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LINEAR ADVECTION WITH ILL-POSED BOUNDARY
CONDITIONS VIA L1-MINIMIZATION

JEAN-LUC GUERMOND1,2 AND BOJAN POPOV1

Abstract. It is proven that in dimension one the piecewise linear best L1-

approximation to the linear transport equation equipped with a set of ill-posed

boundary conditions converges in W 1,1
loc to the viscosity solution of the equation

and the boundary layer associated with the ill-posed boundary condition is

always localized in one mesh cell, i.e., the “last” one.
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1. Introduction

The goal of this paper is to explain a phenomenon that has been reported in [4];
namely, finite-element-based best L1-approximations seem to converge to viscosity
solutions of some classes of first-order PDE’s. In particular we prove in this paper
that it is indeed the case in dimension one for the linear transport equation equipped
with a set of ill-posed boundary conditions.

To explain our interest for finite element best L1-approximations and ill-posed
boundary conditions, we now briefly recall the result from [4] that we exactly refer
to. We denote by Ω a bounded domain of Rd with smooth boundary. Let α > 0 be
a real number and let β ∈ [C1(Ω)]d be a smooth vector field. Let u0 be a smooth
function on ∂Ω, say u0 ∈ C2(∂Ω), and let f ∈ W 1,1(Ω). Following Bardos–le
Roux–Nédélec, [2], we say that u is a viscosity solution to

(1.1) αu +∇·(βu) = f ; u|∂Ω = u0,

if u ∈ BV(Ω), u solves the PDE, and u satisfies the boundary condition in the
following sense

(1.2)
∫

∂Ω

(β·n)(u− k)(sg(u− k)− sg(u0 − k)) ≥ 0, ∀k ∈ R,

where sg(t) is the sign of t if t 6= 0 and sg(0) = 0. In the present linear case, the
boundary condition amounts to enforcing u = u0 on ∂Ω− = {x ∈ ∂Ω |β(x)·n(x) <
0}.

Using arguments similar to those in [2] and [1], it is possible to prove that (1.1)
has a unique viscosity solution provided α is large enough. The bulk of the argument
consists of proving that the solution to the following problem

(1.3) αuε +∇·(βuε)− ε∇2uε = f ; uε|∂Ω = u0,
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converges in L1(Ω) and the limit is the so-called viscosity solution, i.e. the limit
satisfies the PDE (1.1) and the boundary condition (1.2).

Despite its appearance, the problem (1.1) is not purely formal. It arises when one
tries to approximate (1.3) on finite element meshes that are not refined enough. For
instance, denoting by h the mesh size, whenever ε/h2 � ‖β‖L∞/h, the second-order
term in (1.3) is completely dominated by the first-order one, and approximating
(1.3) in this circumstance amounts to trying to solve (1.1), where the boundary
condition is understood in the classical sense instead of (1.2).

It has been shown in [4] that the best L2-approximation (i.e., Least-Squares) does
not converge to the right limit of (1.3) under the limiting process limh→0 limε→0.
The situation is quite different in L1(Ω), since for reasons that will be detailed
latter, the best L1-approximation to (1.1) converges to the viscosity solution. Before
going into the details of the proof and to illustrate this claim, we now reproduce a
numerical experiment reported in [4].

Consider the 2D rectangular domain Ω =]0, 1[2 and set ∂ΩD = {x = 0}∪{x = 1}
and ∂ΩN = {y = 0} ∪ {y = 1}, i.e., We want to solve the following scalar problem

(1.4) u + ∂xu = 1; u|∂ΩD
= 0,

Of course the above problem is not well-posed in the usual sense, since the outflow
boundary condition is over-specified, but it is meaningful in the viscosity sense. Let
{Xh}h>0 be a sequence of H1-conforming finite element spaces constructed on a
shape regular mesh family and such that for all vh in Xh, vh|∂ΩD

= 0. We show
in figure 1 the best L1-approximation and the best L2-approximation of the above
problem using a coarse mesh, h = 1/10. The P1 Lagrange interpolant of the exact
solution is shown in the left panel, the best L1-approximation is in the center panel,
and the best L2-approximation is shown in the right panel. Considering the mesh
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Figure 1. Viscosity solution to (1.4) from [4]. Left: P1 Lagrange
interpolant of exact solution; center, L1 solution; right, L2 solution.

used, the best L1-approximation is a reasonable approximation, whereas the Least-
Squares solution is completely wrong. Contrary to what it looks, the two horn-like
spikes observable on the graph of the L1-solution are not over-shootings. These are
perspective effects induced by the fact that the two corresponding P1-nodes are not
aligned with the others. Given that the Least-Squares method together with its
many variants is a central part for the stabilization of the Galerkin technique (see
e.g. [3, 6, 7]), the above example gives new reasons why the Galerkin-Least-Squares
method cannot generally cope properly with shocks and boundary layers without
the help of shock-capturing terms [7, 5].

The rest of the paper is organized as follows. In §2 we introduce the ill-posed
one-dimensional linear advection problem under scrutiny in this paper. The discrete
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L1-minimization problem is formulated. An expression for the discrete minimizer
is derived in §3. The error analysis is done in §4. The main result of the paper is
Theorem 7. Concluding remarks are reported in §5.

2. The one-dimensional problem

2.1. The continuous problem. In the rest of the paper we restrict ourselves to
the following one dimensional differential equation:

(2.1)

{
u(x) + β(x)u′(x) = f(x), in Ω,

u(0) = 0

where β is assumed to be in C1(Ω) and f is in L1(Ω). We assume moreover that

0 < inf
x∈Ω

β(x)(2.2)

sup
x∈Ω

β′(x) < 1.(2.3)

The condition β′ ≤ 1 is the one-dimensional counterpart of ∇·β ≤ 1 which is
standard for (1.1). The uniqueness of a weak solution u ∈ W 1,1(Ω) to (2.1) is well
known even under weaker assumptions on β and f . It is clear that u is also the
viscosity solution to

(2.4)

{
u + β(x)u′ = f, in Ω,

u(0) = u(1) = 0,

To alleviate the notation we define the linear operator

(2.5) L : W 1,1(Ω) 3 v 7−→ v + βv′ ∈ L1(Ω).

2.2. The discrete problem. We now want to compute a best L1-approximation
to the viscosity solution to (2.4). To this end, let Th =

∑n
i=0 Ii be a mesh of Ω

composed of n+1 cells. Let x0, x1, . . . xn be the vertices of this mesh so that x0 = 0,
xn+1 = 1 and for each cell Ii we have Ii = [xi, xi+1]. We set hi = xi+1 − xi > 0,
i = 0, 1, . . . , n, and define h = maxi hi. The midpoint of each cell is denoted by
xi+1/2 = xi+1+xi

2 .
We now define the following approximation space

(2.6) Xh = {vh ∈ C(Ω); vh|Ii ∈ P1,∀Ii ∈ Th; vh(0) = vh(1) = 0}.

Note that the functions in Xh are zero at both ends of the interval Ω. Upon defining
the functional

(2.7) J(vh) =
∫ 1

0

|L(uh)(x)− f(x)| dx,

we consider the following problem: Seek uh ∈ Xh such that

(2.8) J(uh) = min
vh∈Xh

J(vh).

Owing to the linearity of L, J is convex; as a result, the above problem has at
least one minimizer and all local minimizers are global. A peculiarity of the above
minimization problem is that uniqueness of the minimizer is not guaranteed, but
as already shown in [4], this is not a serious issue if we can prove that all the
minimizers converge to a single limit.

At this time, we do not know how to deal with the above minimization without
resorting to quadratures to approximate the integral. As a result, we introduce a
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second-order discretization, that is, we use the midpoint rule to approximate the
integral over each mesh cell. We then replace the functional J by the following one

(2.9) Jh(vh) :=
n∑

i=0

hi

∣∣L(vh)(xi+1/2)− fi

∣∣ ,

where we have set fi := h−1
i

∫
Ii

f(x)dx and βi := β(xi+1/2). Problem (2.8) is then
replaced by the following one: Seek uh ∈ Xh such that

(2.10) Jh(uh) = min
vh∈Xh

Jh(vh).

3. Computation of the minimizer

In this section, we derive an explicit formula to compute the solution to Problem
(2.10).

Let us denote Ri(vh) = hi

(
L(vh)(xi+1/2)− fi

)
for all vh in Xh. Observe that

Jh(vh) =
n∑

i=0

|Ri(vh)|.

Let j ∈ {0, . . . , n} and let vj
h be a discrete function in Xh solving the following

linear system

(3.1) Ri(v
j
h) = 0 for all i 6= j.

Lemma 1. For each j ∈ {0, . . . , n}, there is a unique vj
h solving (3.1).

Proof. Let us construct vj
h. Upon introducing the notation vj

i = vj
h(xi) and

(3.2) δi =
hi

βi + hi

2

,

it is clear that for any i ≤ j we can compute vj
i+1 using the left boundary vj

0 = 0
together with

(3.3) vj
i+1 = (1− δi)v

j
i + δifi.

Therefore, for all 1 ≤ i ≤ j we derive

(3.4) vj
i =

i−1∑
k=0

fkδkφi,k,

where we have defined

(3.5) φi,i−1 = 1 and φi,k =
i−1∏

s=k+1

(1− δs) for any k < i− 1

Similarly, for j + 1 ≤ i ≤ n, we have

vj
i =

1
1− δi

vj
i+1 −

δi

1− δi
fi.

Therefore, for any j + 1 ≤ i ≤ n, we derive

(3.6) vj
i = −

n∑
k=i

fkδkφi,k,

where we have defined

(3.7) φi,k =
k∏

s=i

1
(1− δs)

for any k ≥ i
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Note that (3.5) and (3.7) completely define the weights {φi,k}, and (3.4) and (3.6)
entirely define vj

h. �

Lemma 2. Under the above assumptions

min
vh∈Xh

Jh(vh) = min
0≤j≤n

Jh(vj
h).

Proof. This is a standard property of discrete `1-approximations, see e.g., [8, Prop
6.7, p.135]. �

This result is the key feature of L1-minimization which is of interest to us. We
are going to show that it can be rephrased as follows. The function that minimizes
Jh enforce the n residuals R0, . . . Rn−1 to be zero and does not care about the
n + 1th one, Rn. As a result the error made in the cell n does not pollute what
happens in the other cells. This behavior is characteristic of L1-minimization. Any
other type of Lp-minimization with p > 1 tends to equilibrate the error among n+1
cells. Heuristically speaking L1-minimization solves the PDE in the cells that are
important and forget about the others.

Proposition 3. Under the above assumptions

min
vh∈Xh

Jh(vh) = Jh(vn
h).

Proof. We are going to prove the claim by showing that Jh(vn
h) = min0≤j≤n Jh(vj

h)
and by using Lemma 2. Let j ∈ {0, . . . n}. We have the following representation

Jh(vj
h) = Rj(v

j
h) = (βj + 1

2hj)
∣∣∣−vj

h(xj+1) + (1− δj)v
j
h(xj) + δjfj

∣∣∣ .

Using (3.4) and (3.6) we obtain

vj
h(xj) =

j−1∑
k=0

fkδkφj,k and vj
h(xj+1) = −

n∑
k=j+1

fkδkφj+1,k.

Using the above value of vj
h(xj), we derive

(3.8) (1− δj)v
j
h + δjfj = (1− δj)

j−1∑
k=0

fkδkφj,k + δjfj .

Upon observing that

(3.9) φj+1,k = (1− δj)φj,k for any k = 0, 1 . . . , n

and that φj+1,j = 1 is a special case of (3.9), we infer

(1− δj)uj + δjfj =
j∑

k=0

fkδkφj+1,k.

Therefore,

(3.10) Jh(vj
h) =

(
βj + 1

2hj

) ∣∣∣∣∣
n∑

k=0

fkδkφj+1,k

∣∣∣∣∣
Let us now compare Jh(vj

h) and Jh(vj−1
h ) for 1 ≤ j ≤ n. Using (3.9) we derive

Jh(vj
h) =

βj + 1
2hj

βj−1 + 1
2hj−1

|1− δj |Jh(vj−1
h )
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Let rj be the ratio Jj/Jj−1. Using the definition of δj , we obtain

rj =
βj + 1

2hj

βj−1 + 1
2hj−1

|1− δj | =
|βj − 1

2hj |
βj−1 + 1

2hj−1

.

On the one hand, the condition (2.2) guarantees that if h is small enough, βj ≥ 1
2hj ,

i.e.,

rj =
βj − 1

2hj

βj−1 + 1
2hj−1

On the other hand, the condition (2.3) implies

βj = βj−1 +
∫ x1+1/2

xi−1/2

β′(x)dx < βj−1 + 1
2 (hj + hj−1),

which means rj < 1. In conclusion, Jh(vj
h) < Jh(vj−1

h ), which yields

0 ≤ Jh(vn
h) < · · · < Jh(v0

h).

This completes the proof. �

The above results shows that the L1-minimizer approximates the solution to
the initial value problem (2.1) on the cells {I0, I1, . . . , In−1}, and does not solve
anything on the last cell In. Let us denote by uh the minimizer, then the node
values of uh are

(3.11) uh(xi) =
i−1∑
k=0

fkδkφi,k, 1 ≤ i ≤ n.

4. Error analysis

We establish consistency, stability, and prove convergence in this section. The
main result is reported in Theorem 7. Henceforth, c is generic constant that does
not depend on h and the value of which may vary at each occurrence.

Corollary 4. Let uh solve (2.10), then uh satisfies a maximum principle

(4.1) ‖uh‖L∞ ≤ 1
βmin

‖f‖L1 .

Proof. Let i ∈ {1, . . . , n− 1}. Using the representation (3.11) for ui+1 := uh(xi+1)
together with 0 < φi+1,k ≤ 1 and 0 < δk ≤ hk/βmin for all 0 ≤ k ≤ i, we obtain

|ui+1| ≤
i∑

k=0

|fk|δk ≤
1

βmin

i∑
k=0

|fk|hk =
1

βmin

i∑
k=0

|
∫

Ik

f(t)dt| ≤ 1
βmin

‖f‖L1 .

The result follows from the fact that for piecewise linear functions we have supIk
|uh| ≤

max(|uk|, |uk+1|). �

Lemma 5 (Consistency). Let uh solve (2.10), then there is c > 0 independent of
h such that

‖L(uh)‖L1(0,xn) ≤ c‖f‖L1 , ∀f ∈ L1(Ω),(4.2)

‖L(uh)− f‖L1(0,xn) ≤ c h‖f‖BV[0,1], ∀f ∈ BV[0, 1].(4.3)
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Proof. (1) Let us first establish (4.2). Since uh is piecewise linear we have

L(uh)
∣∣
Ii

= ui + (ui+1 − ui)
x− xi

hi
+ β(x)

ui+1 − ui

hi
.

After using (3.3) in the above, we obtain

L(uh)
∣∣
Ii

= fi + ui − fi +
δi

hi
(fi − ui)(x− xi + β(x)).

We also gives

L(uh)
∣∣
Ii

= fi +
δi

hi
(ui − fi)

(
hi

δi
− (x− xi + β(x))

)
.

Therefore, we have the estimate

‖L(uh)‖L1(0,xn) ≤ R1 + R2

where

R1 :=
n−1∑
i=0

∫
Ii

|fi| dx ≤ ‖f‖L1 ,

R2 :=
n−1∑
i=0

δi

hi
|ui − fi|

∫
Ii

∣∣∣∣β(xi+1/2)− β(x) +
hi

2
− (x− xi)

∣∣∣∣ dx.

We now continue by estimating R2. Using the mean-value Theorem on β, we
infer

R2 ≤
n−1∑
i=0

δi

hi
(|ui|+ |fi|)

∫
Ii

∣∣∣∣β′(ξi)(xi+1/2 − x) +
hi

2
− (x− xi)

∣∣∣∣ dx(4.4)

=
n−1∑
i=0

δi

hi
(|ui|+ |fi|)

∫
Ii

∣∣(β′(ξi) + 1)(xi+1/2 − x)
∣∣ dx

≤ ‖β′ + 1‖∞
n−1∑
i=0

δi

hi
(|ui|+ |fi|)

∫
Ii

∣∣xi+1/2 − x
∣∣ dx

≤ c
n−1∑
i=0

δihi (|ui|+ |fi|) ≤ c h
n−1∑
i=0

δi (|ui|+ |fi|) .

Note that δi ≤
hi

βmin
and by applying (4.1) we obtain

n−1∑
i=0

δi (|ui|+ |fi|) ≤
1

βmin

(
1

βmin
‖f‖L1 + ‖f‖L1

)
,

which in turn yields
R2 ≤ c h‖f‖L1 .

After combining the estimates for R1 and R2, we obtain the desired result.
(2) We now establish (4.3). By proceeding as in step (1), we obtain

(L(uh)− f)(x)
∣∣
Ii

= fi − f(x) +
δi

hi
(ui − fi)

(
hi

δi
− (x− xi + β(x))

)
.

This yields the estimate

‖L(uh)− f‖L1(0,xn) ≤ R3 + R2
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where R2 is defined above and

R3 :=
n−1∑
i=0

∫
Ii

|fi − f(x)| dx.

If f is in BV[0, 1], we clearly have R3 ≤ c h‖f‖BV[0,1]. Combining this bound with
that on R2 already obtained in step (1), we deduce the desired result. �

Lemma 6 (Stability). There is c > 0 such that for all n and all φ ∈ W 1,1(0, xn)
with φ(0) = 0

‖φ‖W 1,1(0,xn) ≤ c‖L(φ)‖L1(0,xn).

Proof. Using the chain rule for functions in W 1,1, we infer

(4.5) |φ|+ β(x)
d

dx
|φ| = sgn(φ)L(φ),

and integrating over Ih := [0, xn] gives∫
Ih

|φ|dx +
∫

Ih

β
d

dx
|φ|dx ≤

∫
Ih

|L(φ)|dx.

We integrate by parts and obtain∫
Ih

(1− β′(x))|φ|dx + β(xn)|φ(xn)| ≤
∫

Ih

|L(φ)|dx.

The assumptions (2.3) implies 1− β′(x) ≥ c0 > 0. Therefore we conclude∫
Ih

|φ|dx ≤ 1
c0

∫
Ih

|L(φ)|dx.

Moreover, using (2.2) we infer

|φ′| ≤ 1
βmin

|β(x)φ′| ≤ 1
βmin

(|L(φ)|+ |φ|),

which yields the desired result. �

The main result of this section is the following

Theorem 7 (Convergence). Let u be the solution to (2.1) (i.e., the viscosity solu-
tion of (2.4)). There is c independent of n and h such that for all f ∈ BV[0, 1]

‖u− uh‖W 1,1(0,xn) ≤ ch‖f‖BV[0,1].

If f is only in L1(Ω), we have limh→0 ‖u− uh‖W 1,1(0,xn) = 0.

Proof. (1) Use the stability estimate in Lemma 6 together with the consistency
estimate (4.3) to deduce

(4.6)
‖u− uh‖W 1,1(0,xn) ≤ c‖L(u− uh)‖L1(0,xn)

= c‖f − L(uh)‖L1(0,xn) ≤ c h‖f‖BV[0,1].

(2) Let us assume that f is in L1(Ω) only. Let ε > 0 be a real number. By
density, there is f ε ∈ BV[0, 1] such that ‖f − f ε‖L1 ≤ ε. Let uε

h be the L1-
minimizer corresponding to the source term f ε. By linearity of (3.11), it is clear
that uε

h − uh is the minimizer corresponding to the source term f ε − f . Then,
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using the stability estimate in Lemma 6, the consistency estimate (4.2), together
the bound established in step (1), we infer

‖u− uh‖W 1,1(0,xn) ≤ c‖L(u− uh)‖L1(0,xn)

≤ c(‖Lu− Luε)‖L1(0,xn) + ‖Luε − Luε
h‖L1(0,xn) + ‖L(uε

h − uh)‖L1(0,xn))

≤ c(‖f − f ε‖L1(0,xn) + ‖f ε − Luε
h‖L1(0,xn) + ‖f ε − f‖L1(0,xn))

≤ c(ε + h‖f ε‖BV[0,1]).

This implies
lim sup

h→0
‖u− uh‖W 1,1(0,xn) ≤ c ε,

which in turn implies limh→0 ‖u− uh‖W 1,1(0,xn) = 0, since ε is arbitrary. �

5. Conclusions

Of course the result presented in this paper is unfortunately very partial, since it
is restricted to the one-dimensional situation and linear finite elements. Moreover,
we are aware that it relies too much on technicalities such as an explicit computation
of the minimizer of (2.10). A better understanding of the situation should come
from a more abstract handling of the problem, which eludes us at the present time.
Nevertheless, to the best of our knowledge Theorem 7 is the first theoretical result
that explains why L1-best approximation of linear advection equations equipped
with ill-posed boundary equations converge to viscosity solutions. As such, this
result tends to confirm the findings in [4], i.e., L1-approximation techniques are
promising and are worth exploring further.
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