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Abstract

In the present paper the edge stabilization technique is applied to a convection-diffusion

problem with exponential boundary layers on the unit square, using a Shishkin mesh with

bilinear finite elements in the layer regions and linear elements on the coarse part of the

mesh. An error bound is proved for
∥

∥πu − u
h
∥

∥

E
, where πu is some interpolant of the

solution u and u
h the discrete solution. This supercloseness result implies an optimal

error estimate with respect to the L2 norm and opens the door to the application of

postprocessing for improving the discrete solution.

Mathematics subject classification: 65N15, 65N30, 65N50.
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1. Introduction

Consider the model convection-diffusion problem

−ε∆u − b · ∇u + cu = f in Ω = (0, 1)2, u = 0 on Γ = ∂Ω (1.1)

with a small perturbation parameter 0 < ε ≪ 1 and bi ≥ βi > 0 on Ω̄, i = 1, 2, with constants

βi. Furthermore, let

c +
1

2
divb ≥ γ > 0 on Ω̄. (1.2)

This ensures the existence of a weak solution in H1
0 (Ω)∩H2(Ω). The presence of the parameter ε

causes the formation of regular layers at the outflow boundary at x = 0 and y = 0.

It is well known that the Galerkin finite element method applied to (1.1) with linear or

bilinear finite elements leads on standard meshes to wild non-physical oscillations in the discrete

solution.

The need of avoiding these oscillations and to resolve layer structures results in the use of

layer-adapted meshes which are highly anisotropic and non-uniform. On the probably simplest

layer-adapted mesh, the Shishkin mesh (see Section 2), standard Galerkin with O
(

N2
)

mesh

points was shown to converge uniformly by Stynes and O’Riordan [18] ten years ago:
∣

∣

∣

∣

∣

∣u − uh
∣

∣

∣

∣

∣

∣

ε
≤ CN−1 lnN. (1.3)
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where here and throughout C is a constant independent of ε and |||v|||ε := ε1/2|v|1 + γ‖v‖0

is the ε-weighted H1 norm. The fine mesh in the layer region induces some stability, but

the computed solution still exhibits mild oscillations (see the numerical experiments in [12]).

Moreover, the stiffness matrix of the generated discrete problem has eigenvalues with large

imaginary parts, and consequently standard iterative methods do not solve the discrete systems

efficiently. Therefore, additional stabilization seems to be necessary even when layer-adapted

meshes are used.

Stynes and Tobiska [19] analyzed stabilization by the streamline-diffusion finite element

method (SDFEM) on the coarse part of the Shishkin mesh. But the relatively popular SD-

FEM has some remarkable disadvantages: applied to systems of differential equations it causes

non-physical couplings of unknowns [14], while for optimal control problems difficulties in the

adjoint equation arise [2]. Consequently, recently new stabilization techniques as local projec-

tion schemes, the variational multiscale methods and edge stabilization appeared (for a survey,

see [16]).

In the present paper we shall consider instead an edge stabilization technique, which is also

called continuous interior penalty method (CIP). It was introduced and analyzed by Burman

and Hansbo [4, 5]. On a shape-regular, locally uniform mesh they proved for linear elements

∣

∣

∣

∣

∣

∣u − uh
∣

∣

∣

∣

∣

∣

E
≤ C

(

ε1/2 + h1/2
)

h|u|2.

In the convection-dominated case this estimate is of little worth because |u|2 → ∞ for ε → 0.

However, the local estimates of [6] show that edge stabilization is fine away from the layers.

It is our aim to combine the Galerkin finite element method with bilinears on the fine

part of a Shishkin mesh with edge stabilization for linear elements on the coarse part of the

mesh. Numerical experiments have shown that bilinear elements should be preferred to linear

elements in layer regions because they yield higher-order accuracy; see [13]. This is due to

supercloseness properties of bilinear elements, cf. [10, 20]. This seems to contradict “normal”

mesh design where triangles should be used at the boundary of the domain. However, in the

singularly perturbed case the situation is different because of the highly anisotropic behaviour

of the solution near boudaries. First rectangular boundary-layer meshes are constructed and

second the remaining domain is triangulated; see also [15].

Similar to streamline-diffusion it is impossible to get a better estimate then (1.3) for the

error in the energy norm. However, for the difference of the numerical solution and a certain

interpolant of the exact solution we shall prove in a norm stronger than the ε-weighted norm

∣

∣

∣

∣

∣

∣πu − uh
∣

∣

∣

∣

∣

∣

E
≤ C

(

ε1/2N−1 + N−3/2
)

.

This is a supercloseness result and allows for the application of postprocessing techniques giving

a new approximate solution Puh whose error is significantly smaller than that of uh.

2. Derivative Bounds and Mesh Construction

For the construction of properly adapted meshes and for the analysis of the resulting method

it is essential to have precise knowledge of the behaviour of the solution and its derivatives. As

in [10] we shall assume the solution of (1.1) admits the representation

u = S + E1 + E2 + E12, (2.1a)
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with

∣

∣∂i
x∂j

yS(x, y)
∣

∣ ≤ C, (2.1b)
∣

∣∂i
x∂j

yE1(x, y)
∣

∣ ≤ Cε−ie−β1x/ε, (2.1c)
∣

∣∂i
x∂j

yE2(x, y)
∣

∣ ≤ Cε−je−β2y/ε (2.1d)
∣

∣∂i
x∂j

yE12(x, y)
∣

∣ ≤ Cε−(i+j)e−(β1x+β2y)/ε (2.1e)

for 0 ≤ i + j ≤ 3 and all (x, y) ∈ Ω̄. Conditions that guarantee the existence of such a

decomposition can be derived using the technique from [12].

In order to resolve the boundary layers in u we shall use a so called Shishkin mesh [17].

This is constructed as follows. Define the mesh transition points

λi := min

{

1

2
, σ

ε

βi
lnN

}

, i = 1, 2,

with a parameter σ > 0 that will be defined later. We assume

λi =
σε

βi
lnN ≤

1

2
(2.2)

as otherwise N is exponentially large compared to 1/ε and the method can be analysed in a

conventional manner.

Ωc

Ωf

Fig. 2.1. Dissection and triangulation T
N of Ω

We dissect Ω into two subdomainsΩc := (λ1, 1)× (λ2, 1) and Ωf := Ω \ Ω̄c, see Fig 2.1. The

set of mesh points (xi, yj) of the Shishkin mesh on Ωf is given by

xi =

{

2iλ1/N, for i = 0, . . . , N
2

1 − 2(N − i)(1 − λ1)/N, for i = N
2 , . . . , N

and

yj =

{

2jλ2/N, for j = 0, . . . , N
2

1 − 2(N − j)(1 − λ2)/N, for j = N
2 , . . . , N.
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Drawing lines parallel to the x- and y-axes through these mesh points we obtain a triangulation

of the domain Ωf into rectangles. On Ωc we shall use an arbitrary quasi-uniform triangulation

of mesh width h = O(N−1) into triangles, see Fig. 2.1. The combined triangulation is T N with

the obvious subsets T N
c and T N

f . Elements of the triangulation will be denoted by τ and its

edges by e with EN
c being the set of all interior edges of T N

c .

For the formulation and analysis of our method define

Ω∗
c := (xN/2−1, 1) × (yN/2−1, 1) and Ωt := Ω∗

c \ Ω̄c.

Thus Ω∗
c is Ωc extended by a ply of rectangles into the layer region Ωf , while the transition

region Ωt is the union of these elements.

3. Discretization

We start from a variational formulation of (1.1). The boundary conditions on the inflow

part Γ∗−
c of Ω∗

c will be imposed weakly. Note that Γ∗−
c = {(x, y) ∈ Γ∗−

c : −b · n < 0}, i.e., the

north and east sides of Ω∗
c . Let

V :=
{

v ∈ H1(Ω) : v|Γ\Γ∗−

c
≡ 0

}

.

Then a weak formulation of (1.1) is: Find u ∈ V such that

ã(u, v) = (f, v) ∀v ∈ V (3.1a)

with

ã(u, v) := a(u, v) + abc(u, v), a(u, v) := ε (∇u,∇v) − (b · ∇u − cu, v) (3.1b)

and

abc(u, v) :=

∫

Γ∗−

c

b · nuv − ε

∫

Γ∗−

c

(∂nuv + u∂nv) + γbc

∑

e⊂Γ∗−

c

ε

he

∫

e

uv, (3.1c)

where ∂n is the outward-normal derivative of Ω and he the length of the edge e, while (·, ·)D

denotes the standard scalar product in L2(D). If D = Ω we drop Ω from the notation. The

parameter γbc > 0 penalizes the violation of the boundary conditions. Note, if (1.1) possesses

a solution u ∈ H2(Ω) it solves (3.1a) too. On V let us define the standard energy norm

|||v|||2ε := ε ‖∇v‖2
0 + γ ‖v‖2

0

and

|||v|||
2

:= |||v|||
2
ε +

1

2

∫

Γ∗−

c

b · nv2 + γbc

∑

e⊂Γ∗−

c

ε

he

∫

e

v2.

This is a norm because b · n > 0 on Γ∗−
c . Furthermore

− (b · ∇v, v) =
1

2

(

divb, v2
)

−
1

2

∫

Γ∗−

c

b · nv2 ∀ v ∈ V.



36 S. FRANZ, T. LINSS, H.-G. ROOS AND S. SCHILLER

Therefore

ã(v, v) ≥ |||v|||
2

∀ v ∈ V,

i.e., ã(·, ·) is coercive on V with respect to the norm |||·|||.

Introducing the FE space

V h :=
{

v ∈ V : v|τ ∈ P1(τ) ∀ τ ∈ T N
c and v|τ ∈ Q1(τ) ∀ τ ∈ T N

f

}

,

an immediate discretization of (3.1a) is: Find uh ∈ V h such that

a(uh, vh) =
(

f, vh
)

∀vh ∈ V h.

In order to introduce additional stability we penalize jumps in the gradient of uh across

interelement boundaries on Ωc. Let

J(w, v) := γJh2
∑

e∈EN
c

∫

e

[∇w] · [∇v] ,

where [v] denotes the jump of v across the edge e. Note, if u ∈ H2(Ω) then J(u, v) = 0 for all

v ∈ V . Therefore the term J(u, v) can be added to the bilinear form a(·, ·) without affecting

the Galerkin orthogonality property. Moreover, if γJ ≥ 0, then

J(v, v) ≥ 0 ∀ v ∈ V,

which yields improved stability.

Our final discretization is: Find uh ∈ V h such that

aE

(

uh, vh
)

:= ã
(

uh, vh
)

+ J
(

uh, vh
)

= (f, vh) ∀ vh ∈ V h. (3.2)

This bilinear form is coercive with

aE

(

vh, vh
)

= ã
(

vh, vh
)

+ J
(

vh, vh
)

≥
∣

∣

∣

∣

∣

∣vh
∣

∣

∣

∣

∣

∣

2
+ J

(

vh, vh
)

=:
∣

∣

∣

∣

∣

∣vh
∣

∣

∣

∣

∣

∣

2

E
∀ vh ∈ V h. (3.3)

The discretization is consistent if u ∈ H2(Ω):

aE

(

u − uh, vh
)

= 0 ∀ vh ∈ V h. (3.4)

4. Analysis of the Method

In the error analysis we shall use a special projection operator that combines the L2 pro-

jection on the coarse mesh region Ωc with the standard nodal interpolant in the layer region.

For w ∈ L2(Ωc) let π2w denote its L2 projection onto

V h
c :=

{

v ∈ H1(Ωc) : v|τ ∈ P1(τ) ∀ τ ∈ T N
c

}

,

i.e.,

π2 : w 7→ π2w ∈ V h
c with

(

π2w − w, vh
)

= 0 ∀ vh ∈ V h
c .
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Given a function w ∈ V , our special projection π is defined by

π : w 7→ πw ∈ V h with
(

πw
)

(xi, yj) =

{

(

π2w
)

(xi, yj) if i, j ≥ N/2,

w(xi, yj) otherwise.

Let wI denote that nodal interpolant of w that is piecewise bilinear on Ωf and linear on Ωc.

Then πw = wI on Ω \ Ω∗
c and πw = π2w on Ωc, while on Ωt we have a bilinear blending of wI

and π2w.

The error analysis follows standard paths and starts from the coercivity and the Galerkin

orthogonality of the method. Let χ := πu − uh and η := πu − u. Then

|||χ|||2E ≤ aE (χ, χ) = aE (η, χ) = a (η, χ) + abc(η, χ) + J(η, χ).

Denoting by a·(·, ·)D that the integrations and summations in the bilinear form are restricted

to D, we can split the right-hand side of the last inequality and obtain

|||χ|||
2
E ≤ a

(

uI − u, χ
)

Ωf
+ a

(

πu − uI , χ
)

Ωt
+ abc(πu − u, χ)Γ∗−

c ∩∂Ωt

+ a (π2u − u, χ)Ωc
+ abc(π2u − u, χ)Γ∗−

c ∩∂Ωc
+ J(π2u − u, χ).

(4.1)

The first term can be bounded using results from [10,20] (see also [11]):

a
(

uI − u, χ
)

Ωf
≤ CN−2 ln2 N |||χ|||ε for arbitrary σ > 0. (4.2)

For the remaining terms we need estimates for the L2-projection error on Ωc. These will be

provided in the next section after which we return to the analysis of the approximation error.

4.1. Projection-error estimates

For the nodal interpolant on a Shishkin mesh with σ ≥ 2 we have the bounds

∣

∣

∣

∣

∣

∣u − uI
∣

∣

∣

∣

∣

∣

ε
≤ CN−1 lnN and

∥

∥u − uI
∥

∥

∞
≤

{

CN−2 ln2 N on Ω̄f ,

CN−2 on Ω̄c,
(4.3)

see [8, 11]. These bounds are sharp.

Lemma 4.1. The L2-projection on Ωc possesses the following stability properties:

‖π2w‖s,Ωc
≤ ‖w‖s,Ωc

∀w ∈ Hs(Ωc), s = 0, 1,

‖π2w‖∞,Ωc
≤ ‖w‖∞,Ωc

∀w ∈ L∞(Ωc).

Proof. The triangulation on Ωc is shape-regular and locally quasi uniform. Therefore the

results from [7] apply. �

Lemma 4.2. There exists a constant C such that for any τ ∈ T N
c the following trace inequality

holds

‖w‖
2
0,∂τ ≤ C

(

h−1‖v‖2
0,τ + h‖v‖2

1,τ

)

∀ v ∈ H1(τ)

Proof. See [3]. �



38 S. FRANZ, T. LINSS, H.-G. ROOS AND S. SCHILLER

Theorem 4.1. Let u be the solution of (1.1). Then on a Shishkin mesh with σ ≥ 2

(i) ‖u − π2u‖0,Ωc
≤ Ch2,

(ii) ε1/2 ‖∇ (u − π2u)‖0,Ωc
≤ C

(

h2 + ε1/2h
)

,

(iii) ‖u − π2u‖∞,Ωc
≤ Ch2,

(iv) J(u − π2u, u − π2u)1/2 ≤ Ch3/2

(v) ‖∂n(u − π2u)‖0,Γ−

c
≤ Ch1/2.

Proof. For w ∈ H2 the error of the L2 projection satisfies

‖w − π2w‖0,Ωc
+ h |w − π2w|0,Ωc

≤ Ch2 ‖w‖2,Ωc
. (4.4)

(i) Recalling the decomposition of u = S + E, E = E1 + E2 + E12, we estimate

‖u − π2u‖0,Ωc
≤ ‖S − π2S‖0,Ωc

+ ‖E − π2E‖0,Ωc
≤ Ch2 ‖S‖2,Ωc

+ ‖E‖0,Ωc
≤ Ch2,

where we have used Lemma 4.1 and (2.1).

(ii) The result can be established by using

|u − π2u|1,Ωc
≤ |S − π2S|1,Ωc

+ |E − π2E|1,Ωc

≤Ch ‖S‖2,Ωc
+ |E|1,Ωc

≤ C
(

h + ε−1/2h2
)

,

and by Lemma 4.1 and (2.1).

(iii) Use Lemma 4.1 to estimate as follows

‖u − π2u‖∞,Ωc
≤

∥

∥u − uI
∥

∥

∞,Ωc
+

∥

∥π2u
I − π2u

∥

∥

∞,Ωc
≤ C

∥

∥u − uI
∥

∥

∞,Ωc
.

The nodal interpolation error has been studied in, e.g. [11]. We then get the third bound.

(iv) Next consider J(·, ·). Clearly,

J(u − π2u, u − π2u)1/2 ≤ J(S − π2S, S − π2S)1/2 + J(E − π2E, E − π2E)1/2

and we bound the two terms separately. Let τ, τ∗ ∈ T N
c be the two mesh triangles with common

edge e ∈ EN
c . Lemma 4.2 yields

∫

e

[∇(S − π2S)]
2
≤ C

(

h−1 ‖∇(S − π2S)‖
2
0,τ∪τ∗ + h ‖S‖

2
2,τ∪τ∗

)

.

Thus

γJh2
∑

e∈EN
c

∫

e

[∇(S − π2S)]2 ≤C
(

h ‖∇(S − π2S)‖2
0,Ωc

+ h3 ‖S‖2
2,Ωc

)

≤Ch3 ‖S‖
2
2,Ωc

≤ Ch3

by (4.4) and (2.1).

Because E ∈ C1(Ωc)

∫

e

[∇(E − π2E)]
2

=

∫

e

[∇(π2E)]
2

≤Ch−1 ‖∇(π2E)‖
2
0,τ∪τ∗ ≤ Ch−3 ‖π2E‖

2
0,τ∪τ∗ ,
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by Lemma 4.2 and an inverse inequality on τ . Summing over all edges, we get

γJh2
∑

e∈EN
c

∫

e

[∇(E − π2E)]
2
≤ Ch−1 ‖π2E‖

2
0,Ωc

≤ Ch−1 ‖E‖
2
0,Ωc

≤ Ch3,

by Lemma 4.1, (2.1) and because σ ≥ 2.

(v) Finally,

‖∂n(u − π2u)‖0,Γ−

c

≤‖∂n(S − π2S)‖0,Γ−

c
+ ‖∂n(π2E)‖0,Γ−

c
+ ‖∂nE‖0,Γ−

c
.

Lemma 4.2 yields for e ⊂ ∂τ

‖∂n(S − π2S)‖
2
0,e ≤ C

(

h−1 ‖S − π2S‖
2
1,τ + h ‖S‖

2
2,τ

)

.

Thus

‖∂n(S − π2S)‖
2
0,Γ−

c

≤C
(

h−1 ‖S − π2S‖
2
1,Ωc

+ h ‖S‖2
2,Ωc

)

≤ Ch ‖S‖2
2,Ωc

≤ Ch,

by standard L2-projection error bounds. Next,

‖∂n(π2E)‖0,e ≤ Ch−1/2 ‖π2E‖1,τ ≤ Ch−3/2 ‖π2E‖0,τ ,

because π2E is polynomial. Therefore

‖∂n(π2E)‖0,Γ−

c
≤ Ch−3/2 ‖π2E‖0,Ωc

≤ Ch1/2,

by Lemma 4.1 and (2.1). From the decomposition (2.1), we have

|∂nE(x, y)| ≤ C
[

N−σ + ε−1
(

e−β1/ε + e−β2/ε
)]

for (x, y) ∈ Γ−
c .

For h < 1
2 we have λ1 + h ≤ 1 and therefore

e−β1/ε ≤ e−β1(λ1+h)/ε ≤ N−σe−β1h/ε ≤ Cεhσ−1,

which is easily verified since ξe−β1ξ is bounded for ξ → ∞. We obtain

‖∂nE‖0,Γ−

c
≤ Chσ−1.

Collecting the results, we get the final estimate of the theorem. �

4.2. Approximation error

Now we return to bounding the various error contributions in (4.1).
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4.2.1. Coarse mesh region Ωc

Here we have to bound, with η = π2u − u,

a (η, χ)Ωc
+ abc(η, χ)Γ∗−

c ∩∂Ωc
+ J(η, χ)

= ε (∇η,∇χ)Ωc
+ (η, b · ∇χ)Ωc

+ ((c + divb)η, χ)Ωc
+ J(η, χ)

+

∫

Γ+
c

b · nηχ − ε

∫

Γ−

c

(∂nηχ + η∂nχ) + γbc

∑

e⊂Γ−

c

ε

he

∫

e

ηχ,

where Γ+
c is the outflow boundary of Ωc and Γ−

c its inflow boundary.

Immediate consequences of the Cauchy-Schwarz inequality and of Theorem 4.1 are

ε
∣

∣(∇η,∇χ)Ωc

∣

∣ ≤ C
(

h2 + ε1/2h
)

|||χ|||ε ,
∣

∣((c + divb)η, χ)Ωc

∣

∣ ≤ Ch2 ‖χ‖0 , |J(η, χ)| ≤ Ch3/2J(χ, χ)1/2,

γbc

∣

∣

∣

∣

∣

∣

∑

e⊂Γ−

c

ε

he

∫

e

ηχ

∣

∣

∣

∣

∣

∣

≤ C
ε1/2

h1/2
‖η‖∞,Γ−

c

∥

∥

∥
(γbcε/h)

1/2
χ
∥

∥

∥

0,Γ−

c

≤ C
(

h3/2 + ε1/2h
)

|||χ||| .

An inverse inequality yields

ε

∣

∣

∣

∣

∫

Γ−

c

η∂nχ

∣

∣

∣

∣

≤ ε ‖η‖∞,Γ−

c
‖∂nχ‖0,Γ−

c

≤C
ε

h
‖η‖∞,Γ−

c
‖χ‖0,Γ−

c
≤ C

(

h3/2 + ε1/2h
)

|||χ||| .

From Theorem 4.1(v) we get

ε

∣

∣

∣

∣

∫

Γ−

c

∂nηχ

∣

∣

∣

∣

≤ Cε1/2h1/2 ‖∂nη‖0,Γ−

c

∥

∥

∥
(γbcε/h)1/2 χ

∥

∥

∥

0,Γ−

c

≤ Cε1/2h |||χ||| .

Next Theorem 4.1(iii) gives

∣

∣

∣

∣

∫

Γ+
c

b · nηχ

∣

∣

∣

∣

≤ Ch2‖χ‖0,Γ+
c
≤ Ch3/2‖χ‖0,

since ‖w‖0,e ≤ Ch−1/2‖w‖0,τ for polynomials w and any e ⊂ ∂τ with τ ∈ T N
c .

Now only the term (η, b · ∇χ)Ωc
remains to be estimated. For this purpose the following

auxiliary result will be used.

Lemma 4.3. Let Ṽ h
c be the space of piecewise linear, but not necessarily continuous functions

over T N
c . Then there exists a projection operator π∗ : H2(Ωc) → V h

c and a constant C, such

that

‖p − π∗p‖2
0,Ωc

≤ Ch
∑

e∈EN
c

[p]2 ∀p ∈ Ṽ h
c .

Proof. See [4]. �
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We proceed as follows. With b
I denoting the piecewise linear nodal interpolant of b, we

have

(η, b · ∇χ)Ωc
=

(

η, (b − b
I) · ∇χ

)

Ωc

+
(

η, bI · ∇χ
)

Ωc

. (4.5)

The first term is easily bounded by
∣

∣

∣

∣

(

η, (b − b
I) · ∇χ

)

Ωc

∣

∣

∣

∣

≤ Ch4 ‖∇χ‖Ωc
≤ Ch3 ‖χ‖Ωc

,

by Theorem 4.1(i), standard interpolation error bounds for b − b
I and an inverse inequality.

For the second term in (4.5) use the orthogonality of the L2 projection
∣

∣

∣

∣

(

η, bI · ∇χ
)

Ωc

∣

∣

∣

∣

=

∣

∣

∣

∣

(

η, bI · ∇χ − π∗(bI · ∇χ)
)

Ωc

∣

∣

∣

∣

≤ Ch5/2

(

∑

e∈EN
c

[bI · ∇χ]2
)1/2

≤ Ch3/2J(χ, χ)1/2

by Lemma 4.3 and Theorem 4.1(i).

Summarizing the results of this section, we have
∣

∣

∣
a (η, χ)Ωc

+ abc(η, χ)Γ∗−

c ∩∂Ωc
+ J(η, χ)

∣

∣

∣
≤ C

(

ε1/2h + h3/2
)

|||χ|||E . (4.6)

4.2.2. Transition region Ωt.

Let us consider a
(

πu − uI , χ
)

Ωt
and abc(πu − u, χ)Γ∗−

c ∩∂Ωt
.

First, note that

∥

∥πu − uI
∥

∥

∞,Ωt
≤ CN−2 (4.7)

because the piecewise bilinear function πu − uI vanishes at the outflow boundary of Ωt and

therefore it can be bounded by the maximum of π2u − uI on Γ+
c for which an upper bound is

provided by Theorem 4.1(iii).

Let Γ̃ := Γ ∩ Γt which consists of just two edges in the layer region next to the transition

line. By Ω̃ we denote domain formed by the two elements τ ∈ T N
f adjacent to Γ̃. Then

a
(

πu − uI , χ
)

Ωt
+ abc(πu − u, χ)Γ∗−

c ∩∂Ωt

= ε
(

∇(πu − uI),∇χ
)

Ωt
+

(

πu − uI , (c + divb)χ + b · ∇χ
)

Ωt

−
(

b · n(πu − uI), χ
)

Γ+
c

+
(

b · n(uI − u), χ
)

Γ̃

− ε (∂n(πu − u), χ)Γ̃ + ε (πu − u, ∂nχ)Γ̃ + γbc

∑

e⊂Γ̃

ε

he
(πu − u, χ)e

=: I1 + I2 + I3 + I4 + I5 + I6 + I7.

(I1) An inverse inequality and (4.7) give

∥

∥∇(πu − uI)
∥

∥

0,Ωt
≤ Cε−1/2N−3/2 ln−1/2 N.

Thus

|I1| ≤ CN−3/2 |||χ|||ε .
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(I2) By (4.7)

∥

∥πu − uI
∥

∥

0,Ωt
≤ Cε1/2N−5/2 ln1/2 N

and therefore

|I2| ≤ CN−5/2 ln1/2 N |||χ|||ε .

(I3) Again we start from (4.7):

∥

∥πu − uI
∥

∥

0,Γ+
c
≤ CN−2.

A discrete trace inequality yields

‖χ‖0,Γ+
c
≤ Ch−1/2 ‖χ‖0,Ωc

.

Thus

|I3| ≤ CN−3/2 ‖χ‖0,Ωc
.

(I4) The interpolation error bound (4.3) gives

∥

∥uI − u
∥

∥

0,Γ̃
≤ Cε1/2N−5/2 ln5/2 N,

while by a discrete trace inequality we obtain

‖χ‖0,Γ̃ ≤ Ch−1/2 ‖χ‖0,Ω̃ . (4.8)

Hence

|I4| ≤ CN−2 ln2 N ‖χ‖0,Ω ≤ CN−3/2 ‖χ‖0,Ω .

(I5) First let us derive a pointwise bound for ∂n(πu − u). By a triangle inequality

‖∂n(πu − u)‖∞,Γ̃ ≤
∥

∥∂n(πu − uI)
∥

∥

∞,Γ̃
+

∥

∥∂n(uI − u)
∥

∥

∞,Γ̃
.

The step size normal to Γ̃ is O
(

N−1
)

. Therefore and by (4.7)

∥

∥∂n(πu − uI)
∥

∥

∞,Γ̃
≤ CN−1.

Next let us consider ∂n(uI − u) on the edge ẽ = [xN/2−1, xN/2] × {1}, with the adjacent mesh

rectangle τ̃ . Here ∂n = ∂y. Therefore

∥

∥∂n(uI − u)
∥

∥

∞,ẽ
≤

∥

∥∂y(uI − u)
∥

∥

∞,τ̃
≤ C

(

N−1 ‖∂yyu‖∞,τ̃ + εN−1 lnN ‖∂xyu‖∞,τ̃

)

,

by an anisotropic interpolation error bound [1]. By (2.1) we have

‖∂yyu‖∞,τ̃ ≤ C and ‖∂xyu‖∞,τ̃ ≤ C
(

1 + ε−1N−σ
)

.

Hence

∥

∥∂n(uI − u)
∥

∥

∞,ẽ
≤ CN−1
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with an identical bound for the other edge in Γ̃. Thus

‖∂n(πu − u)‖∞,ẽ ≤ CN−1.

Integrating over Γ̃, we get
∥

∥∂n(πu − uI)
∥

∥

0,Γ̃
≤ Cε1/2N−3/2 ln1/2 N.

Use (4.8) in order to obtain

ε
∣

∣

(

∂n(πu − uI), χ
)

Γ̃

∣

∣ ≤ Cε1/2N−1 ‖χ‖0 .

(I6) A triangle inequality, (4.7) and (4.3) imply

‖πu − u‖∞,Γ̃ ≤
∥

∥πu − uI
∥

∥

∞,Γ̃
+

∥

∥uI − u
∥

∥

∞,Γ̃
≤ CN−2 ln2 N.

Thus

‖πu − u‖0,Γ̃ ≤ Cε1/2N−5/2 ln5/2 N.

Furthermore, by a discrete trace inequality

‖∂nχ‖0,Γ̃ ≤ Ch−1/2 ‖∇χ‖0,Ω̃ .

Thus

|I6| ≤ CεN−2 ln5/2 N |||χ|||ε .

(I7) By (4.8)

|I7| ≤ CεN−2 ln5/2 N
∥

∥

∥
(γbcε/h)

1/2
χ
∥

∥

∥

0,Γ̃
≤ CεN−2 ln5/2 N |||χ||| .

Collecting the various estimates of this section, we arrive at
∣

∣

∣
a

(

πu − uI , χ
)

Ωt
+ abc(πu − u, χ)Γ∗−

c ∩∂Ωt

∣

∣

∣
≤

(

ε1/2N−1 + N−3/2
)

|||χ||| . (4.9)

4.2.3. Global error

Combining the estimates (4.1), (4.2), (4.6) and (4.9) we obtain our final error bound upon

dividing by |||χ|||E .

Theorem 4.2. Assume the solution u of (1.1) satisfies (2.1). Let uh be the solution of (3.2)

on a Shishkin mesh with σ ≥ 2. Then
∣

∣

∣

∣

∣

∣πu − uh
∣

∣

∣

∣

∣

∣

E
≤ C

(

ε1/2N−1 + N−3/2
)

.

Remark 4.1. Combing Theorem 4.2 with projection error estimates of Section 4.1, we get
∣

∣

∣

∣

∣

∣πu − uh
∣

∣

∣

∣

∣

∣

E
≤ CN−1 lnN. (4.10)

Thus, Theorem 4.2 is a supercloseness result for the mixed nodal/L2 projection of the exact

solution. It can be used to construct postprocessing procedures to obtain improved estimates

for the derivatives than those provided by (4.10).

Remark 4.2. Numerical experiments for edge stabilization with purely bilinear elements on

tensor-product Shishkin meshes were presented in [9], a byproduct of the present paper. [9] also

contains a simplified convergence analysis for that special case.

A number of interesting phenomena of the finite element method on hybrid meshes were

observed during our experiments. These numerical results extend beyond the scope of the

present study and will therefore be discussed in detail in a forthcoming paper.
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