/2s,

which implies the desired result (6.18). In the third step above, we have used the overlay of

two meshes (Lemma 6.1). �

Theorem 6.2. Let {Tk; Ek; pk; oscTk
(pk,Tk

)}k≥0 be the sequence of meshes, the stress variable

error, the approximation solution to the flux, and the oscillation of data produced by the AM-

FEM, and let (p, f, A) ∈ As, and set the function Θ(s, θ,As) to describe the asymptotics of the

AMFEM as θ → θ∗ or s→ 0, which is determined below. Then it holds

(E2
k + γ2osc

2
Tk
(pk, Tk))

1/2 ≤ Θ(s, θ,As)(#Tk −#T0)
−s. (6.26)

Proof. From the complexity of REFINE (Lemma 2.1) and the cardinality (6.18) of Mk,

it holds

#Tk −#T0 .

k−1∑

i=0

#Mi . ρ

k−1∑

i=0

(
E2
i + ζosc2Ti

(pi, Ti)

)−1/2s

, (6.27)
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where ρ := µ−1/2sC
1/2s
A |(p, f, A)|

1/s
s . Set γ3 := γ1+γ2, and denote γ4 := max(1+γ3C

−1
2 , γ3C

−1
2

ζ−1). It follows from the lower bound (3.3) that for 0 ≤ i ≤ k

E2
i + γ3osc

2
Ti
(pi, Ti) ≤ E2

i + γ3η
2
Ti
(pi, Ti)

≤E2
i + γ3C

−1
2 (E2

i + osc2Ti
(pi, Ti) ≤ γ4(E

2
i + ζosc2Ti

(pi, Ti)). (6.28)

On the other hand, the linear rate β = β(θ) < 1 of convergence for the quasi error implies

that for 0 ≤ i ≤ k

E2
k + γ2η

2
Tk
(pk, Tk) ≤ E2

k + γ1||hkdiv(p− pk)||
2
L2(Ω) + γ2η

2
Tk
(pk, Tk)

≤β2(k−i)

(
E2
i + γ1||hidiv(p− pi)||

2
L2(Ω) + γ2η

2
Ti
(pi, Ti)

)

≤β2(k−i)

(
E2
i + γ3η

2
Ti
(pi, Ti)

)
. (6.29)

The above three inequalities, (6.27)-(6.29), indicate

#Tk −#T0 . ργ
1/2s
4 {E2

k + γ2η
2
Tk
(pk, Tk)}

−1/2s ×
k∑

i=0

βi/s.

It follows from the fact β < 1 that the geometric series is bounded by the constant sθ =

1/(1− β1/s). Since

osc2Tk
(pk, Tk) ≤ η2Tk

(pk, Tk),

it holds

#Tk −#T0 ≤ C4sθργ
1/2s
4

(
E2
k + γ2osc

2
Tk
(pk, Tk)

)−1/2s

. (6.30)

Finally the desired result (6.26) follows from (6.30) with Θ(s, θ,As) := C4s
s
θρ
sγ

1/2
4 . �
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