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Abstract

In this paper, third- and fourth-order compact finite difference schemes are proposed

for solving Helmholtz equations with discontinuous media along straight interfaces in two

space dimensions. To keep the compactness of the finite difference schemes and get global

high order schemes, even at the interface where the wave number is discontinuous, the

idea of the immersed interface method is employed. Numerical experiments are included

to confirm the efficiency and accuracy of the proposed methods.
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1. Introduction

In this paper, we consider the following two-dimensional Helmholtz equation

∆u+ k20ν(x)u = f(x, y), or ∆u+ k2u = f(x, y), (x, y) ∈ Ω (1.1)

in a rectangular domain Ω with a Dirichlet boundary condition, where ∆ = ∂2

∂x2 + ∂2

∂y2 is the

Laplace operator. The material coefficient ν(x) is assumed to be piecewise constant and has a

finite jump across a straight line Γ = {(x, y), x = x0} in the domain, see [7] for a reference and

applications of such a problem. For convenience, we will use the notation k2 = k20ν(x) which

is piecewise constant. Across the interface, the solution satisfies the following natural jump

conditions

[u] = 0, [ux] = 0, [uy] = 0. (1.2)

Notice that the second- or higher-order partial derivatives with respect to x, and the source

term f(x, y) may be discontinuous across the interface, see Fig. 1.1 for an illustration.
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Helmholtz equations describe many physical phenomena, including acoustic, elastic, and

electromagnetic waves. Standard numerical methods, such as the boundary element method

[16], finite element methods [12,19], and finite difference methods [25,26], have been employed

to solve the Helmholtz equation. Applications of the Helmholtz equations with discontinuous

media can be found, for example, [7, 15].
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Fig. 1.1. A diagram of the problem and the finite difference stencil. A represents a regular finite

difference stencil, while B represents an irregular finite difference stencil that involves grid points from

both sides of the interface Γ.

The main difficulty in solving Helmholtz equations is that the solution is highly oscillatory

for high wave number. The phase error (pollution) of the computed solution obtained with low

order discretization is large unless fine meshes are used per wavelength, see for example [12]. A

fine mesh would lead to a large system of equations which may be computationally prohibitive.

Many different approaches have been proposed to reduce the phase error. For example, the high-

order finite element method was proposed in [10]; the h-version and h-p-version finite element

methods were proposed in [13, 14]. In [19], a standard bilinear finite element together with a

modified quadrature rule were used, which led to fourth-order phase accuracy on orthogonal

uniform meshes for a constant wave number. Recently, high-order accurate methods, such as

spectral methods and high order finite difference schemes, have been successfully developed

in solving the Helmholtz equation when k is constant; see e.g., [2, 3, 17, 18]. But when k is

a piecewise constant, it becomes more difficult to get high order methods. In this case, the

solution and its first-order derivative are continuous everywhere [15], whereas the second-order

and higher derivatives or the right hand side f(x, y) can have jumps at the discontinuity of

k. In [6], Gustafsson and Wahlund analyzed the effect of discontinuous coefficients on the

phase and amplitude errors. It was shown that the schemes in [5] were only first-order accurate

even if they are second- or fourth-order accurate for smooth solutions. In [7], Baruch et. al.

constructed high order finite volume schemes for the one-dimensional Helmholtz equation with

discontinuous coefficients based on the integral form of the Helmholtz equation. Their schemes

can keep global higher-order accuracy in the presence of discontinuities in the coefficients.

In this paper, we propose compact high-order (third and fourth) finite difference schemes

to solve the two-dimensional Helmholtz equation with piecewise constant wave numbers. The

compact high-order schemes are developed using the continuation of solutions by the Taylor

series expansion and the immersed interface method, see for example, [23, 24]. Our high order

finite difference schemes are based on the centered nine-point stencil, hence, the scheme is

called compact, see [1] for the definition. The third-order compact scheme developed in this

paper is simple and easy to derive. The fourth-order compact scheme may be necessary if

the wave number is relatively large. Compact schemes have been developed for a variety of
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elliptic equations, see e.g., [8, 9, 11]. And it has also been successfully used to solve the Stokes

equations in [20, 21]. A compact fourth-order finite difference method was proposed to solve

the Helmholtz equation with a constant wave number k in recent work [4]. A compact fourth-

order finite difference scheme is a fourth-order scheme that involves the least number of grid

points. Thus, compact schemes results in matrices that have smaller band-width compared

with non-compact schemes that involves more grid points. For example, for a Poisson equation,

a fourth-order finite difference scheme involves centered nine grid points. One of advantages of

compact schemes is that it can produce highly accurate numerical solutions without requiring

extra boundary conditions.

1.1. The general form of the compact scheme

Without loss of generality, we consider a rectangular domain Ω = (a, b)× (c, d). First we

generate a mesh: (xi, yj), xi = a + ihx, i = 0, 1, · · · ,M , yj = c + jhy, j = 0, 1, · · · , N , where

hx = (b − a)/M and hy = (d − c)/N are the spacial mesh-sizes. To simplify the notation, we

assume that hx = hy = h and M = N . In general, the nine-point compact finite difference

scheme can be written as

a0Ui−1,j−1 + a1Ui−1,j + a2Ui−1,j+1 + a3Ui,j−1 + a4Ui,j

+ a5Ui,j+1 + a6Ui+1,j−1 + a7Ui+1,j + a8Ui+1,j+1 = Fij .
(1.3)

We use the upper case Uij to represent the solution of the finite difference equations while we

use u(x, y) to express the true solution to the Helmholtz equation, that is, Uij ≈ u(xi, yj).

If k2 is continuous, as in the case for regular grid points where the interface Γ does not cut

through the centered nine-point stencil, the coefficients ai, i = 0, 1, 2, · · · , 8 are obtained from

the following finite difference equation.

(

1 +
h2

12
δ2y

)

δ2xUij +

(

1 +
h2

12
δ2x

)

δ2yUij +

(

1 +
h2

12
δ2x +

h2

12
δ2y

)

k2Uij

=

(

1 +
h2

12
δ2x +

h2

12
δ2y

)

fij . (1.4)

The central finite difference operator δ2x and δ2y are given by

δ2xUij =
Ui−1,j − 2Ui,j + Ui+1,j

h2
, δ2yUij =

Ui,j−1 − 2Ui,j + Ui,j+1

h2
. (1.5)

By expanding the finite difference operator, we get the following finite difference coefficients:

a0 = a2 = a6 = a8 =
1

6
, a1 = a3 = a5 = a7 =

h2k2

12
+

2

3
, a4 =

8h2k2

12
−

10

3
. (1.6)

The right hand side Fi,j is given by

Fi,j =
h2

12

(

fi+1,j + fi−1,j + fi,j+1.+ fi,j−1 + 8fi,j

)

. (1.7)

At irregular grid points where the nine-point stencil involves the discontinuity in k2, see Fig. 1.1

stencil B for an illustration, we need to modify the finite difference coefficients and the right

hand side to take into account of the discontinuity in k2 and f(x, y). Since the discontinuity

is across an interface that is parallel to the y-axis, we set the interface as one of grid lines. As
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often done in numerical methods for interface problems, we set any point on the interface as

in the domain of Ω−, that is, Γ ⊂ Ω−. The derivation of the third- and fourth-order compact

schemes are given in the next two sections, followed by numerical examples. We assume a

Dirichlet boundary condition for the Helmholtz equations.

2. The Third-Order Compact Finite Difference Scheme

In this section, we derive the third-order compact finite difference scheme for solving the

Helmholtz equation. We use the fourth order compact finite difference scheme at regular grid

points, that are all grid points except those on the interface. Irregular grid points are those on

the interface Γ.

The finite difference coefficients of the third-order compact scheme are given by

a0 = a2 =
1

6

(

1−
h2

6
[k2]

)

, a1 =

(

h2k2−
12

+
2

3

)(

1−
h2

6
[k2]

)

,

a3 = a5 =
h2k2−
12

+
2

3
+

h2

9
[k2],

a4 =
8h2k2−
12

−
10

3
+

2h2

3
[k2]

(

h2k2−
12

+
2

3

)

,

a6 = a8 =
1

6
, a7 =

h2k2−
12

+
2

3
. (2.1)

The right hand side Fi,j is given by

Fi,j = a6

(

h2

2
[f ]i,j+1 +

h3

6
[fx]i,j+1

)

+ a7

(

h2

2
[f ]i,j +

h3

6
[fx]i,j

)

+ a6

(

h2

2
[f ]i,j−1 +

h3

6
[fx]i,j−1

)

+
h2

12

(

f−

i+1,j + f−

i−1,j + f−

i,j+1 + f−

i,j−1 + 8f−

i,j

)

. (2.2)

2.1. Derivation of the third-order compact scheme at irregular grid points

Let (xi, yj) be an irregular grid point. As noted before, the grid point is on the interface Γ

and belongs to the Ω− domain. Thus the grid points (xi+1, yl), l = j−1, j, j+1, are three grid

points from the Ω+ side. The idea in deriving the compact finite difference scheme is based on

the continuation of the solution of u(x, y) in the Ω− domain to the Ω+. Let us write the finite

difference scheme as

1

6

(

Ui+1,j+1 + Ui−1,j+1 + Ui−1,j−1 + Ui+1,j−1

)

+
2

3

(

Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1

)

−
10

3
Ui,j

+
k2h2

12

(

Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 + 8Ui,j

)

=
h2

12

(

f−

i+1,j + f−

i−1,j + f−

i,j+1 + f−

i,j−1 + 8f−

i,j

)

+ C1

(

Ui−1,j−1, · · · , Ui+1,j+1

)

+ C2

(

[k2], [f ]i,j−1, · · · , [fx]i,j−1

)

, (2.3)

where the correction terms C1 and C2 are zero at regular grid points. Note that we should

use the values of fi+1,l from the same side as fi,l, l = j − 1, j, j + 1, that is, the Ω− side. If
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fi+1,l is not available, we can use a third- or higher-order extrapolation scheme to get it. We

should choose C1 and C2 such that the local truncation error at the irregular grid point has the

magnitude O(h2) or smaller. Note that, since the local truncation errors have order O(h4) at

regular grid points, and the number of irregular grid points has order O(N), the global accuracy

will be of order O(h3), see, for example, [22, 23] for the justification.

To derive the third-order scheme, we need the following interface relation whose proof is

straightforward.

Lemma 2.1. Assume f(x, y) is piecewise C1(Ω±) which leads to the fact that u(x, y) is piece-

wise C3(Ω±). We have the following jump conditions in addition to those in (1.2).

[uyy] = 0, [uxy] = 0, [uxx] = −[k2]u− + [f ],

[uxxx] = −[k2]u−

x + [fx], [uxxy] = −[k2]u−

y + [fy], (2.4)

[uyyx] = 0, [uyyy] = 0.

The local truncation error of the finite difference scheme (2.3) is

Tij =
1

6

(

u(xi+1, yj+1) + u(xi−1, yj+1) + u(xi−1, yj−1) + u(xi+1, yj−1)
)

+
2

3

(

u(xi+1, yj) + u(xi−1, yj) + u(xi, yj+1) + u(xi, yj−1)
)

−
10

3
u(xi, yj)

+
k2h2

12

(

u(xi+1, yj) + u(xi−1, yj) + u(xi, yj+1) + u(xi, yj−1) + 8u(xi, yj)
)

−
h2

12

(

f−

i+1,j + f−

i−1,j + f−

i,j+1 + f−

i,j−1 + 8f−

i,j

)

− C1

(

u(xi−1, yj−1), · · · , u(xi+1, yj+1)
)

− C2

(

[k2], [f ]i,j−1, · · · , [fx]i,j−1

)

. (2.5)

The idea of deriving the correction term is from the immersed interface method [22, 23]. We

use the Taylor expansion and jump conditions to express the local truncation error in terms of

the values of u(x, y) from the − side, then we can determine the correction terms C1 and C2 by

matching the differential equation up to third-order partial derivatives with the finite difference

scheme.

We use the Taylor expansion for the terms that are involved in the compact finite difference

from the Ω+ side. We have the following for those grid points that are in Ω+ side:

u(xi+1, yj) = u+(xi+1, yj) = u+(xi, yj) + hu+
x (xi, yj)

+
h2

2
u+
xx(xi, yj) +

h3

6
u+
xxx(xi, yj) +O(h4), (2.6)

u(xi+1, yj+1) = u+(xi+1, yj+1) = u+(xi, yj+1) + hu+
x (xi, yj+1)

+
h2

2
u+
xx(xi, yj+1) +

h3

6
u+
xxx(xi, yj+1) +O(h4), (2.7)

u(xi+1, yj−1) = u+(xi+1, yj−1) = u+(xi, yj−1) + hu+
x (xi, yj−1)

+
h2

2
u+
xx(xi, yj−1) +

h3

6
u+
xxx(xi, yj−1) +O(h4). (2.8)

We manipulate (2.6) to show the details by replacing the + terms in terms of those from

the − side and the jump relations. The other two terms (2.7) and (2.8) are treated in the same
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way. We carry out the following derivation

u+(xi+1, yj) =u+(xi, yj) + hu+
x (xi, yj) +

h2

2
u+
xx(xi, yj) +

h3

6
u+
xxx(xi, yj) +O(h4)

=u−(xi, yj) + hu−

x (xi, yj) +
h2

2

(

u−

xx − [k2]u− + [f ]
)∣

∣

∣

(xi,yj)

+
h3

6

(

u−

xxx − [k2]u−

x + [fx]
)
∣

∣

∣

(xi,yj)
+O(h4)

=u−(xi+1, yj)−
h2

2

(

[k2]u− − [f ]
)∣

∣

∣

(xi,yj)
−

h3

6

(

[k2]u−

x − [fx]
)∣

∣

∣

(xi,yj)
+O(h4),

where u−(xi+1, yj) is the extension of u(x, y) from the Ω− domain to the grid point (xi+1, yj)

via the Taylor expansion. We approximate u−
x (xi, yj) above using the backward finite difference

formula

u−

x (xi, yj) =
1

h

(

u−(xi, yj)− u−(xi−1, yj)
)

+O(h).

Thus we have

u+(xi+1, yj) ≈ u−(xi+1, yj)−
h2

2

(

[k2]u− − [f ]
)
∣

∣

∣

(xi,yj)

−
h3

6

(

[k2]

h

(

u−(xi, yj)− u−(xi−1, yj)
)

− [fx]
∣

∣

(xi,yj)

)

.

(2.9)

It is clear now that the part of C1 should include

−
2h2

3
[k2]Ui,j +

h2

6
[k2]Ui−1,j , (2.10)

while the part of C2 should include

h2

2
[f ]i,j +

h3

6
[fx]i,j . (2.11)

The contributions to C1 and C2 from u(xi+1, yj+1) and u(xi+1, yj−1) can be derived in the

exact the same way. In fact, we just need to change the subscript j with j + 1 or j − 1 in the

above expressions. Thus by collecting all the corresponding terms, we get C1 and C2 for the

third-order scheme

C1 =−
2h2

3
[k2]Ui,j−1 +

h2

6
[k2]Ui−1,j−1 −

2h2

3
[k2]Ui,j +

h2

6
[k2]Ui−1,j

−
2h2

3
[k2]Ui,j+1 +

h2

6
[k2]Ui−1,j+1, (2.12)

C2 =
1

6

(

h2

2
[f ]i,j+1 +

h3

6
[fx]i,j+1

)

+

(

h2

12
k2− +

2

3

)(

h2

2
[f ]i,j +

h3

6
[fx]i,j

)

+
1

6

(

h2

2
[f ]i,j−1 +

h3

6
[fx]i,j−1

)

. (2.13)

Combining C1 and C2 with the standard 9-point compact scheme, we get the finite difference

coefficients (2.1)-(2.2) for the third-order compact scheme.

Remark 2.1. The local truncation errors of the third-order compact scheme have order O(h4)

at regular grid points, and O(h2) at irregular grid points. This is because we expand the Taylor

expansion up to all third-order partial derivatives and the finite difference coefficients have the

magnitude of 1/h2. Since the interface Γ is one dimensional, the global error has order O(h3).
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3. The Fourth-Order Compact Scheme

The third-order compact scheme is relatively easy to derive and implement. That is one

of the most important advantages of the method. We just need to expand u(xi+1, yl) terms,

l = j − 1, j, j + 1, at (xi, yl). The correction term that contains h3u−
x is approximated using

the function values within the nine-point stencil. However, the third-order compact scheme

does not match the fourth-order scheme at regular grid points. In this section, we derive the

fourth-order compact scheme. The computational cost of the fourth-order scheme is about the

same as that of the third-order one. The correction terms will involve more terms that are

related to fourth-order partial derivatives.

The finite difference coefficients of the fourth-order compact scheme are given by

a0 = a2 = a6 = a8 =
1

6
,

a1 = β

(

1−
α

1− α

)

−
α

3

(

1 +
α

1− α

)

,

a3 = a5 = β

(

1−
α

1− α
,

)

+
2α

3

(

1−
α

2(1− α)

)

,

a4 = −
26

3
+ 8β +

2α

3
−

γ

3
−

1

1− α

(

β +
α

3

)

(−8α+ γ) ,

a7 =
1

1− α

(

β +
α

3

)

, (3.1)

Fij =
1

6
R1 +

1

1− α

(

β +
α

3

)

R2 +
1

6
R3

+
h2

12

(

f−

i+1,j + f−

i−1,j + f−

i,j+1 + f−

i,j−1 + 8f−

i,j

)

, (3.2)

where

α =
h2

12
[k2], β =

2

3
+

h2

12
k2−, γ =

h4

24
[k4], (3.3)

R1 =

(

h2

2
[f ] +

h3

6
[fx] +

h3

2
[fy]−

h4

24
[k2f ] +

5h4

24
[f ]yy +

h4

24
[fxx] +

h4

6
[fxy]

)∣

∣

∣

∣

(xi,yj)

, (3.4)

R2 =

(

h2

2
[f ] +

h3

6
[fx]−

h4

24
[k2f ]−

h4

24
[f ]yy +

h4

24
[fxx]

)∣

∣

∣

∣

(xi,yj)

, (3.5)

R3 =

(

h2

2
[f ] +

h3

6
[fx]−

h3

2
[fy]−

h4

24
[k2f ] +

5h4

24
[f ]yy +

h4

24
[fxx]−

h4

6
[fxy]

)
∣

∣

∣

∣

(xi,yj)

. (3.6)

3.1. Derivation of the fourth-order compact scheme at irregular grid points

The derivation process is similar to that of the third-order compact finite difference scheme.

So we will use the same correction notations C1 and C2. To get the fourth-order scheme, we

need to match the differential equation up to fourth-order partial derivatives. Thus we need

the following lemma in addition to Lemma 2.1.

Lemma 3.1. Assume f(x, y) is piecewise C2(Ω±) which leads to the fact that u(x, y) is piece-
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wise C4(Ω±). We have the following jump conditions in addition to those in (1.2) and (2.4).

[uyyyx] = 0, [uyyyy] = 0, [uxxxy] = −[k2]u−

xy + [fxy],

[uxxyy] = −[k2]u−

yy + [fyy],

[uxxxx] = 2[k2]u−

yy + [k4]u− − [k2f ] + [fxx]− [fyy]. (3.7)

Proof. We show the proof for the last two expressions. The proof for others is straightfor-

ward. Differentiating the original differential equation twice with respect to y and then taking

the jump, we get

[uxxyy] + [uyyyy] + [k2uyy] = [fyy].

Since u is continuous with respect to y, we get

[uxxyy] = −[k2]u−

yy + [fyy].

Note that uyy is continuous, so we can write uyy = u−
yy. Differentiating the original equation

twice with respect to x and then taking the jump, we get

[uxxxx] + [uyyxx] + [k2uxx] = [fxx].

Multiplying k2 to the original differential equation and then taking the jump, we have

[k2uxx] = −[k2]u−

yy − [k4]u− + [k2f ].

Thus using [uxxyy] and [k2uxx], we get

[uxxxx] =− [uyyxx]− [k2uxx] + [fxx]

=[k2]u−

yy − [fyy] + [k2]u−

yy + [k4]u− − [k2f ] + [fxx]

=2[k2]u−

yy + [k4]u− − [k2f ] + [fxx]− [f ]yy.

This completes the proof. �

To derive the fourth-order compact scheme at irregular grid points on the interface, again
we use the continuation via the Taylor expansion. Let (xi, yj) be such a grid point, we discuss
how to choose C1 and C2 to minimize the local truncation error in (2.5). From the Taylor
expansion, we have

u(xi+1, yj+1) =u
+ + h(u+

x + u
+
y ) +

h2

2

(

u
+
xx + 2u+

xy + u
+
yy

)

+
h3

6

(

u
+
xxx + 3u+

xxy + 3u+
xyy + u

+
yyy

)

+
h4

24

(

u
+
xxxx + 4u+

xxxy + 6u+
xxyy + 4u+

xyyy + u
+
yyyy

)

+O(h5),

where all the quantities are evaluated at (xi, yj). Note that now we expand u(xi+1, yj+1) at

(xi, yj), but not at (xi, yj+1) as we did in the third-order compact scheme. The reason is that

we need to keep the correction terms that involves Ulk within the nine-point stencil. We expand

u(xi+1, yj+1) up to all the fourth-order partial derivatives to get fourth-order accuracy.
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With the jump conditions from (1.2), (2.4), and (3.7), we replace the values of that have +

superscript in terms of those from the − side, we get

u(xi+1, yj+1) =u− + h(u−

x + u−

y ) +
h2

2

(

u−

xx − [k2]u− + [f ] + 2u−

xy + u−

yy

)

+
h3

6

(

u−

xxx − [k2]u−

x + [fx] + 3u−

xxy − 3[k2]u−

y + 3[fy] + 3u−

xyy + u−

yyy

)

+
h4

24

(

u−

xxxx + 2[k2]u−

yy + [k4]u− − [k2f ]− [f ]yy + [fxx] + 4u−

xxxy

− 4[k2]u−

xy + 4[fxy] + 6u−

xxyy − 6[k2]u−

yy+6[f ]yy + 4u−

xyyy + u−

yyyy

)

+O(h5).

To get a fourth-order scheme, we need to use finite difference formulas to approximate

u−
x and u−

y to second-order; u−
xy and u−

yy to first-order at the grid point (xi, yj) to ensure

that the local truncation errors at these grid points are of order O(h3). The finite difference

approximations have to use the nine-point stencil to keep the finite difference compact. The

finite difference approximation for u−
x , u

−
y , u

−
xy, and u−

yy are the following:

u−

x (xi, yj) ≈
1

2h

(

u−(xi+1, yj)− u−(xi−1, yj)
)

,

u−

y (xi, yj) ≈
1

2h

(

u−(xi, yj+1)− u−(xi, yj−1)
)

,

u−

xy(xi, yj) ≈
1

2h2

(

u−(xi, yj+1)− u−(xi, yj−1)− u−(xi−1, yj+1) + u−(xi−1, yj−1)
)

,

u−

yy(xi, yj) ≈
1

h2

(

u−(xi, yj+1)− 2u−(xi, yj) + u−(xi, yj−1)
)

.

We can see that all the grid points are still within the nine-point stencil. With such approxi-

mations, we can rewrite

u+(xi+1, yj+1) =u−(xi+1, yj+1) +

(

−
h2

6
[k2] +

h4[k4]

24

)

u−(xi, yj) +
h2

12
[k2]u−(xi−1, yj)

+
h2

6
[k2]u−(xi, yj−1)−

h2[k2]

2
u−(xi, yj+1) +

h2

12
[k2]u−(xi−1, yj+1)

−
h2

12
[k2]u−(xi−1, yj−1)−

h2

12
[k2]u−(xi+1, yj) +R1 +O(h5),

where R1 is given in (3.4), and u−(xi+1, yj+1) is the fifth-order smooth extension of u−(x, y)

to the point (xi+1, yj+1).

Thus we get the contribution to C1 from u(xi+1, yj+1):

(

−
h2

6
[k2] +

h4[k4]

24

)

Ui,j +
h2

12
[k2]Ui−1,j +

h2

6
[k2]Ui,j−1

−
h2[k2]

2
Ui,j+1 +

h2

12
[k2]Ui−1,j+1 −

h2

12
[k2]Ui−1,j−1 −

h2

12
[k2]Ui+1,j ,

and the contribution to C2 is simply R1.

Using almost the same procedure, we can get the contributions to C1 and C2 from u(xi+1, yj)

and u(xi+1, yj−1). Thus by collecting all the corresponding terms, we get C1 and C2 for the

fourth-order scheme
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C1 =

(

−
h2

6
[k2] +

h4

24
[k4]

)

Ui,j +
h2

12
[k2]Ui−1,j +

h2

6
[k2]Ui,j−1 −

h2

2
[k2]Ui,j+1

+
h2

12
[k2]Ui−1,j+1 −

h2

12
[k2]Ui−1,j−1 −

h2

12
[k2]Ui+1,j −

h2

12
[k2]Ui+1,j

+

(

−
2h2

3
[k2] +

h4

24
[k4]

)

Ui,j +
h2

12
[k2]Ui−1,j +

h2

12
[k2]Ui,j+1 +

h2

12
[k2]Ui,j−1

+

(

−
h2

6
[k2] +

h4

24
[k4]

)

Ui,j +
h2

12
[k2]Ui−1,j +

h2

6
[k2]Ui,j+1

−
h2

2
[k2]Ui,j−1 −

h2

12
[k2]Ui−1,j+1 +

h2

12
[k2]Ui−1,j−1 −

h2

12
[k2]Ui+1,j ,

C2 =R1 +R2 +R3,

where R1, R2, and R3 are given by (3.4)-(3.6). Each terms corresponding to the correction

to the right hands side from the three irregular grid points in the finite difference stencil.

Combining C1 and C2 with the standard 9-point compact scheme, we get the finite difference

coefficients (3.1)-(3.2) for the fourth-order compact scheme.

Remark 3.1. The local truncation errors of the fourth-order compact scheme have orderO(h4)

at regular grid points, and O(h3) at irregular grid points. This is because we expand the Taylor

expansion up to all fourth-order partial derivatives and the finite difference coefficients have the

magnitude of 1/h2 when we derive the finite difference scheme at irregular grid points. Since

the interface Γ is one dimensional, the global error has order O(h4).

Remark 3.2. If k is a continuous constant and f(x, y) ∈ C2(Ω), then the coefficients in (3.1)-

(3.6) are simply those of the standard fourth-order compact scheme (1.3), (1.6)-(1.7).

4. Numerical Experiments

In this section, we present two numerical examples that we have the exact solution to

show the convergence of our third and fourth-order compact schemes for solving the Helmholtz

equation with a straight interface x = x0. All computations are done using a Dell Desktop or a

notebook computer. Most of computations are done within seconds or a few minutes depending

the mesh size. A Dirichlet boundary condition is used. The error is measured in the L∞ norm

for all the grid points and the convergence order is estimated using r = log(eh1
/eh2

)/ log(h1/h2)

as a common practice in the literature.

Example 4.1. In this example, we use the exact solution u = sin(πx) sin(πy) to derive f(x, y).

The wave number k has a finite jump across x = 1/2, so does f(x, y) within the domain

Ω = (0, 1)× (0, 1) which includes two parts Ω− = (0, 1
2 ]× (0, 1) and Ω+ = (12 , 1)× (0, 1). The

source term f is given by

f(x, y) =

{

−2π2 + k2− sinπx sinπy, (x, y),∈ Ω−,

−2π2 + k2+ sinπx sinπy, (x, y),∈ Ω+.
(4.1)

In Table 4.1, we show a grid refinement analysis with different wave numbers. In the second-

third column, we show the results with relatively small wave number k2− = 1 and k2+ = 9; in the
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Table 4.1: A grid refinement analysis for Example 4.1 using the third-order compact scheme with

different wave numbers. Third order convergence is confirmed.

N

k2
−
= 1 , k2

+ = 9 k2
−
= 25 , k2

+ = 100

error order error order

16 2.8842e-4 0.0086

32 3.6520e-5 2.9814 0.0011 2.9668

64 4.5905e-6 2.9920 1.3662e-4 3.0093

128 5.7529e-7 2.9963 1.7050e-5 3.0023

256 7.1999e-8 2.9982 2.1303e-6 3.0006

512 8.9994e-9 3.0001 2.6625e-7 3.0002

Table 4.2: A grid refinement analysis for Example 4.1 using the fourth-order compact scheme with

different wave numbers. Fourth order convergence is confirmed.

N

k2
−
= 1 , k2

+ = 9 k2
−
= 25 , k2

+ = 100

error order error order

16 5.7294e-6 1.3793e-5

32 3.5852e-7 3.9983 8.1485e-7 4.0813

64 2.2416e-8 3.9995 5.0579e-8 4.0099

128 1.4020e-9 3.9990 3.1595e-9 4.0008

256 8.9138e-11 3.9753 2.0095e-10 3.9748

512 1.1538e-11 2.9496 2.6062e-11 2.9468

Table 4.3: A comparison of the third- and fourth-order compact schemes for Example 4.1 with k2
−
= 1,

k2
+ = 992.25.

N

third-order scheme fourth-order scheme

error order error order

32 9.3486e-4 9.3545e-8

64 1.0368e-4 3.1726 5.3675e-9 4.1233

128 1.2581e-5 3.0428 3.3586e-10 3.9983

256 1.5610e-6 3.0107 2.1354e-11 3.9753

512 1.9840e-7 3.0024 2.7633e-12 2.9500

fourth-fifth column, we show the results with medium size wave number k2− = 25 and k2+ = 100.

In both cases, third-order convergence can be clearly observed. In Table 4.2, we present the

results obtained from the fourth-order compact scheme. Fourth-order convergence is clearly

confirmed and the error is one order smaller than that of the third order one.

In Table 4.3, we compare the third- and fourth-order compact scheme for the large wave

number k2+ = 992.25. We choose this number so that the wave number is far from one of the

eigenvalues in which the coefficient matrix is singular. Both schemes work well even with such

a large jump of the wave number.

Note that in Tables 4.2 and 4.3, the convergence rate for the fourth-order scheme is dete-

riorated when N = 512. This is because of the round-off errors have spoiled the convergence

order when h is too small. It is easy to show that there is a critical step size hc ∼ C ǫ1/(p+2)

below which the run-off error will become dominate, where p is convergence order of the global

error, C is a constant and ǫ is the machine precision. For the third- and fourth-order compact
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schemes, p = 3 or p = 4. In our numerical tests, we use double precision, and hence ǫ = 10−16.

The critical step size hc ∼ 6.3C10−4 for the third-order scheme, and hc ∼ 2.2C10−3 for the

fourth-order scheme. Note that 1/N = 1/512 = 0.002 < 2.210−3. Thus the round-off errors will

become dominant sooner as we increase the mesh size for higher-order schemes, particularly for

the fourth-order one.

Example 4.2. We consider the following problem: the interface is the line x = π/2 within

the domain Ω = (0, π) × (0, π) which includes two parts Ω− = (0, π/2 ] × (0, π) and Ω+ =

(π/2, π)× (0, π), the source item f(x, y) is given as

f(x, y) =

{ (

2 + (k2− − 2)(x− π/2)2
)

sinx sin y + 4(x− π/2) cosx sin y, (x, y) ∈ Ω−,
(

2 + (k2+ − 2)(x− π/2)2
)

cosx cos y − 4(x− π/2) sinx cos y, (x, y) ∈ Ω+.

The exact solution of the problem is

u(x, y) =

{

(x− π
2 )

2 sinx sin y, (x, y) ∈ Ω−,

(x− π
2 )

2 cosx cos y, (x, y) ∈ Ω+.

Unlike Example 4.1, the second-order partial derivative uxx is discontinuous at the interface

x = π/2 in this example. In Table 4.4, we show a grid refinement analysis with different wave

numbers. In the second-third column, we show the results with relatively small wave number

k2− = 1 and k2+ = 9; in the fourth-fifth column, we show the results with medium size wave

number k2− = 25 and k2+ = 100. In both cases, third-order convergence can be clearly seen. In

Table 4.5, we present the results obtained from the fourth-order compact scheme. Fourth-order

convergence is clearly confirmed and the error is one order smaller than that of the third-order

one.
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Fig. 4.1. The error plot for the numerical solu-

tion of Example 4.2 using the third-order com-

pact scheme with k2
−

= 25, k2
+ = 100, and

N = 64.
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Fig. 4.2. The error plot for the numerical so-

lution of Example 4.2 using the fourth-order

compact scheme with k2
−
= 25, k2

+ = 100, and

N = 64.

In Fig. 4.1 and Fig. 4.2, we show the error plot of the computed solutions using the third-

and fourth-order compact schemes, respectively.

In Table 4.6 and Table 4.7, we compare the third- and fourth-order compact scheme for

different wave number k2− = 1 and k2+ = 992.25 in Table 4.6 as we did for Example 4.1; and
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Table 4.4: A grid refinement analysis for Example 4.2 using the third-order compact scheme with

different wave numbers. Third order convergence is confirmed.

N

k2
−
= 1 , k2

+ = 9 k2
−
= 25 , k2

+ = 100

error order error order

16 0.0048 0.0386

32 5.8065e-4 3.0473 0.0013 4.8920

64 7.2289e-5 3.0058 1.4950e-4 3.1203

128 9.0227e-6 3.0021 1.8172e-5 3.0404

256 1.1274e-6 3.0006 2.2552e-6 3.0104

512 1.4088e-7 3.0005 2.8139e-7 3.0026

Table 4.5: A grid refinement analysis for Example 4.2 using the fourth-order compact scheme with

different wave numbers. Fourth-order convergence is confirmed.

N

k2
−
= 1 , k2

+ = 9 k2
−
= 25 , k2

+ = 100

error order error order

16 1.9976e-4 1.2797e-4

32 1.1792e-5 4.0824 7.5419e-6 4.0847

64 7.1269e-7 4.0484 4.7952e-7 3.9753

128 4.3801e-8 4.0242 2.9489e-8 4.0233

256 2.7156e-9 4.0116 1.8327e-9 4.0081

512 1.6925e-10 4.0040 1.1449e-10 4.0007

Table 4.6: A comparison of the third- and fourth-order compact schemes for Example 4.2 with k2
−
= 1,

k2
+ = 992.25. The convergence order for the third- and fourth-order compact schemes are confirmed.

N

third-order scheme fourth-order scheme

error order error order

32 0.0044 1.7772e-5

64 9.4124e-4 2.2249 2.1999e-7 6.3360

128 1.1941e-4 2.9786 1.5525e-8 3.8248

256 1.4618e-5 3.0301 9.2525e-10 4.0686

512 1.8018e-6 3.0202 5.7089e-11 4.0186

Table 4.7: A comparison of the third- and fourth-order compact schemes for Example 4.2 with k2
−
= 1,

k2
+ = 90000. The convergence order for the third-order compact scheme was deteriorated to second-

order due to large wave number while the convergence order for the fourth-order one has not been

affected.

N

third-order scheme fourth-order scheme

error order error order

16 0.0121 1.8688e-5

32 0.0031 1.9647 1.1669e-6 4.0014

64 8.0227e-4 1.9501 7.3041e-8 3.9978

128 2.0845e-4 1.9444 4.5590e-9 4.0019

256 6.1355e-5 1.7644 2.8382e-10 4.0057

512 2.8563e-5 1.1030 2.9029e-11 3.2894
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k2− = 25 and k2+ = 90000 in Table 4.7. We observe similar results as those for Example 4.1 that

we have clear cut third-order and fourth-order convergence. For the large wave number case

k2+ = 90000, either we need to use high order accurate schemes or very fine mesh to resolve

the solution. In Table 4.7, we see that convergence rate of the third-order compact scheme

is deteriorated to second-order while the fourth-order compact scheme still has fourth-order

convergence rate until the round-off errors become dominate after N = 512. It is recommended

to use fourth-order compact scheme for large wave numbers.

Example 4.3. In this example, we show the numerical results when the solution depends on

wave number k. The exact solution of the problem is

u(x, y) =







k−
(

x− π
2

)2
sinx sin y, (x, y) ∈ Ω−,

k+
(

x− π
2

)2
sinx sin y, (x, y) ∈ Ω+.

In Tables 4.8 and 4.9, we show the grid refinement analysis for the third- and fourth-order

scheme. The results reconfirm our analysis and the order of the convergence.

Table 4.8: A grid refinement analysis for Example 4.3 using the third-order compact scheme with

different wave numbers. The true solution depends on the wave number. Third-order convergence is

confirmed.

N

k2
−
= 1 , k2

+ = 9 k2
−
= 25 , k2

+ = 100

error order error order

16 0.0136 0.2094

32 0.0016 3.0875 0.0073 4.8422

64 2.0225e-4 2.9839 8.0988e-4 3.1721

128 2.5248e-5 3.0019 9.8430e-5 3.0405

256 3.1555e-6 3.0002 1.2216e-5 3.0103

512 3.9439e-7 3.0002 1.5242e-6 3.0026

Table 4.9: A grid refinement analysis for Example 4.3 using the fourth-order compact scheme with

different wave numbers. The true solution depends on the wave number. Fourth-order convergence is

confirmed.

N

k2
−
= 1 , k2

+ = 9 k2
−
= 25 , k2

+ = 100

error order error order

16 1.1691e-004 4.3854e-005

32 5.3653e-006 4.4456 2.0594e-006 4.4124

64 2.8186e-007 4.2506 1.3134e-007 3.9708

128 1.6114e-008 4.1286 8.2379e-009 3.9949

256 9.6462e-010 4.0622 5.1570e-010 3.9977

512 6.0411e-011 3.9971 3.3646e-011 3.9380

Example 4.4. As a final test, we fix the mesh size but vary the wave number k for the true

solution in Example 4.3. If k2 is not an eigenvalue of the Helmholtz equation, then we would

expect the error is small with reasonable meshes but would increases with the wave number k

since the condition number of the coefficient matrix would increase with the wave number k.
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Such common observation is confirmed in Tables 4.10 and 4.11. We have also done the same

tests for Example 4.2 in which the solution does not depend on the wave number k and have

observed the same behavior.

Table 4.10: Error analysis for fixed N but different wave number k using the third-order scheme.

wave number

N = 128 N = 256

error error

k2
−
= 1, k2

+ = 10 5.9969e-5 7.4931e-6

k2
−
= 1, k2

+ = 20 1.8050e-5 2.2528e-6

k2
−
= 1, k2

+ = 30 4.1289e-5 5.1509e-6

k2
−
= 1, k2

+ = 40 2.2547e-5 2.8103e-6

k2
−
= 1, k2

+ = 50 2.6204e-4 3.2567e-6

k2
−
= 1, k2

+ = 100 3.1765e-5 3.9420e-6

k2
−
= 1, k2

+ = 500 7.5084e-5 8.9753e-6

k2
−
= 1, k2

+ = 900 8.8767e-5 1.0367e-5

k2
−
= 1, k2

+ = 9000 9.6126e-4 8.4903e-5

Table 4.11: Error analysis for fixed N but different wave number k using the fourth-order scheme.

wave number

N = 128 N = 256

error error

k2
−
= 1, k2

+ = 10 2.8470e-008 1.6468e-009

k2
−
= 1, k2

+ = 20 9.4444e-009 6.1174e-010

k2
−
= 1, k2

+ = 30 1.3507e-008 9.1595e-010

k2
−
= 1, k2

+ = 40 6.0620e-009 3.8255e-010

k2
−
= 1, k2

+ = 50 2.9423e-008 1.4351e-009

k2
−
= 1, k2

+ = 100 3.8384e-009 2.5016e-010

k2
−
= 1, k2

+ = 500 3.7163e-009 2.4329e-010

k2
−
= 1, k2

+ = 900 4.1302e-009 2.5870e-010

k2
−
= 1, k2

+ = 9000 4.1236e-009 3.5117e-010

5. Conclusions

In this paper, we have developed the third- and fourth-order compact finite difference

schemes for the Helmholtz equations with piecewise constant wave numbers. The third-order

scheme is easy to derive and implement. The fourth-order scheme matches the fourth-order

discretization at regular grid points. Quite a few more correction terms are needed compared

with the third-order one. It is recommended to use the fourth-order compact scheme or use fine

mesh for large wave numbers. In this paper, the Dirichlet boundary condition is imposed for the

Helmholtz equation, but in many applications, the boundary condition should be obtained from

a truncation of the Sommerfeld radiation condition, see e.g., [25,26]. For the boundaries that is

far enough from the interface, the fourth-order compact scheme proposed in [4] can be applied.

If the interface cuts the boundary, a fourth-order compact scheme is yet to be developed and it

is under investigation. Another open problem is how to develop a fourth-order compact scheme

for curved interfaces.
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