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Abstract

In this paper, we establish a convergence theory for a finite element method with

weighted basis functions for solving singularly perturbed convection-diffusion equations.

The stability of this finite element method is proved and an upper bound O(h| ln ε|3/2)

for errors in the approximate solutions in the energy norm is obtained on the triangular

Bakhvalov-type mesh. Numerical results are presented to verify the stability and the

convergent rate of this finite element method.
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1. Introduction

It is known that singularly perturbed convection-diffusion problems contain sharp boundary

layers so that the application of a standard finite element or finite difference method to such a

problem often results in spurious oscillation. To avoid non-physical numerical solutions, many

special finite element techniques have been developed, including upwind finite element [1, 4],

Petrov-Galerkin finite element [7], streamline diffusion finite element methods [2, 8, 9], and

exponentially fitted finite elements [18, 21–23]. However, these methods do not always give

accurate results, especially when a diffusion coefficient has the same magnitude as that of

mesh size. In [12], Li et al presented a weighted basis finite element method. Since the basis

functions with weighted factors are consistent with the direction of flow and have the nature

of exponential fitting near the boundary layers, numerical solutions obtained by applying this

finite element method is non-oscillatory. Although the method proposed in [12] is promising

from its numerical performance, except for a simple error bound of order O(h1/2| ln ε|) in [14]

the mathematical understanding of the method is very limited. Regarding about the convergent

results on layer-adapted meshes, streamline diffusion finite element or standard finite element

methods can give uniformly optimal convergent rate, the reader is referred to [2,3,11,16,24–28].

Moreover, spectral methods have been proposed to resolve the bounding layers, which are shown

very effective, see, e.g., [29, 30].
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In this work, a combination of the standard linear finite element method and the weighted

basis finite element method is investigated for solving two-dimensional convection-dominated

problems. This combination is used in conjunction with an anisotropic mesh refinement tech-

nique, i.e., a convection-diffusion equation is discretized by the weighted finite element method

in a region containing the boundary layers and by the standard finite element method on a

regular triangulation of the subregion away from the layers. As shown in [12], the standard

basis function can be regarded as a special case of the weighted basis function. Therefore, this

combination of two finite element methods is framed as a weighted basis finite element method

which reduces to either the standard finite element or the weighted basis finite element method

by a judicious choice of weights. Because the weighted basis functions are continuous across the

interface between the two subregions, the resulting finite element space is conforming. This con-

formity allows us to analyze the method using conventional finite element analysis techniques.

This is in contrast to a nonconforming method with which a sophisticated technique needs to

be used to deal. In this paper, we will prove the stability of this finite element method and

establish an upper error bound for the approximate solutions by the method on the triangular

Bakhvalov-type mesh. We will also show that the error bound is almost independent of ε. We

comment that, although the problem considered in this work is two-dimensional and linear, the

idea can be extended to higher dimensional and/or nonlinear problems [5, 13].

Throughout this paper, we use C as a generic positive constant which is independent of the

small parameter ε and the mesh size. The rest of our paper is organized as follows. Section

2 describes the continuous problems and some preliminaries. The finite element formulation

with weighted basis functions is presented in Section 3. In Section 4, the stability of this finite

element method is shown and the error estimate in an energy norm is established. The numerical

examples will be given in Section 5 to demonstrate the convergent rate and the stability of this

finite element method.

2. Weighted Basis Functions on the Triangular Mesh

Consider the following singularly perturbed problem with a small positive parameter ε in

two-dimensional space,

∇ · (−ε∇v + b(X)v) + µ(X)v = f(X), X ∈ Ω ⊂ R
2, (2.1)

v
∣∣
∂Ω

= 0, (2.2)

where X = (x, y)T , Ω = (0, 1)× (0, 1) and ∂Ω denotes the boundary of Ω.

In what follows, we will use conventional notation for function sets and spaces. More

specifically, we use L2(Ω) to denote the space of all square-integrable functions on Ω with the

inner product (·, ·) and Ck(Ω) (or Ck(Ω̄)) to denote the set of functions which, along with its

up to kth derivatives are continuous on Ω (or Ω̄. The usual kth order Sobolev space is denoted

by Hk(Ω) and we put H1
0 (Ω) = {v ∈ H1(Ω) : v(X) = 0 on ∂Ω}.

For the coefficient functions, we assume that b(X)∈(C1(Ω̄))2, µ(X) ∈ C(Ω̄) ∩ H1(Ω) and

f(X) ∈ L∞(Ω). We also assume that b(X) satisfies

1

2
∇ · b+ µ(X) ≥ α > 0, X ∈ Ω, (2.3)

where α is a positive constant. This condition (2.3) has been used in many existing works on

uniform convergence analysis such as [18–20, 22, 25]. In fact, when ε is sufficiently small, the
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condition (2.3) can be easily satisfied by a simple transformation v(x, y) = exp(Kx+Ky)u(x, y)

for a suitable positive constant K, see [19, 25]. Although the existence and uniqueness of the

solutions to both of the continuous problem and the finite element problem do not need this

condition, it will be used in the definition of the energy norm and the proof of the error estimates.

For simplicity, we also assume that two components of b are bounded below by two positive

constants b1, b2 such that

b1(X) ≥ b1 > 0, b2(X) ≥ b2 > 0, in Ω. (2.4)

In this case, the solution to (2.1) and (2.2) has two exponential boundary layers with width

O(ε) at boundaries x = 1 and y = 1. However, to avoid the appearance of singularity at the

corners of Ω [10], f is often assumed to satisfy the following compatibility conditions

f(0, 0) = f(0, 1) = f(1, 0) = f(1, 1) = 0,

∂i+jf

∂xi∂yj
(0, 0) = 0, 1 ≤ i+ j ≤ 3,

see [15, Theorem 5.1] and [25, Lemma 2.1] for details.

The variational problem corresponding to (2.1) and (2.2) is illustrated below.

Problem 2.1. Find v ∈ H1
0 (Ω) such that for all w ∈ H1

0 (Ω),

A(v, w) = (f, w), (2.5)

where A(·, ·) is a bilinear form on (H1
0 (Ω))

2 defined by

A(v, w) = (ε∇v − bv,∇w) + (µ(X)v, w). (2.6)

Let || · ||ε be the norm defined on H1
0 (Ω) by

||v||ε =

(
ε(∇v,∇v) +

((
1

2
∇ · b+µ(X)

)
v, v

)) 1

2

.

It is easy to see that the norm || · ||ε is true on H1
0 (Ω) due to the condition (2.3). For any u ∈

H1
0 (Ω), we have

A(u, u) = ε(∇u,∇u) +

((
1

2
∇ · b+µ(X)

)
u, u

)
= ||u||2ε.

Then the condition (2.3) guarantees that the bilinear function A(·, ·) is coercive and therefore

the variational problem 2.1 has a unique solution in H1
0 (Ω).

For a triangle T with vertices Xi, Xj, Xk in the anti-clockwise direction, the standard linear

basis functions satisfy

ϕl(Xm) = δlm,

where δlm is the Kronecker delta function. By virtue of the Bernoulli function

B(s) =

{ s

es − 1
,

1,

if s 6= 0,

if s = 0,

for a given function b̃(X) we can define the weighted factor ml(X) corresponding to ϕl(X)

(l = i, j, k) as

ml(X) = B(−b̃t(X −Xl)/ε). (2.7)
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Using these weighted factors, one obtains weighted basis functions on T

ϕ̃l(X) =
ml(X)ϕl(X)

mi(X)ϕi(X) +mj(X)ϕj(X) +mk(X)ϕk(X)
, l = i, j, k, (2.8)

where ϕ̃l has the same support as ϕl.

By the definition (2.8), ϕ̃l (l = i, j, k) have the following properties (see [12]):

ϕ̃i(Xl) = δil, 0 ≤ ϕ̃i ≤ 1,

and on T

ϕ̃i + ϕ̃j + ϕ̃k = 1. (2.9)

For a smooth function u, we define a flux g̃(u) corresponding to the function b̃(X) as

g̃(u) = −ε▽u+ b̃u. (2.10)

As shown in [12] , we can give the approximations g̃l to g̃(ϕ̃l) (l = i, j, k):

g̃i =− ε

(
x− xj y − yj
x− xk y − yk

)−1(
B(b̃t(X −Xj)/ε)

B(b̃t(X −Xk)/ε)

)
ϕ̃i(X) (2.11a)

=− (ε/2ST )

(
y − yk −(y − yj)

−(x− xk) x− xj

)(
B(b̃t(X −Xj)/ε)

B(b̃t(X −Xk)/ε)

)(
ϕ̃i(X)/ϕi(X)

)
,

g̃j =− (ε/2ST )

(
y − yi −(y − yk)

−(x− xi) x− xk

)(
B(b̃t(X −Xk)/ε)

B(b̃t(X −Xi)/ε)

)(
ϕ̃j(X)/ϕj(X)

)
, (2.11b)

g̃k =− (ε/2ST )

(
y − yj −(y − yi)

−(x− xj) x− xi

)(
B(b̃t(X −Xi)/ε)

B(b̃t(X −Xj)/ε)

)(
ϕ̃k(X)/ϕk(X)

)
. (2.11c)

In the above definitions, ST is the measure of the element T . It can be shown that fluxes and

their approximations satisfy the following [12]:

g̃(ϕ̃i) + g̃(ϕ̃j) + g̃(ϕ̃k) = b̃, (2.12a)

g̃i + g̃j + g̃k = b̃. (2.12b)

3. The Galerkin Finite Element Formulation

In this section, we consider the weighted basis finite element method on a triangular mesh

with the refinement in boundary layers. Let

δ1 =
β

b1
ε| ln ε|, δ2 =

β

b2
ε| ln ε|, (3.1)

where β ≥ 2 is a constant. As shown in Fig. 3.1, we divide the region Ω into four subregions

Ω1,Ω2,Ω3,Ω4 given respectively as

Ω1 =(0, 1− δ1)× (0, 1− δ2), Ω2 = (0, 1− δ1)× (1− δ2, 1),

Ω3 =(1− δ1, 1)× (1 − δ2, 1), Ω4 = (1 − δ1, 1)× (0, 1− δ2).
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Fig. 3.1. Ω and its subregions.

The region Ω is triangulated as in Fig. 3.1. The subregions Ω1 and Ω2 ∪ Ω3 ∪ Ω4 are

triangulated separately. We assume that the triangulation of Ω1with the mesh parameter h is

regular. Let (N1+1) be the number of nodes on Ω1∩Ω2. Then x−direction subinterval [1−δ1, 1]

of Ω4 is partitioned into N1 mesh intervals by inverting the function exp(−b1(1− x)/(βε)). We

specify the xi in Ω4, for i = N1, · · · , 2N1, so that {exp(−b1(1 − x)/(βε))}i is a linear function

in i, i.e., we set

exp
(
− b1(1− xi)/(βε)

)
= Ai +D

and choosing the unknowns A and D so that xN1
= 1− δ1 and x2N1

= 1. This gives

xi = 1 +
β

b1
ε ln

(
1− e−1

N
i+ 2e−1 − 1

)
, i = N1 + 1, · · · , 2N1.

An analogous formula can be given for the mesh points yj in subinterval [1 − δ2, 1] of Ω2. To

triangulate the L-shaped subregions Ω2 ∪ Ω3 ∪ Ω4, we first divide it into rectangles using lines

x = xi or y = yj parallel or perpendicular to one of the axes. Note that, in this partition, the

y−coordinates of the latitude lines in Ω2 and the x−coordinates of the longitude lines in Ω4 are

determined by the mesh nodes of the triangulation for Ω1 on the boundary segments Ω1 ∩ Ω2

and Ω1 ∩Ω4. As shown in Fig. 3.2, each of the rectangles is then divided into two triangles by

one of its diagonals. The triangulations for Ω1 and Ω2 ∪Ω3 ∪Ω4 form the mesh Th on Ω. This

global triangulation satisfies that it is regular on Ω1 and Ω3 and it contains long, thin triangles

on Ω2 and Ω4. A typical case is displayed in Fig. 3.2. Moreover, The triangular refinement

in boundary layers Ω2 ∪ Ω3 ∪ Ω4 must be of Bakhvalov-type such that the projection of the

diameter of any triangle in Ω2 ∪ Ω3 onto the y−direction is O(εh| ln ε|), and the projection of

the diameter of any triangle in Ω3 ∪Ω4 onto the x−direction is O(εh| ln ε|).

As the width δ2 of Ω2 ∪Ω3 is defined in (3.1), the projection of the diameter of any triangle

in Ω2 ∪ Ω3 onto the y−direction is smaller than δ2. Similarly, the projections of the diameters

of triangles in Ω4 ∪ Ω3 onto the x−direction are smaller than δ1.

Although the weighted basis finite element method adopted in [12] can deal with boundary

layers well, it costs more CPU time than the standard finite element method in smooth solution
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Fig. 3.2. A sample mesh with boundary layer refinement.

subregions. An efficient method is the combination of the two methods. This strategy is carried

out by giving different weightsmi(X) in (2.7) and choosing different b̃(X) in the four subregions.

b̃(X) = 0, if X ∈ Ω1, (3.2a)

b̃(X) = (0, b2(X))t, if X ∈ Ω2, (3.2b)

b̃(X) = b(X), if X ∈ Ω3, (3.2c)

b̃(X) = (b1(X), 0)t, if X ∈ Ω4. (3.2d)

Lemma 3.1. The basis functions (2.8) with weights defined by b̃(X) in (3.2) are continuous.

Proof. If the node Xi is in Ω1,Ω2,Ω3 or Ω4, it is easy to see that the basis function ϕ̃i(X)

defined by (2.8) with the weights (3.2) is continuous. Therefore, only the case for node Xi on

the interface between different subregions is shown. Without loss of generality, we consider that

Xi is on the intersection between Ω2and Ω3. Let triangle T1 with vertices Xi, Xj , Xk1
and T2

with vertices Xi, Xk2
, Xj belong to Ω2 and Ω3, respectively. The two triangles have a common

edge XiXj. From (2.8) and (3.2) we have

ϕ̃i(X)
∣∣
T1

=
B
(
b2(y − yi)/ε

)
ϕi

B
(
b2(y − yi)/ε

)
ϕi +B

(
b2(y − yj)/ε

)
ϕj +B

(
b2(y − yk1

)/ε
)
ϕk1

,

ϕ̃i(X)
∣∣
T2

=
B
(
b·(X −Xi)/ε

)
ϕi

B
(
b·(X −Xi)/ε

)
ϕi +B

(
b·(X −Xj)/ε

)
ϕj +B

(
b·(X −Xk2

)/ε
)
ϕk2

.

If X ∈ XiXj , then

ϕk1
(X) = ϕk2

(X) = 0,

b·(X −Xl) = b2(y − yl), l = i, j.

We then have

ϕ̃(X)
∣∣
T1

= ϕ̃(X)
∣∣
T2

, if X ∈ XiXj .

If X /∈ XiXj , then ϕ̃(X) is continuous at X due to the continuity of ϕ̃(X)|T1
and ϕ̃(X)|T2

. �
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Remark 3.1. Although different weights are adopted in different subregions, all weighted basis

functions are continuous. Therefore, our finite element method is still conforming.

Replacing b̃ by b in (2.10), the flux corresponding to u and b is denoted by g, i.e.,

g(u) = −ε∇u+ bu. (3.3)

Let

gl = g̃l + (b−b̃)ϕ̃l, l = i, j, k. (3.4)

Then gl is also regarded as an approximation to g(ϕ̃l). By g̃l defined by (2.11a)-(2.11c) we

have

Lemma 3.2. The flux g(ϕ̃l) and its approximation gl satisfy

|g(ϕ̃l)−gl| ≤ ChT , l = i, j, k, (3.5)

where hT the shortest edge of the element T .

Proof. If Xl ∈ Ω1 and X ∈ Ω1, then b̃ = 0 and ϕ̃l is reduced to ϕl. By computation we get

g̃l = −ε∇ϕl = −ε∇ϕ̃l. So g(ϕ̃l) =gl, i.e. the inequality (3.5) holds.

If Xl ∈ Ω3 and X ∈ Ω3, then b̃ = b and gl = g̃l. Following Theorem 4.3 of Li et al. [12],

we have |g(ϕ̃l)−gl| ≤ ChT .

Furthermore, for the case in Ω2, we have b̃ = (0,b2)
t
. By the definition of flux g(ϕ̃l) and gl

in (3.4), we get

∣∣g(ϕ̃l)−gl

∣∣ =
∣∣(−ε∇ϕ̃l + bϕ̃l)− (g̃l + (b−b̃)ϕ̃l)

∣∣

=
∣∣(−ε∇ϕ̃l + b̃ϕ̃l)− g̃l

∣∣

=
∣∣g̃(ϕ̃l)−g̃l

∣∣.

It follows from Theorem 4.3 in [12], that

∣∣g(ϕ̃l)−gl

∣∣ ≤
∣∣g̃(ϕ̃l)−g̃l

∣∣ ≤ ChT .

For the case in Ω4, its proof is similar. This completes the proof of Lemma 3.2. �

Moreover, by (2.8) and (2.12) we can get

g(ϕ̃i) + g(ϕ̃j) + g(ϕ̃k) = b, (3.6a)

gi + gj + gk = b. (3.6b)

Let Th denote a triangular mesh on Ω. The set of vertices of Th not on ∂Ω is de-

noted by {Xi}
N
1 . Corresponding to the partition Th, the finite element space is Vh =

span{ϕ̃1, ϕ̃2, · · · , ϕ̃N} ⊂ H1
0 (Ω). The finite element method corresponding to (2.1)-(2.2) is

define as follows.

Problem 3.1. Find a vh ∈ Vh such that for any wh ∈ Vh,

A(vh, wh) = (g(vh),∇wh) + (µ(X)vh, wh) = (f, wh), (3.7)

where A(·, ·) is the same bilinear form defined in (2.6).

The following assumption is needed for error estimates.
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Assumption 3.1. The solution v to problem (2.1)-(2.2) can be decomposed into four parts vl
(l = 1, 2, 3, 4), i.e.,

v = v1 + v2 + v3 + v4, (3.8)

where v1 satisfies

||v1||k,∞,Ω ≤ C, for k = 0, 1, 2, (3.9)

and vl (l = 2, 3, 4) satisfy

∣∣∣∣
∂i+jv2
∂xi∂yj

∣∣∣∣ ≤Cε−j exp

(
−

b2(1− y)

ε

)
, (3.10)

∣∣∣∣
∂i+jv3
∂xi∂yj

∣∣∣∣ ≤Cε−i−j exp

(
−

b1(1− x)

ε

)
exp

(
−

b2(1− y)

ε

)
, (3.11)

∣∣∣∣
∂i+jv4
∂xi∂yj

∣∣∣∣ ≤Cε−i exp

(
−

b1(1 − x)

ε

)
, (3.12)

for 0 ≤ i+ j ≤ 2.

In the above assumption, v1 is globally smooth and uniformly bounded in Ω, while v2, v3
and v4 contain boundary layers in Ω2, Ω3 and Ω4, respectively. Sufficient conditions for the

existence of this decomposition have been discussed in many literatures [6, 11, 15, 17, 22, 25].

The following lemma shows that v and all its first and second partial derivatives are uniformly

bounded in Ω1.

Lemma 3.3. if β ≥ 2, then the solution v to (2.1)-(2.2) satisfies

||vl||k,∞,Ω1
≤ C, l = 1, 2, 3, 4, k = 0, 1, 2; (3.13)

||v||k,Ω1
≤ C, k = 0, 1, 2. (3.14)

Proof. The proof of this lemma follows directly from (3.9)-(3.12) in Assumption 3.1. �

4. Error Estimates

Let vl = v(Xl) and vI be the Vh-interpolation of the exact solution v to the problem (2.1)-

(2.2), i.e.,

vI(X) =

N∑

l=1

vlϕ̃l(X).

Then we have

A(v − vh, v − vh) = A(v − vh, v − vI) +A(v − vh, v
I − vh). (4.1)

Furthermore, because v and vh satisfy the variational problems (2.5) and (3.7) respectively, one

can get the following statement

A(v − vh, v
I − vh) = 0
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by noting the fact (vI − vh) ∈ Vh. So the term A(v − vh, v− vI) in (4.1) is needed to estimate.

For the first term on the right-hand side (RHS) of (4.1), we have

A(v − vh, v − vI) =(ε∇(v − vh),∇(v − vI))− (b(v − vh),∇(v − vI))

+ (µ(X)(v − vh), (v − vI))

=(ε∇(v − vh),∇(v − vI)) + (b(v − vI), (4.2)

∇(v − vh)) + ((µ(X) +∇ · b)(v − vh), (v − vI)).

To obtain upper error bounds on the RHS of (4.2), we first analyze the error between v and

its interpolation vI which is given in the following lemma.

Lemma 4.1. Let v be the solution to (2.1) and vI be the interpolation of v in Vh. Then

||v(X)− vI(X)||
L∞ ,

Ω
c
1

≤ Ch| ln ε|, (4.3)

where Ω
c

1 = Ω2 ∪ Ω3 ∪ Ω4.

Proof. Without loss of generality, we assume that X belongs to a triangle T in Ω2. The

proofs for other cases are similar. Let Xi, Xj and Xk denote the three vertices of the triangle

T , as depicted in Fig. 4.1, we have

|v(X)− vI(X)| ≤|v(X)− vi|+ |vi − vI(X)|

=|v(X)− vi|+ |(vj − vi)ϕ̃j |+ |(vk − vi)ϕ̃k|.

By the properties of weighted basis functions, we know that 0 ≤ ϕ̃l ≤ 1(l = i, j, k). Therefore,

we have from the above inequality

|v(X)− vI(X)| ≤ |v(X)− vi|+ |(vj − vi)|+ |(vk − vi)|. (4.4)

As shown in Fig. 4.1, we assume, without loss of generality, that XiXj is the horizontal

edge in T let X ′ denote the intersection of XiXj and its perpendicular passing through X . By

Assumption 3.1, we have

|v(X)− vi| ≤|v(X)− v(X ′)|+ |v(X ′)− vi| (4.5)

=

∣∣∣∣
∫

X′X

∂v

∂y
dy

∣∣∣∣+
∣∣∣∣
∫

XiX′

∂v

∂x
dx

∣∣∣∣

≤C
(
|X ′X |/ε+ |XiX

′|
)
≤ Ch| ln ε|.

Applying the above result to the two special cases when X = Xj and X = Xk, we obtain

|vj − vi| ≤ Ch, (4.6)

|vk − vi| ≤ Ch| ln ε|. (4.7)

Substituting (4.5)-(4.7) into (4.4), we get the inequality (4.3). This competes the proof of the

lemma. �

Lemma 4.2. If β ≥ 2, then v and vI satisfy the following

||v(X)− vI(X)||
0,Ω1

≤Ch2, (4.8)

||v(X)− vI(X)||
0,Ωc

1

≤Ch2ε| ln ε|3. (4.9)
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X

X
'

X
k

X
j

X
i

Fig. 4.1. The projection of X.

Proof. By Bramble-Hilbert lemma and Lemma 3.3, one gets (4.8). To show (4.9), we

consider the element T in Ω3. Let Xi, Xj and Xk denote the vertices of the triangle T . For X

in T , we have

||v(X)− vI(X)||0,T ≤ ||I1||0,T + ||I2||0,T , (4.10)

where I1 and I2 are defined as

I1 =v(X)− (viϕi + vjϕj + vkϕk),

I2 =[vi(ϕi − ϕ̃i) + vj(ϕj − ϕ̃j) + vk(ϕk − ϕ̃k)].

For I1, we have

I1 =v(X)− (viϕi + vjϕj + vkϕk)

=
1

2

∂2v

∂x2

∣∣∣∣
X=ξ

(x− xi)
2 +

∂2v

∂x∂y

∣∣∣∣
X=ξ

(x− xi)(y − yi) +
1

2

∂2v

∂y2

∣∣∣∣
X=ξ

(y − yi)
2,

where ξ ∈ T . Using Assumption 3.1 and the fact |X −Xi| ≤ εh| ln ε|, one gets

||I1||0,T ≤ Ch2 ln2 ε
√
ST , (4.11)

where ST is the measure of T and ST ≤ Ch2ε2 ln2 ε if T ∈ Ω3.

For I2, using the definition of the weighted basis functions in (2.8) one can obtain

I2 =
(mi −mj)ϕiϕj(vi − vj) + (mj −mk)ϕjϕk(vj − vk) + (mk −mi)ϕkϕi(vk − vi)

miϕi +mjϕj +mkϕk
.

Noting that |mp −mq| ≤ Ch| ln ε|, |vp − vq| ≤ Ch| ln ε| (p, q = i, j, k), we have

|I2| ≤ Ch2 ln2 ε.

Furthermore,

||I2||0,T ≤ Ch2 ln2 ε
√
ST , (4.12)

Substituting (4.11)-(4.12) into (4.10) , one obtains

||v − vI ||0,T ≤ Ch2 ln2 ε
√
ST .

Then we have

||v − vI ||20,Ω3
=

∑

T∈Ω3

||v − vI ||20,T ≤ Ch4 ln4 ε
∑

T∈Ω3

ST ≤ Ch4ε2| ln ε|6,
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which implies

||v − vI ||0,Ω3
≤ Ch2ε| ln ε|3.

It is an analogue to show that

||v − vI ||0,Ωl
≤ Ch2ε| ln ε|3, l = 2, 4.

Following the above two inequalities, we get the inequality (4.9). �

If ε ≪ 1, then ε| ln ε|3 < C. In this case, so (4.9) becomes

||v − vI ||
0,

Ω
c
1

≤ Ch2. (4.13)

By Lemmas 4.1 and 4.2, the interpolation error estimate of v − vI in the energy norm is

obtained as follows.

Theorem 4.1. The interpolation error v − vI satisfies

||v − vI ||2ε ≤ Ch
(
h+ ε| ln ε|

)
. (4.14)

Proof. Considering (v − vI) ∈ H1
0 , we have

||v − vI ||2ε =
((

∇
(
− ε∇(v − vI) + b(v − vI)

)
+ µ(X)(v − vI)

)
, (v − vI)

)

=
(
f, (v − vI)

)
−
(
∇ · g(vI), (v − vI)

)
−
(
µ(X)vI , (v − vI)

)
, (4.15)

where the flux g(vI) is defined by (3.3).

Considering that f and µ(X)vI are continuous and uniformly bounded, by Lemma 4.2 and

the inequality (4.13) one gets

|(f, (v − vI))Ωi
| ≤ Ch2, (i = 1, 2, 3, 4), (4.16)

|(µ(X)vI , (v − vI))Ωi
| ≤ Ch2, (i = 1, 2, 3, 4),

|(∇ · g(vI), (v − vI))Ω1
| ≤ Ch2. (4.17)

Furthermore, the flux g(vI) in Ω3 can be decomposed into two parts g(vI) and R(vI). Due

to equalities (3.6a)-(3.6b) and the fact that vI |T = viϕ̃i + vjϕ̃j + vkϕ̃k, g(v
I) in an element T

with vertices Xi, Xj and Xk can be written as

g(vI)|T =vigi + vjgj + vkgk

=vib+ (vj − vi)gj + (vk − vi)gk. (4.18)

Let

R(vI) = g(vI)−g(vI).

Then, by Lemma 3.2 it satisfies

R(vI)(Xl) = 0, l = i, j, k, (4.19)

||R(vI)||0,Ω3
≤ Chε2| ln ε|2.
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Combining (4.18) and (4.19), we have

|(∇ · g(vI), (v − vI))Ω3
|

=|(∇ · g(vI), (v − vI))Ω3
+(∇·R(vI),(v − vI))Ω3

|

≤|(∇ · g(vI), (v − vI))Ω3
+(R(vI),∇(v − vI))Ω3

|+ Chε| ln ε|

≤
∑

T∈Ω3

(
||∇ · (vib)||0,T + ||(vj − vi)∇ · (gj)||0,T + ||(vk − vi)∇ · (gk)||0,T

)

· ||v − vI ||0,Ω3
+ ||R(vI)||0,Ω3

||∇(v − vI)||0,Ω3
+ Chε| ln ε|

≤
∑

T∈Ω3

(
||∇ · (vib)||0,T + ||(vj − vi)∇ · (gj)||0,T + ||(vk − vi)∇ · (gk)||0,T

)

· ||v − vI ||0,Ω3
+ Chε| ln ε|.

In the above deduction, we have used the fact that ||∇(v − vI)||0,Ω3
is bounded, see [15,

Theorem 3.2]. By Lemma 4.1 and direct computation, one can verify that ∇ · (vib),(vj − vi)∇ ·

(gj) and (vk − vi)∇ · (gk) are bounded. Therefore, following Lemma 4.2 we have

|(∇ · g(vI), (v − vI))Ω3
| ≤ Ch

(
h+ ε| ln ε|

)
. (4.20)

Similarly, we can show that

∣∣(∇ · g(vI), (v − vI))Ωl

∣∣ ≤ Ch
(
h+ ε| ln ε|

)
, l = 2, 4. (4.21)

Combining (4.17), (4.20) and (4.21), we have

∣∣(∇ · g(vI), (v − vI))
∣∣
Ω
≤ Ch

(
h+ ε| ln ε|

)
. (4.22)

Substituting (4.16) and (4.22) into (4.15), one obtains the estimate (4.14). �

By Theorem 4.1, the first term in (4.2) can be rewritten as

∣∣ε(∇(v − vh),∇(v − vI))
∣∣ ≤ Ch(h+ ε| ln ε|) + (ε/4)||v − vh||

2
1,Ω. (4.23)

Then we continue the error analysis in (4.2) and turn to the convection term,
∣∣(b·∇(v − vh),(v − vI))

∣∣

=
∣∣(b·∇(v − vh),(v − vI))Ω1

∣∣+
∣∣(b·∇(v − vh),(v − vI))

Ω
c
1

∣∣. (4.24)

Considering that ‖∇(v − vh)‖Ω1
is bounded in the smooth solution region Ω1, one gets

|(b·∇(v − vh),(v − vI))Ω1
| ≤ C ‖∇(v − vh)‖Ω1

∥∥v − vI
∥∥
Ω1

≤ Ch2. (4.25)

Furthermore, we have

∣∣(b·∇(v − vh),(v − vI))
Ω
c
1

∣∣

≤C||v − vI ||
L∞ ,

Ω
c
1

||∇(v − vh)||L1,Ω
c

1

≤C||v − vI ||
L∞ ,

Ω
c
1

(ε| ln ε|)1/2||∇(v − vh)||L2,Ω
c

1

≤C| ln ε|||v − vI ||2
L∞ ,

Ω
c
1

+ (ε/4)||∇(v − vh)||
2
L2,Ω

c

1

≤C| ln ε|||v − vI ||2
L∞ ,

Ω
c
1

+ (ε/4)||(v − vh)||
2
1,Ω

. (4.26)
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By Lemma 4.1, (4.26) can be rewritten as

∣∣(b·∇(v − vh),(v − vI))
Ω
c
1

∣∣ ≤ Ch2| ln ε|3 + (ε/4)||(v − vh)||
2
1,Ω

. (4.27)

Substituting (4.27) and (4.25) into (4.24), we get

∣∣(b·∇(v − vh),(v − vI))
Ω

∣∣ ≤ Ch2| ln ε|3 + (ε/4)||(v − vh)||
2
1,Ω

. (4.28)

Furthermore, combining (4.28), (4.23) with (4.2) and using the condition (2.3), we obtain

∣∣A(v − vh, v − vI)
∣∣

≤Ch(h+ ε| ln ε|+ h| ln ε|3) +
ε

2
||(v − vh)||

2
1,Ω

+ |(µ+∇ · b)(v − vh), (v − vI)|

≤Ch(h+ ε| ln ε|+ h| ln ε|3) +
ε

2
||(v − vh)||

2
1,Ω

+
α

2
||v − vh||

2
0,Ω

+ C||v − vI ||2
0,Ω

≤Ch(h+ ε| ln ε|+ h| ln ε|3) +
1

2
||v − vh||

2
ε + Ch2.

Finally, by the equality (4.1) and the definition of energy norm || · ||ε, we obtain

||v − vh||
2
ε ≤ Ch2

(
1 + | ln ε|3 + ε| ln ε|/h

)
.

Summarizing the above analysis, we have the following theorem which contains the main

result of the error analysis.

Theorem 4.2. Let v and vh be the solutions to Problems 2.1 and 3.1, respectively. If v satisfies

Assumption 3.1, then v and vh satisfy

||v − vh||ε ≤ Ch
(
1 + | ln ε|3 + ε| ln ε|/h

)1/2

.

As can be seen, the upper error bound in Theorem 4.2 depends very weakly on ε. In terms

of computation, | ln ε| can be approximately treated as a bounded quantity. For example, when

ε = 10−15, | ln ε|3/2 < (34.6)3/2. Therefore, the theorem implies essentially that the error of

v − vh is almost ε-uniformly bounded.

5. Numerical Results

To demonstrate the theoretical results, numerical experiments on two examples have been

performed.

Example 5.1. Let us consider the two-dimensional convection-dominated problem defined by

∂

∂x

(
− εvx + (3− x)v

)
+

∂

∂y

(
− εvy + (4− 2y + y2)v

)
+ (4 − 2y)v = f(x, y),

v
∣∣
∂Ω

= 0,

where Ω = (0, 1)× (0, 1) and

f(x, y) =
3

2
π cos

πx

2
+ y3 sin

πx

2
−

πx

2
cos

πx

2
+ 12y2 − 6y3 + 3y4.
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Fig. 5.1. The numerical solution of Example 5.1.

In our computation, we choose ε = 10−3. The triangulation with refinement is similar to

that in Fig. 3.2. In this mesh, there are 275 nodes and 488 elements, of which 135 nodes and

250 elements are used to refine the subregion Ωc
1. We solve this example by the weighted basis

finite element method and the numerical solution is depicted in Fig. 5.1.

Example 5.2. Consider the following advection-diffusion problem with the boundary condition

v|∂Ω = 0.

−∇ · (ε∇v − bv) + 2v = f(x, y), in Ω = (0, 1)× (0, 1),

where b = (1, 1)t, and

f(x, y) =x
(
1− e(x−1)/ε

)(
1 + e(y−1)/ε + y

(
1− e(y−1)/ε

))

+ y
(
1− e(y−1)/ε

)(
1 + e(x−1)/ε + x

(
1− e(x−1)/ε

))
.

Its exact solution is

v(x, y) = xy
(
1− e(x−1)/ε

)(
1− e(y−1)/ε

)
.

In this example, the triangulation of the computational region with the refinement is also

similar to that in Fig. 3.2. The errors in energy norm for different values of ε are listed in

Table 5.1 from which one can see the convergent rate of this finite element is about one.

Table 5.1: Computed errors for Example 5.2.

Error h = 1/5 h = 1/10 h = 1/20 h = 1/40

ε = 0.01 0.1975 0.0719 0.0375 0.0189

ε = 0.001 0.2378 0.0881 0.0461 0.0247

ε = 0.0001 0.2847 0.1054 0.0550 0.0273

6. Conclusion

In this work, we presented an error analysis for a weighted basis finite element method on

the triangular Bakhvalov-type mesh applied to a two-dimensional singularly perturbed problem.
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This method is based on choosing different weights in the smooth solution domain and the

boundary layers. The error bound of order O(h) is obtained which is almost independent of

the diffusion coefficient ε. Numerical results were presented to demonstrate the accuracy and

convergence of the method.
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