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Abstract

Fixed-point continuation (FPC) is an approach, based on operator-splitting and con-

tinuation, for solving minimization problems with `1-regularization:

min ‖x‖1 + µ̄f(x).

We investigate the application of this algorithm to compressed sensing signal recovery, in

which f(x) = 1
2
‖Ax − b‖2M , A ∈ Rm×n and m ≤ n. In particular, we extend the original

algorithm to obtain better practical results, derive appropriate choices for M and µ̄ under a

given measurement model, and present numerical results for a variety of compressed sensing

problems. The numerical results show that the performance of our algorithm compares

favorably with that of several recently proposed algorithms.
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Key words: `1 regularization, Fixed-point algorithm, Continuation, Compressed sensing,

Numerical experiments.

1. Introduction

The fixed-point continuation (FPC) algorithm proposed in [40] can be used to compute
sparse solutions for under-determined linear systems Ax = b using the weighted least-squares
formulation

min
x∈Rn

‖x‖1 +
µ̄

2
‖Ax− b‖2M , (1.1)

where A ∈ Rm×n, m < n, ‖p‖2M = pTMp and M is positive definite. This paper describes im-
plementation details and usage guidelines for this setting, and summarizes a series of numerical
experiments. The experiments simulate compressed sensing applications and provide for direct
comparison of FPC with three other state-of-the-art compressed sensing recovery algorithms:
GPSR [36], l1−ls [42], and StOMP [27].

1.1. Background

In some applications, sparse solutions, that is, vectors that contain many zero elements, are
preferred over dense solutions that are otherwise equally suitable. This was recognized early
in geophysics, where sparse spike train signals are often of interest and data may include large
sparse errors [18, 46, 60, 63]. The signal processing community seeks sparse vectors so as to
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describe a signal with just a few waveforms; similarly, statisticians often want to identify a
parsimonious set of explanatory variables [17,28,50,51,64].

A direct, but computationally intractable, method for finding the sparsest solution to an
under-determined linear system is to minimize the so-called “`0-norm”, that is, the number of
nonzeros in a vector. On the other hand, minimizing or bounding ‖x‖1 has long been recognized
as a practical substitute, as the two are equivalent under suitable conditions. This yields the
so-called basis pursuit problem [17]

min
x∈Rn

{‖x‖1 |Ax = b} . (1.2)

If the “observation” b is contaminated with noise ε, i.e.,

b = Ax+ ε,

then an appropriate norm of the residual Ax − b should be minimized or constrained. Such
considerations yield a family of related optimization problems. For instance, if the noise is
Gaussian then the `1-regularized least squares problem

min
x∈Rn

‖x‖1 +
µ̄

2
‖Ax− b‖22, (1.3)

would be appropriate, as would the Lasso problem [64]

min
x∈Rn

{
‖Ax− b‖22 | ‖x‖1 ≤ t

}
, (1.4)

which is equivalent to (1.3) given appropriate constants µ̄ and t. Note that formulations (1.1)
and (1.3) are equivalent since a weighting matrix M can be incorporated in (1.3) by multiplying
A and b on the left by M1/2. We use the explicitly weighted formulation (1.1) because it arises
naturally from the stochastic measurement model introduced in Section 3.1.

1.2. l1-Regularization and Compressed Sensing

Compressed Sensing is the name assigned to the idea of encoding a large sparse signal us-
ing a relatively small number of linear measurements, and decoding the signal either through
minimizing the `1-norm (or its variants) or employing a greedy algorithm. The current burst
of research in this area is traceable to new results reported by Candes et al. [12–14], Donoho
et al. [25, 26, 68] and others [59, 65]. Applications of compressed sensing include compressive
imaging [62, 73, 74], medical imaging [48], multi-sensor and distributed compressed sensing [3],
analog-to-information conversion [43–45,67], and missing data recovery [81]. Compressed sens-
ing is attractive for these and other potential applications because one can obtain a given quan-
tity of information with fewer measurements in exchange for some additional post-processing.

In brief, compressed sensing theory shows that a sparse signal of length n can be recovered
from m < n measurements by solving an appropriate variant of (1.2), (1.3), (1.4), etc., provided
that the m × n measurement matrix A possesses certain “good” properties. To date, random
matrices and matrices whose rows are taken from certain orthonormal matrices have been
proven to be “good”. These matrices are invariably large and dense, which contradicts the usual
assumption of optimization solvers that large-scale problems appear with sparse data. The size
and density of the data involved further suggest that solution algorithms should not require
large linear system solves or matrix factorizations, and should take full advantage of available
fast transforms like FFT and DCT. Thus it is necessary to develop dedicated algorithms for
compressed sensing signal reconstruction that have the aforementioned properties and are as
fast and memory-efficient as possible.
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1.3. Several Recent Algorithms

Several recent algorithms can efficiently solve (1.3) or variants of it with large-scale data.
The authors of GPSR [36], reformulate the problem as a box-constrained quadratic program, to
which they apply the gradient projection method with Barzilai-Borwein steps. The algorithm
`1 `s [42] was developed for an `1 regularization problem equivalent to (1.3). The authors apply
an interior-point method to a log-barrier formulation of (1.3), and accelerate the computation
by an efficient pre-conditioner. SPGL1 [71] applies an iterative method for solving the LASSO
problem (1.4), in which an increasing sequence of t-values is used to accelerate the computation.
In [52], Nesterov proposes an accelerated multistep gradient method with an error convergence
rate O(1/k2). Under some conditions, the greedy approaches including OMP [66], StOMP [27],
Gradient Pursuits [9], and many of their improvements can also quickly solve (1.3). Bregman
algorithms [11,55,78] based on [54] can quickly solve the constrained problem (1.2).

A widely used method by many researchers to solve (1.3) or the general `1-minimization
problems of the form:

min
u
‖u‖1 + µ̄H(u) (1.5)

for convex and differentiable functions H(·) is an iterative procedure based on shrinkage (also
called soft thresholding; see Eq. (2.3) in Section 2). It was independently proposed and analyzed
in [34, 53] under the expectation-minimization framework for wavelet-based deconvolution, in
[24] for wavelet inversion, in [2] using an auxiliary variable and the idea from the projection
method [15], in [29, 30] for sparse representation and other related problems, in [22] through
an optimization transfer technique, in [19] using operator-splitting, in [39] also using operator-
splitting combined with a continuation technique, in [21] through an implicit PDE approach,
and others. More recent algorithmic developments in this line include a two-step method
TwIST [7], a generalize method SpRSA [76], as well as a recent active-set method FPC AS [75].
In addition, related applications and algorithms can be found in [38, 49, 77] for compressed
sensing based image reconstruction, [61] for `1-regularized logistic regression, [1] for image sparse
representation, [6] for wavelet-based image deconvolution using a Gaussian scale mixture model,
[8] for solving a cardinality constrained least-squares problem, [16,31] for image denoising, [23]
for a direct and accelerated projected gradient method, [32] for sparse representation-based
image deconvolution, [35] for image deconvolution based on a bound optimization, [33] for
wavelet-based image denoising using majorization-minimization algorithms, and [58] for image
coding. There are also iterative coordinate descent algorithms [10, 37] and block coordinate
descent algorithms [69,70,79], which successively minimizing the objective function with respect
to a single component or a block of components. These works developed or used algorithms
that are either based on or related to the iterative scheme

uk+1 ← arg min
u
‖u‖1 +

µ̄

2τk
∥∥u− (uk − τk∇H(uk))

∥∥2
(1.6)

(or with ‖u‖1 replaced by other `1-related terms such as total variation) for k = 0, 1, . . . starting
from a certain point u0. The parameter τk is positive and serves as the step size at iteration
k. Since the unknown variable u is component-wise separable in problem (1.6), each of its
components ui can be independently obtained by the shrinkage operation (2.3), which is also
referred to as soft thresholding.

Among the several approaches giving (1.6), one of the easiest ones is the following: first,
H(u) is approximated by its first-order Taylor expansion at uk, which is H(uk) + 〈∇H(uk), u−
uk〉; then, since this approximation is accurate only for u near uk, u must be made close to uk
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so an `2-penalty term ‖u− uk‖2/(2τk) is added to the objective; the resulting step is

uk+1 ← arg min
u
‖u‖1 + µ̄

(
H(uk) + 〈∇H(uk), u− uk〉+

1
2τk
‖u− uk‖2

)
, (1.7)

which is equivalent to (1.6) because their objectives differ by only a constant. It is easy to
see that the larger the τk, the larger the allowable distance between uk+1 and uk. It was
proved in [39] that {uk} given by (1.6) converges to an optimum of (1.3) at a q-linear1) rate
under certain conditions on H and τk. Under weaker conditions, they also established the r-
linear convergence of {uk} based on the previous work by [57], and [47] on gradient projection
methods. Furthermore, a new result from [39] is that the support (i.e., {i : uki 6= 0}) and signs
of uk converge finitely; that is, there exists a finite number K such that sgn(uk) ≡ sgn(uopt),
∀k > K, where uopt denotes the solution of (1.3); however, an estimate or bound for K is not
known. This result is reviewed in more detail in Section 2 below.

1.4. Notation and Organization

For simplicity, we let ‖ · ‖ := ‖ · ‖2, the Euclidean norm. The weighted Euclidean norm
corresponding to positive definite matrix M is ‖ · ‖M := ((·)>M(·))1/2. The support of x ∈ Rn

is supp(x) := {i : xi 6= 0}. We use g to denote the gradient of the least squares term, f , and H
to denote its Hessian, that is,

f(x) = ‖Ax− b‖2M/2
g(x) = A>M(Ax− b)
H = A>MA,

and these quantities simplify to f(x) = ‖Ax− b‖2/2, g(x) = A>(Ax− b), and H = A>A when
M = I.

For any index set I ⊆ {1, . . . , n} (later, we will use index sets E and L), |I| is the cardinality
of I, and for any matrix A, AI is the sub-matrix of A consisting of the columns of A whose
indices are in I. The set of solutions of Problem 1.1, or as a special case, Problem 1.3, is denoted
by X∗. The signum multifunction of t ∈ R is

SGN(t) := ∂|t| =


{+1} t > 0,

[−1, 1] t = 0,

{−1} t < 0,

which is also the subdifferential of |t|. The normal distribution with zero mean and variance
σ2 is denoted by N(0, σ2).

The paper is organized as follows. In Section 2, we summarize a fixed-point iteration scheme,
which is also known as soft-shrinkage iterations, for solving (1.1). Our continuation algorithm,
which extends the fixed-point iterations, is described along with other implementation details
in Section 3. Section 4 describes the extensive numerical experiments conducted to demon-
strate our algorithm and compare it to three other state-of-the-art algorithms in the context
of compressed sensing. We summarize the experimental results in Section 5, and conclude in
Section 6.

1) q stands for “quotient”; {xk} converges to x∗ q-linearly if lim sup ‖xk+1 − x∗‖/‖xk − x∗‖ < 1.
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2. Fixed-Point Iterations

2.1. Basic Formulation

The basic update formula of the FPC algorithm (see Algorithm 3.2, Steps 10 and 11) at the
kth iteration is

xk+1 ← sν ◦ h(xk), (2.1)

where the operators h and sν perform gradient descent on f(x) and shrinkage on h(xk), respec-
tively:

h(·) = (·)− τg(·) (2.2)

sν(·) = sgn(·)�max{| · | − ν,0}, (2.3)

and the parameter ν is defined as
ν =

τ

µ̄
> 0. (2.4)

Several approaches lead to the iterations (2.1). A forward-backward operator splitting
derivation, and references to other relevant work, is given in [40]. It is easy to show that
τ < 2/λmax(H) is required for convergence. In addition, we have the optimality condition

−µ̄gi(x∗) ∈ ∂|x∗i |, (2.5)

where ∂|x∗i | is the subdifferential of | · | at x∗i .
For the remainder of this paper, we define

λ̂max = λmax(A>MA), (2.6)

and note that the requirement 0 < τ < 2/λ̂max can be simplified to 0 < τ < 2 by dividing A
and b by

√
λ̂max.

2.2. Theory

As shown in [40], the iterations (2.1) have several nice convergence properties. Although
the non-smooth problem (1.1) may have more than one solution, g(x) is constant at all optimal
solutions, that is, there is a vector g∗ such that g(x) = g∗, ∀x ∈ X∗. Thus the first order
optimality conditions become −µ̄g∗ ∈ SGN(x), which implies that µ̄|g∗| ≤ 1 and the index set
{1, . . . , n} can be partitioned into L and E according to

L := {i : µ̄|g∗i | < 1} and E := {i : µ̄|g∗i | = 1}. (2.7)

Let x∗ be the limit of {xk}. The following hold for all but at most finitely many iterations:

xki = x∗i = 0, ∀ i ∈ L, (2.8)

sgn(hi(xk)) = sgn(hi(x∗)) = −µ̄g∗i , ∀ i ∈ E. (2.9)

In addition, the numbers of iterations not satisfying (2.8) and (2.9) are bounded by, respectively,

‖x0 − x∗‖2/ω2 and ‖x0 − x∗‖2/ν2,

where x0 is the starting point for the iterations (2.1), ν is defined in (2.4), and ω := min{ν(1−
µ̄|g∗i |) | i ∈ L} > 0.

When we have µ̄|g∗i | < 1 for all i such that x∗i = 0 (we call such x∗ non-degenerate), then

L = {i : x∗i = 0} and E = supp(x∗). (2.10)

Combining this with convergence of the iterations (2.1), we obtain

x∗i = sgn(hi(x∗)) max{sgn(hi(x∗))− ν, 0} 6= 0, ∀ i ∈ E,
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such that sgn(x∗i ) = sgn(hi(x∗)). Thus (2.8) and (2.9) state that the signs (positive, negative,
or zero) of xk converge to those of x∗ in a finite number of iterations. When x∗ is degenerate
(i.e., x∗i = 0 and µ̄|g∗i | = 1 for some i), we do not have (2.10), but instead

L ⊂ {i : x∗i = 0} and supp(x∗) ⊂ E. (2.11)

Therefore, the signs of the components of xk in supp(x∗) will still converge finitely to those of
the corresponding components of x∗, but only the components in L, a subset of {i : x∗i = 0},
are guaranteed to converge finitely to zero.

Once the components of L converge to zero and the signs of the components of E converge,
the dimension of xk is essentially reduced and the algorithm becomes gradient projection for
a quadratic program of size |E| constrained to a quadrant of R|E|. This observation led us to
believe that accelerating the finite convergence process by increasing ν would accelerate the
entire algorithm. Indeed, this hunch was confirmed by numerical experiments, and motivated
us to develop the continuation scheme in Section 3.2.

In [40], we also studied the rate of convergence and concluded that for quadratic f , xk

converges linearly at a rate that depends only on the partial Hessian HEE := A>EAE . For
the setting in this paper, namely f(·) = ‖A(·) − b‖2M/2, we showed that {xk} converges to
x∗ r-linearly, and {‖xk‖1 + µ̄f(xk)} converges to ‖x∗‖1 + µ̄f(x∗) q-linearly using the results
from [47, 57]. Furthermore, if HEE has full rank, we can strengthen r-linear convergence to
q-linear convergence. Namely, for a particular choice of τ we find that

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

≤ κ(HEE)− 1
κ(HEE) + 1

, (2.12)

where κ(HEE) is the condition number of HEE that can be much smaller than that of H when
|E| is small, implying that sparsity in solution can help accelerate convergence.

3. The FPC Algorithm

The iterations (2.1) are the core of the fixed-point continuation (FPC) algorithm proposed
in [40]. Implementation details and usage guidelines are described here. Subsection 3.1 discusses
the selection of M and µ̄ in the presence of Gaussian noise. Subsections 3.2 and 3.3 describe
two critical acceleration heuristics: continuation on µ̄ and the Barzilai-Borwein step-size on τ ,
respectively. Subsection 3.4 recounts an optional post-processing procedure. Finally, Subsection
3.5 summarizes computation and storage costs.

3.1. Selection of M and µ

For the remainder of this paper, we assume a simple measurement scenario:

b = A(xs + ε1) + ε2, (3.1)

where ε1 and ε2 follow the distributions N(0, σ2
1) and N(0, σ2

2), respectively. Equation (3.1)
implies that Axs− b is normally distributed with zero mean and covariance σ2

1AA
>+σ2

2I, such
that

Prob
(
(Axs − b)>(σ2

1AA
> + σ2

2I)−1(Axs − b) ≤ χ2
1−α,m

)
= 1− α, (3.2)

where χ2
1−α,m is the 1 − α critical value of the χ2 distribution with m degrees of freedom.

Therefore, if the solution x∗ to Problem (1.1) is to approximate xs, one should set

M = (σ2
1AA

> + σ2
2I)−1, (3.3)
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and find a µ̄ value that implies ‖Ax∗ − b‖2M ≤ χ2
1−α,m. The M estimate is well-defined (and

positive definite) as long as σ2 is nonzero, or σ1 is nonzero and AA> is nonsingular. An
appropriate estimate for µ̄ is derivable from

n

µ̄2
≥ n‖A>M(Ax∗ − b)‖2∞ ≥ ‖A>M(Ax∗ − b)‖22 ≥ σ2‖Ax∗ − b‖2M ,

where the first inequality follows from the optimality condition (2.5) and

σ2 := λmin(M1/2AA>M1/2).

In particular,

µ̄ =
1
σ

√
n

χ2
1−α,m

(3.4)

is the desired quantity, which is well-defined as long as A and M are full rank.
In the context of (2.1), having a non-identity M matrix requires additional matrix-vector

multiplications, or the calculation of M1/2 and M1/2A. However, when σ1 = 0 or AA> = I it
is straightforward to set M = I and subsume the noise levels σ1 and σ2 in µ̄.

3.2. Continuation

The convergence results presented in Section 2 suggest that large values of ν = τ/µ̄ may
improve observed convergence rates. In particular, note that the maximum number of iterations
not satisfying (2.9) is inversely proportional to ν2, and the maximum number of iterations not
satisfying (2.8) is loosely inversely proportional to this same quantity. Furthermore, 0 is a
solution to (1.1) exactly when

µ̄ ≤ 1
‖g(0)‖∞

=
1

‖A>Mb‖∞
. (3.5)

More generally, smaller values of µ̄ in (1.1) dictate sparser solutions, while large µ̄’s favor less
sparse solutions. This provides a link between smaller µ̄ (hence, larger ν = τ/µ̄) and faster
convergence for {xk} since, for instance, the q-factor in (2.12) should improve with decreasing
|E| via its relationship to the condition number of HEE(x∗).

For these reasons we do not apply (2.1) directly to (1.1), but instead define a series of prob-
lems (1.1), one for each µ in a finite increasing sequence that ends with the user-supplied µ̄. The
fixed-point continuation (FPC) algorithm then consists of solving these problems with the fixed-
point iterations (2.1) in turn, the starting point for the next problem being the approximate
solution obtained for the previous problem.

Given a current µ value, µk, and an approximate solution x∗k = x∗(µk), consider the readily-
available quantity g∗k = g(x∗k). A simple algorithm for µk+1 emerges by specifying that

‖g∗k‖∞
‖g∗k+1‖∞

≥ η (3.6)

for some constant η > 1 since the optimality condition (2.5) gives the simple relationship

µk+1 = ηµk. (3.7)

For a related continuation algorithm based on φk = ||Ax∗k − b||M , see [41].
To complete the continuation algorithm, note that the first µ value, µ1, can be generated by

taking µ0 = 1/‖A>Mb‖∞ and applying (3.7). The resulting basic FPC algorithm is presented
in Algorithm 3.2.
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Fixed-Point Continuation (FPC)

Require: A, M , b, µ̄; constants τ ∈ (0, 2/λ̂max); η > 1; xtol, gtol > 0
xp = 0, x = τA>Mb, µ = 1

‖A>Mb‖∞
if µ ≥ µ̄ then

return x = 0
end if
µ = min{ηµ, µ̄}
while µ ≤ µ̄ do

while ‖x−xp‖2
‖xp‖2 > xtol

√
µ̄
µ or µ‖g(xp)‖∞ − 1 > gtol do

xp = x

g = A>M(Ax− b)
y = x− τg
x = sgn(y) ◦max

{
|y| − τ

µ , 0
}

end while
µ = min{ηµ, µ̄}

end while
return x

3.3. Enhanced FPC: BB Steps and Line Search

The convergence results discussed in Section 2 require τ < 2/λ̂max to guarantee that h(·) =
(·)− τg(·) is non-expansive. However, in practice larger τ values sometimes speed convergence.
A set of step-lengths well known for accelerating gradient-descents are the Barzilai and Borwein
(BB) steps [4], which must be accompanied by a line search to guarantee convergence unless
the objective function is quadratic, strictly convex, and unconstrained [20].

BB steps significantly improve the speed of GPSR; this motivates us to propose calculating
τ following the BB formula

τ =
‖xk − xk−1‖2

(xk − xk−1)>(gk − gk−1)
. (3.8)

With an eye towards robustness, the BB version of FPC automatically employs a non-monotone
line search to choose α in the update

xk+1 = xk + α
(
sν ◦ h(xk)− xk

)
. (3.9)

The line search consists of an Armijo-type step-length condition, but with a reference function
value that may be larger than the current objective function value. In particular, we follow
the parameterization of [80], which, depending on the value of λ, results in reference values
C between the current objective function value (λ = 0) and the average of all previous values
(λ = 1). The resulting algorithm is Algorithm 3.3, in which

f(x) = ‖x‖1 +
µ̄

2
‖Ax− b‖2M . (3.10)
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FPC with BB-Steps and Non-Monotone Line Search

Require: A, M , b, µ̄; constants τD ∈ (0, 2/λ̂max); η > 1; λ, c, β ∈ (0, 1); xtol, gtol > 0
x = τDA

>Mb, µ = 1
‖A>Mb‖∞

if µ ≥ µ̄ then
return x = 0

end if
µ = min{ηµ, µ̄}
while µ ≤ µ̄ do
gp = 0, g = A>M(Ax− b)
Q = 1, C = f(x)
while ‖x−xp‖2

‖xp‖2 > xtol
√

µ̄
µ or µ‖g(xp)‖∞ − 1 > gtol do

if gp 6= 0 then
τ = ||x− xp||2/(x− xp)>(g − gp)

else
τ = τD

end if
y = x− τg, xp = x, gp = g

x = sgn(y) ◦max
{
|y| − τ

µ , 0
}

g = A>M(Ax− b)
α = 1
while f(xp + α(x− xp)) > C + cαg>p (x− xp) do
α = αβ

end while
x = xp + α(x− xp)
g = gp + α(g − gp)
Qp = Q, Q = λQp + 1, C = (λQpC + f(x))/Q

end while
µ = min{ηµ, µ̄}

end while

In practice, our algorithm can stall in the step-size while-loop. Thus, if the line search is
not successful after five tries, we reset τ = τD, recompute y and x, and take α = 1. This
heuristic has been practically successful, and is used in the FPC-BB results reported below.
The more recent algorithm available at http://www.caam.rice.edu/~optimization/L1/fpc/
uses a more consistent formulation of the line search.

3.4. Post-Processing: De-biasing

If the original signal is strictly sparse, then compressed sensing signal recovery can be
decomposed into two steps: (1) identifying the nonzero components of x, and (2) estimating
those components. A de-biasing algorithm, for instance Algorithm 3.4 due to [36], completes
Step 1 using results from an algorithm like FPC and then computes the Step 2 estimates.
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De-biasing

Require: A, b, and approximate solution x; constant tol
S = {i | |xi| > tol}
if 1 ≤ |S| ≤ m then
Z = {1, . . . , n} \ S
xZ = 0
xS = arg minx ‖ASx− b‖2M

end if

If |S| < m, supp(xs) ⊂ S and b = Axs (σ1 = σ2 = 0), then Algorithm 3.4 will exactly
reconstruct xs [27]. Under the more realistic scenario that b is only approximately equal to
Axs, debiasing is still advantageous in many circumstances, but it is more difficult to specify
an appropriate tol.

For our numerical experiments, tol is based on the minimum 2-norm solution for minx ‖Ax−
b‖2M ,

xLS = A+b = A>(AA>)−1b, (3.11)

where A+ is the Moore-Penrose inverse of A. If we assume that b was generated according to
(3.1), then the covairance

Cov(xLS) = σ2
1A
>(AA>)−1A+ σ2

2A
>(AA>)−2A. (3.12)

To get a scalar value for tol we note that ‖A>(AA>)−1A‖2 = 1 and ‖A>(AA>)−2A‖2 =
‖(AA>)−1‖2 = 1/σ2. Then we use the estimate

tol = 3

√
σ2

1 +
σ2

2

σ2
. (3.13)

3.5. Computational Complexity

We are now in a position to comment on the computational complexity of Algorithms
3.2, 3.3, and 3.4 in the context of compressed sensing signal reconstruction. The storage and
computation requirements of FPC and FPC-BB are listed in Table 3.1 for three situations
of interest. In the first two, the mn elements of A are explicitly stored and matrix-vector
multiplications cost O(mn) flops. The third case refers to partial fast transform A matrices
identified by listing the indices of the m rows of the n× n transform matrix (FFT, DCT, etc.)
used to compute b. In this case, matrix-vector multiplications cost O(n log n).

The dominant operation in FPC and FPC-BB is matrix-vector multiplication. When M

is the identity matrix, two multiplications, one with A and the other with A>, are required
to compute g and f ; M 6= I adds two multiplications with M . No additional matrix-vector
multiplications are required by FPC-BB’s line search, unless M 6= I. In this case one additional
multiplication with M is required to calculate the new value of f .

Of course the total cost of Algorithms 3.2 and 3.3 depends on the number of inner iterations,
a quantity that varies with m, n, k, µ̄, and problem instance. For compressed sensing we
found that convergence usually occurs within 1000 iterations when the original signal is sparse
enough to be accurately reconstructed. Furthermore, the number of iterations is approximately
independent of the signal length n for given ratios δ = m/n and ρ = k/m.

The primary cost of debiasing is that of solving the m × |S| least squares problem listed
on line 5 of Algorithm 3.4. In the explicit A case, we directly formulate and solve the normal
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Table 3.1: Storage requirements and computational complexity of Algorithms 3.2 and 3.3 for three

classes of compressed sensing problems. Under the “Computation” column, ` is the number of line

search steps required in a given iteration of Algorithm 3.3. The number ` is identically equal to zero

for Algorithm 3.2, and most iterations of Algorithm 3.3 also have ` = 0.

Storage Computation

Description (array elements) (flops per iteration)

Explicit A, M = I O(mn) O(mn) + `O(n)

Explicit A, M 6= I O(mn+m2) O(mn+m2) + `O(m2)

Fast transform A, M = I O(n) O(n logn) + `O(n)

equations, which costs O(m|S|) or O(m2) for formulation (the latter if M 6= I) and O(|S|3) for
solution (via Cholesky factorization and backsolve). We apply the iterative solver LSQR in the
fast transform case, which costs O(n log n) per iteration [56].

4. Numerical Experiments

Several numerical experiments were performed to demonstrate FPC and FPC-BB, and to
compare them to the compressed sensing reconstruction algorithms StOMP [27], GPSR [36]
and l1−ls [42]. This section describes the experiments, which were run in Matlab 7.3 on a Dell
Optiplex GX620 with a 3.2 GHz processor and 4 GB RAM; results follow in the next section.
For a more detailed exposition, see [41].

4.1. Problem Parameters

For all but the last set of experiments, problem data A and b satisfying (3.1) are generated
by specifying the size and type of A matrix, k = |supp(xs)|, and the standard deviations of the
noise vectors, σ1 and σ2, where supp(xs) is generated using randperm; the nonzero values of xs
are set to 2*randn. Performance statistics are often presented as a function of

δ = m/n and ρ = k/m, (4.1)

similar to [27].
Three types of A matrices that arise in compressed sensing applications are tested. (i)

Gaussian A refers to m × n matrices whose elements are taken from the standard normal
distribution (A = randn(m,n)), except when used with the StOMP algorithm. (ii) StOMP
uses Column-normalized Gaussian A matrices instead, which have their columns scaled to unit
norm. (iii) Finally, DCT A refers to partial discrete cosine transform matrices, which are m
rows of the n×n discrete cosine transform matrix, chosen uniformly at random. These matrices
satisfy AA> = I, and their matrix-vector products can be computed in O(n log n) time using
the dct and idct functions in Matlab’s Signal Processing Toolbox.

We typically use the M and µ̄ values recommended in Section 3.1. Whenever M 6= cI

for some c, A and b are replaced with M1/2A and M1/2b, and M is set to I, since this is
computationally preferable to the explicit formulation (1.1).

4.2. Algorithm Parameters

Preliminary computational experiments conducted on a (δ, ρ) ∈ [0, 1] × [0, 1] grid guided
the selection of default values for the FPC, StOMP, GPSR and l1−ls algorithm parameters,



Fixed-Point Continuation Applied to Compressed Sensing 181

subject to the guideline that the non-FPC algorithms’ defaults should be used if possible.

4.2.1. FPC

Our experiments showed that if AA> is not a multiple of I, but M is, then τ should be near
2. For all other cases, τ should be large when δ is moderate to small (approximately δ ≤ 0.4)
and should decay to 1 as δ increases. In all cases, τ ≥ 1 performed better than τ < 1. Thus,
for the former case we set τ to 2-eps, and for the latter

τ = max{−1.665δ + 2.665, 1.999}. (4.2)

The default value of η (the increment factor for µ) is set to 4. In practice, any η-value between
2 and 10 is acceptable. The outer iteration corresponding to µk terminates when

‖x− xp‖2
‖xp‖2

≤ xtol
√

µ̄

µk
and µk‖g(xp)‖∞ − 1 ≤ gtol.

The first criterion requires the last step to be small relative to xk; the second checks to see if
complementarity holds at the current iterate. Empirically, the presence of the second condition
greatly improves accuracy, but gtol should be fairly large to ensure fast convergence for most
problems. We use xtol =1E-4 and gtol = 0.2.

With the BB variant (Algorithm 3.3), we set λ = 0.85, c =1E-3, and β = 0.5 based on [80]
and the Armijo line search guidelines in [5].

4.2.2. StOMP, GPSR, and l1 ls

With StOMP we use False Alarm Rate thresholding (FAR) and α = 0.015. The default maxi-
mum of 10 iterations is raised to 30 to better accommodate problems with m > 0.6n.

The GPSR results reported in this paper use GPSR v3.0, which includes a basic algorithm
and an algorithm with Barzilai-Borwein (BB) steps. Continuation is optional in both, and
proceeds by splitting the distance between 1/‖A>Mb‖∞ and µ̄ into five (by default) pieces of
equal log-scale length. Most of the GPSR results referred to in this paper use the BB variant
with continuation and line search.

GPSR’s default stopping criterion exits prematurely when µ̄ is large. For comparison pur-
poses, we use GPSR’s objective value stopping criterion and set the required value to that
reached by FPC for the same problem. Similarly, the maximum number of iterations for both
algorithms is set to 1000, and we initialize GPSR with x = A>Mb, the option closest to our
x = τA>Mb.

The default values for the l1 ls algorithm described in [42] work well. The l1 ls code does
not provide a mechanism to specify any x0 value other than 0.

4.3. Experiments

4.3.1. Proof-of-Concept Demonstration

Figure 4.1 displays the original, noisy, recovered and de-biased signals for a particular com-
pressed sensing problem generated as per Section 4.1 and solved with FPC. These results serve
as a basic demonstration, and also highligh FPC’s ability to cope with high noise levels since
FPC was able to recover all of the nonzero elements significantly larger than the underlying
noise. De-biasing generally improved the large nonzero estimates, but eliminated some of the
smaller nonzeros recovered by FPC.
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4.3.2. Phase Plots: Scope

Phase plots depict how reconstruction quality varies with the number of measurements, m, and
sparsity level, k, all other things being equal [27]. In general, quality improves with decreasing
k and increasing m; the exact boundary between problems in which recovery is and is not
achieved for a given algorithm and a given set of problems is shown using pixel intensity on a
ρ = k/m versus δ = m/n grid. Example phase plots for FPC are shown in Figure 4.2.

4.3.3. Regularization Parameter Dependence: Robustness

The regularization parameter µ̄ directly influences reconstruction quality by dictating the bal-
ance struck between solution sparsity and fidelity to measurements. As shown in Section 3.1,
the most basic heuristic concerning µ̄ is that it should be chosen in inverse proportion to the
noise level. But how easy is it to specify a value of µ̄ that is satisfactory with regards to
both reconstruction quality and algorithm performance, given that noise levels are typically
unknown?

This problem is investigated by fixing the type of measurement matrix, n, m, k, σ1 and
σ2, and then solving ten problems with many values of µ̄. The resulting data are analyzed by
plotting average 2-norm relative error and computational time versus µ̄, along with a vertical
line at the location of the µ̄ value recommended by Section 3.1. This type of experiment is also
an opportunity to compare FPC, GPSR and l1 ls to each other since they all solve (1.1). Some
example results are plotted in Figures 4.3 and 4.4.

4.3.4. Timing Studies: Speed

Given that even a greyscale 512× 512 image is a signal of length 262,144, the primary goal of
every compressed sensing recovery algorithm is to quickly solve large problems. We test the
speed of FPC-BB (Algorithm 3.3), GPSR-BB (with monotone line search and continuation),
l1 ls and StOMP using an experimental set-up that is identical to the regularization parameter
experiments, except that now µ̄ is fixed, while n is varied. Tables 4.1 and 4.2 list computational
times and relative errors for a given value of n, along with an estimate of how computational
time scales with n. Namely, we assume the model CPU Time = Cnα and list a least-squares
estimate for α calculated from CPU time results obtained for a set of n values.

Because it is expensive to compute M1/2 and the largest and smallest eigenvalues of M1/2A

ATM1/2 when M 6= cI for some c, we sometimes list timing statistics for data generation
alongside those for signal recovery. Table 4.3 shows such statistics for some problems solved
with the recommended M and with a simpler substitute:

M = (σ2
1σ

2I + σ2
2I)−1, (4.3)

where σ2 =
(
1 +

√
m
n

)2
n is an upper bound approximation to λmax(AA>).

4.3.5. Medical Images: Practicality

We test FPC on six images: the Shepp-Logan phantom in the Matlab Image Processing Tool-
box, and five medical images in public domain. Compressed sensing problems based on these
images are formulated and solved using the SPARCO toolbox [72] which, among other things,
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Fig. 4.1. The original, noisy, recovered, and debiased signals for a 128×256 partial DCT A compressed

sensing problem solved with FPC. The original signal has k = 32 nonzeros; the noise levels were set to

σ1 = σ2 = 0.1.

Fig. 4.2. Phase plots for FPC (Algorithm 3.2). Intensities depict average reconstruction quality (over

thirty runs) as a function of δ = m/n and ρ = k/m. In all cases, n = 512 and darker shades represent

poorer reconstruction. Measurement matrix type varies by row: Gaussian A on top, DCT A on the

bottom. Noise scenario varies by column. In the low noise case (left column), reconstruction accuracy

is measured by the number of elements not recovered to a 1E-4 relative error. The middle and right

column plots depict relative 2-norm error, ‖x− xs‖/‖xs‖, with errors less than 1E-2 shaded white.

facilitates the application of linear operators to two-dimensional signals (images) in addition to
conventional one-dimensional signals (vectors).

In SPARCO, and in the discussion that follows, two-dimensional signals are vectorized before
the application of any linear operators. In particular, the vectorized form of a matrix signal
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Fig. 4.4. The effects of µ̄ on the accuracy and speed of FPC-BB, monotone GPSR-BB with continuation

and l1 ls for two sets of compressed sensing problems with σ1 = 1E-2, σ2 = 1E-2, δ = m/n = 0.5 and

ρ = k/m = 0.3: (a) Gaussian A and (b) DCT A. The vertical dotted lines mark the recommended µ̄

values (Section 3.1).

Z ∈ Rn×m is z ∈ Rnm defined by

z = vec(Z) =
(
Z>1 Z>2 · · · Z>m

)>
. (4.4)

The experiments assume that the images have relatively sparse representations in Haar
wavelets; that is, for the true vectorized signal z ∈ Rn, there exists an x ∈ Rn such that

z = Wx, (4.5)

where W ∈ Rn×n is the Haar wavelet basis, and x is approximately sparse (x = xs + ε,
supp(xs) � n). We use a partial DCT measurement matrix A to compute b = Az and then
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Table 4.1: Timing study results for Gaussian A matrices, σ1 = 0 and σ2 = 1E-2. The growth of CPU

time with n is reflected in the 90% confidence intervals listed for α, which were calculated by applying

linear least squares to estimate logC and α in the model log CPU time = logC + α logn (CPU time

= Cnα). The CPU times and relative errors correspond to n = 8192.

δ = 0.1 δ = 0.3

α CPU (s) Rel. Err. α CPU (s) Rel. Err.

ρ = 0.3 FPC N/A 2.1± 0.1 32.8 2.2E-1

GPSR N/A 1.7± 0.1 84.4 3.6E-1

l1−ls N/A 1.9± 0.3 > 600 8.2E-2

StOMP N/A 2.8± 0.1 174 2.8E-1

ρ = 0.2 FPC 1.7± 0.1 4.41 2.8E-1 1.8± 0.3 16.5 6.0E-4

GPSR 1.6± 0.1 29.5 4.1E-1 1.7± 0.1 86.2 2.2E-1

l1−ls 2.1± 0.2 1190 1.1E-1 1.8± 0.1 494 1.1E-3

StOMP not recovered 2.8± 0.1 205 2.2E-2

ρ = 0.1 FPC 1.8± 0.1 3.62 9.4E-4 1.8± 0.2 7.35 3.4E-4

GPSR 1.6± 0.2 29.3 2.0E-1 1.8± 0.2 85.6 9.7E-2

l1−ls 1.7± 0.2 137 9.5E-4 1.9± 0.1 268 4.5E-4

StOMP not recovered 2.7± 0.1 139 2.6E-2

try to obtain approximate wavelet coefficients x̂ by solving

min
x
‖x‖1 +

µ̄

2
‖AWx− b‖2 (4.6)

with our FPC code. Finally, we complete the recovery by computing ẑ = Wx̂.
Reconstruction results are summarized in Figure 4.5, which shows the original images along-

side the images recovered using δ = m/n = 0.25, 0.50, and 0.75. Quantitatively and by eye,
the reconstruction quality seems good, except when δ = 0.25. The solve times were between
1.4 to 3.5 seconds for the 128 × 128 Shepp-Logan phantom image, 4.7 to 13.2 seconds for the
two 256 × 256 MRI images, and 20.5 to 59.2 seconds for the three 512 × 512 images.

5. Results

The experiments described in Sections 4.3.1 and 4.3.5 show that FPC works as intended
for stylized and realistic problems. As for speed in the face of large problems, the implicit
storage and fast matrix multiplications associated with partial DCT matrices enabled us to solve
problems with n = 8, 388, 608 and k,m small in just a few minutes. Furthermore, computational
time scales approximately linearly with n for all algorithms in this case. In contrast, the explicit
storage of the Gaussian matrices limited those problems to n = 8, 192 or less, with computation
times also on the order of several minutes. StOMP’s computational time in this case is between
O(n2.4) and O(n2.9), while the other algorithms saw dependencies between O(n1.6) and O(n2.1).

Continuation was demonstrated to be a necessary component of FPC in [40]. Figure 5.1
demonstrates this for GPSR, whose basic update is similar to, but not identical with, (2.1).
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Table 4.2: Timing study results for DCT A matrices, σ1 = 1E-2 and σ2 = 1E-8. For FPC, GPSR

and l1−ls, rec indicates that µ̄ was calculated using (3.4); db denotes results calculated with µ̄ = 50

plus debiasing. See Table 4.1 for a description of α. The CPU times and relative errors correspond to

n = 131072. FPC, GPSR and StOMP were each able to solve at least one problem with n = 2097152.

δ = 0.1 δ = 0.3

α CPU (s) Rel. Err. α CPU (s) Rel. Err.

ρ = 0.3 FPC rec N/A 1.04± 0.01 33.9 1.2E-1

FPC db N/A 1.02± 0.01 36.0 7.8E-2

GPSR rec N/A 1.09± 0.03 175 1.2E-1

GPSR db N/A 1.08± 0.02 66.7 9.4E-2

l1−ls rec N/A 1.03± 0.04 307 9.7E-2

l1−ls db N/A 1.02± 0.05 158 1.5E-1

StOMP N/A not recovered

ρ = 0.2 FPC rec 1.01± 0.02 36.3 1.8E-1 1.02± 0.01 18.3 3.3E-2

FPC db 1.01± 0.01 29.1 1.3E-1 1.00± 0.01 18.7 1.6E-2

GPSR rec 1.04± 0.04 147 1.8E-1 1.07± 0.02 33.4 3.3E-2

GPSR db 1.05± 0.03 41.7 1.5E-1 1.03± 0.02 20.2 2.2E-2

l1−ls rec 1.01± 0.03 483 1.6E-1 1.04± 0.04 151 3.3E-2

l1−ls db 0.96± 0.04 163 1.5E-1 1.09± 0.04 103 2.3E-2

StOMP not recovered 1.07± 0.01 61.0 1.1E-2

ρ = 0.1 FPC rec 1.00± 0.01 16.8 5.9E-2 1.01± 0.01 11.6 2.5E-2

FPC db 1.01± 0.01 12.5 3.4E-2 1.00± 0.01 11.9 1.2E-2

GPSR rec 1.06± 0.01 31.3 5.9E-2 1.04± 0.03 13.8 2.5E-2

GPSR db 1.03± 0.03 13.4 3.4E-2 1.04± 0.03 11.5 1.6E-2

l1−ls rec 0.98± 0.02 212 5.8E-2 1.03± 0.04 99.9 2.5E-2

l1−ls db 1.02± 0.04 114 3.5E-2 1.06± 0.05 82.8 1.6E-2

StOMP not recovered 1.09± 0.01 21.9 1.1E-2

Overall, some adjustments of GPSR’s continuation scheme and default stopping criterion should
make it competitive with FPC, but as it stands, FPC is usually more accurate and faster than
GPSR. The main exception of note is problems with DCT A matrices and signal noise. As
demonstrated in Figure 4.4(b), in these cases GPSR may be significantly faster than FPC,
but usually does not achieve the same level of accuracy. GPSR’s relative standing is typically
improved by using a smaller µ̄ value and de-biasing.

The regularization parameter experiments show that the recommended value of µ̄ is always
close to the smallest µ̄ value where the relative error levels off or reaches a minimum, and that
order of magnitude estimates of σ1 and σ2 are sufficient to obtain good results. In many cases,
a slight overestimate of µ̄ should assure good accuracy. However, overestimates are ill-advised
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Table 4.3: Timing study results for Gaussian A matrices, δ = 0.3, σ1 = 1E-2 and σ2 = 1E-2. See

Table 4.1 for a description of α. Here α’s and CPU times are presented for problem generation (data)

and solution (solve) using the full M (3.3) and the approximate M (4.3). Problem generation (data)

includes the calculation of A, b, M and µ̄. The timings and relative errors correspond to n = 8192.

Since StOMP does not use formulation (1.1), its results are listed arbitrarily under Full M .

Full M Approx. M

Data Solve Data Solve

α CPU (s) α CPU (s) Rel. Err. α CPU (s) α CPU (s) Rel. Err.

ρ = 0.3 FPC 2.9 829 1.8 11.5 1.2E-1 1.8 1.02 1.8 15.2 1.4E-1

GPSR ” ” 1.9 50.5 1.2E-1 ” ” 1.7 73.2 1.4E-1

l1−ls ” ” 1.8 128 1.0E-1 ” ” 1.8 298 1.0E-1

StOMP 1.9 1.52 not recovered N/A

ρ = 0.2 FPC 2.8 826 1.9 6.37 3.2E-2 1.7 1.02 1.9 9.07 3.6E-2

GPSR ” ” 1.8 10.0 3.2E-2 ” ” 1.8 24.6 3.6E-2

l1−ls ” ” 1.8 55.6 3.2E-2 ” ” 1.7 158 3.4E-2

StOMP 2.0 1.52 2.8 198 9.1E-1 N/A

ρ = 0.1 FPC 2.9 824 1.8 4.09 2.5E-2 1.8 1.02 1.8 5.63 2.7E-2

GPSR ” ” 1.7 4.59 2.5E-2 ” ” 1.8 7.60 2.7E-2

l1−ls ” ” 1.6 39.5 2.5E-2 ” ” 1.8 110 2.7E-2

StOMP 1.8 1.52 2.9 174 4.8E-2 N/A

in low noise situations, and should not be overdone with high noise levels, since in the former
case the extra computational effort is unlikely to yield great accuracy gains, and in the latter
the resulting solution may be too dense compared to xs.

The results in Table 4.3 support the use of (4.3) as an effective, less costly substitute for the
value of M recommended in Section 3.1 when that M is not a multiple of the identity matrix.
While the FPC, GPSR and l1−ls solve times are significantly longer with the approximate,
rather than the full, M matrix, the data times are hundreds of times faster. Thus we recommend
using the full M matrix to solve many problems with the same A and noise characteristics, and
the approximate M when any of m, n, σ1 or σ2 vary.

Barzilai and Borwein (BB) steps usually improve the accuracy and speed of FPC and GPSR.
Thus the timing studies always use the BB-step variants of these algorithms. Furthermore, we
use GPSR-BB with monotone line search because the version with non-monotone line search
sometimes diverges when µ̄ exceeds some threshold value, see Figure 5.2. GPSR-BB with
monotone line search does not have this problem, and still outperforms the basic algorithm.

Our phase plot results seem to indicate that de-biasing does not expand the (δ, ρ) range
of solvable compressed sensing problems, but can often improve the accuracy achieved in the
recoverable region. The gains are greatest in low noise applications, since in this setting it is
much more efficient to stop an algorithm for solving (1.3) short by using a small µ̄ and de-biasing
than to achieve the same accuracy with the optimization algorithm alone.
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Fig. 4.5. Original and recovered images for Shepp-Logan phantom and five medical images. Each image

was recovered using three different measurement:signal length ratios, namely δ = m/n = 0.25, 0.5 and

0.75. Image size is reported beneath the original image; relative recovery error based on the induced

matrix 2-norm is shown below each reconstruction.

StOMP seems to be especially sensitive to signal noise (σ1 6= 0), as its presence, at least in
our experiments, resulted in a minimum measurement ratio (approximately m/n = 0.1) below
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Fig. 5.1. Performance of monotone GPSR-BB without and with continuation, shown as a function of µ̄.

(a) Problems with Gaussian A, n = 1024, m = 0.3n, k = 0.2m, σ1 = 1E-2 and σ2 = 1E-8; (b) partial

DCT A matrices, n = 8192, m = 0.5n, k = 0.2m, σ1 = 1E-2 and σ2 = 1E-2. The vertical dotted lines

mark the location of the recommended µ̄ values (Section 3.1).
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Fig. 5.2. Solution relative error as a function of µ̄ for the non-monotone variant of GPSR-BB applied

to compressed sensing reconstruction problems with Gaussian A, n = 1024, m = 0.3n, k = 0.1m, and

σ2 = 1E-8. Observe the divergence of the algorithm when σ1 =1E-2 and µ̄ exceeds some threshold.

which no signals were recovered even if they were very sparse. Given the limited nature of
our experimentation with StOMP’s thresholding parameters, this apparent limitation may be
attributable to improper tuning. StOMP is also usually slower than FPC and GPSR, without
any outstanding gains in accuracy. It does best with DCT A matrices and low noise, in which
case it sometimes provides the fastest solution.

Of the three algorithms that solve (1.3), l1 ls is the most reliable, especially in hard cases
when ρ = k/m is large compared to δ = m/n. However, it is typically orders of magnitude
slower than FPC and GPSR, with the exception that GPSR and l1 ls are about the same speed
when noise levels are low and µ̄ is set to the recommended value. It often achieves the best
accuracy, except when the tolerance for its duality gap target is relatively large. Tightening
this tolerance should allow l1 ls to reach a high accuracy level, as measured by 2-norm relative
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error. (As an interior point algorithm, l1 ls solutions are dense, and thus do not do well by
metrics that focus on correctly identifying zero and nonzero elements.)

The failure of FPC and GPSR to be as accurate as l1 ls in hard cases likely has to do with
gradient-type method chattering. The problem can be alleviated somewhat by tightening the
inner loop stopping tolerances, but it is beyond the scope of this work to determine how to do
so automatically (when ρ is unknown) and without sacrificing speed.

6. Conclusions

This paper further develops the algorithm proposed in [40] for Problem (1.1), and performs
extensive tests on the resulting algorithms in a series of compressed sensing experiments. Con-
tinuation and BB steps are shown to be critical and effective acceleration heuristics, respectively.
De-biasing is shown to be useful in low noise situations.

We also provide guidance for choosing the `1 regularization parameter, µ̄, and the scaling
matrix, M , based on a measurement model where signal noise and measurement noise can
be present at the same time. A novel numerical experiment shows that order of magnitude
estimates of noise levels are generally sufficient to obtain good results.

The computational study also compares our fixed-point continuation (FPC) algorithm to
three other state-of-the-art algorithms under various noise scenarios with different sparsity levels
and problem sizes. The results indicate that FPC is competitive with, and often superior to,
the other algorithms, especially when the data are noisy and the problems are large.

Two points of caution should be exercised in evaluating the numerical results in this paper.
First, since software tools are still evolving in this fast-moving area, the presented computational
results only reflect the performance of the relevant versions of software used in the experiments.
Second, most of the problems solved in this work were well within the good region for compressed
sensing, that is, relative to the number of non-zero coefficients in the original signal, there were
plenty of measurements. In some cases, it may be necessary to push the methodology and use
fewer measurements – such situations merit further study.
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[37] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, Pathwise coordinate optimization, Annals

of Applied Statistics, 1 (2007), 302-332.

[38] T. Goldstein and S. Osher, The split Bregman algorithm for L1 regularized problems, UCLA

CAM Report 08-29, 2008.

[39] E. Hale, W. Yin, and Y. Zhang, A fixed-point continuation method for `1-regularization with

application to compressed sensing, Rice University CAAM Technical Report TR07-07, 2007.

[40] E. T. Hale, W. Yin, and Y. Zhang, Fixed-point continuation for `1-minimization: Methodology

and convergence, SIAM J. Optimiz., 19 (2008), 1107-1130.

[41] E. T. Hale, W. Yin, and Y. Zhang, A numerical study of fixed-point continuation applied to

compressed sensing, Technical Report TR08-24, Rice University, Department of Computational

and Applied Mathematics, 2008.

[42] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, A method for large-scale `1-regularized

least squares problems with applications in signal processing and statistics, http://www.stanford.

edu/~boyd/l1_ls.html. 2007.

[43] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, and R. Baraniuk,

Analog-to-information conversion via random demodulation, In Proceedings of the IEEE Dallas

Circuits and Systems Workshop (DCAS), Dallas, Texas, 2006.

[44] J. Laska, S. Kirolos, M. Duarte, T. Ragheb, R. Baraniuk, and Y. Massoud, Theory and imple-

mentaion of an analog-to information converter using random demodulation, In Proceedings of

the IEEE International Symposium on Circuites and Systems (ISCAS), New Orleans, Louisiana,

2007.

[45] J. Laska, S. Kirolos, Y. Massoud, R. Baraniuk, A. Gilbert, M. Iwen, and M. Strauss, Radnom

sampling for analog-to-information conversion of wideband signals, In Proceedings of the IEEE

Dallas Circuits and Systems Workshop, Dallas, Texas, 2006.

[46] S. Levy and P. Fullagar, Reconstruction of a sparse spike train from a portion of its spectrum and

application to high-resolution deconvolution, Geophysics, 46 (1981), 1235-1243.

[47] Z.-Q. Luo and P. Tseng, On the linear convergence of descent methods for convex essentially

smooth minimization, SIAM J. Control Optimn, 30:2 (1990), 408-425.

[48] M. Lustig, D. Donoho, and J. Pauly, Sparse MRI: The application of compressed sensing for rapid

MR imaging, Preprint, 2007.

[49] S. Ma, W. Yin, Y. Zhang, and A. Chakraborty, An efficient algorithm for compressed MR

imaging using total variation and wavelets, IEEE International Conference on Computer Vision

and Pattern Recognition (CVPR) 2008, (1–8), 2008.

[50] S. G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE T. Signal

Proces., 41:12 (1993), 3397-3415.



Fixed-Point Continuation Applied to Compressed Sensing 193

[51] A. Miller, Subset Selection in Regression, Chapman and Hall, 2002.

[52] Y. Nesterov, Gradient methods for minimizing composite objective function, CORE Discussion

Paper 2007/76, 2007. http: // www. caam. rice. edu/ ~ optimization/ L1/ fpc/ .

[53] R. Nowak and M. Figueiredo, Fast wavelet-based image deconvolution using the EM algorithm,

Proceedings of the 35th Asilomar Conference on Signals, Systems, and Computers, Monterey, CA,

2001.

[54] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterated regularization method for

total variation based image restoration, SIAM Journal on Multiscale Modeling and Simulation,

4:2 (2005), 460-489.

[55] S. Osher, Y. Mao, B. Dong, and W. Yin, Fast linearized Bregman iteration for compressive sensing

and sparse denoising, Rice University CAAM Technical Report TR08-07, 2008.

[56] C. C. Paige and M. A. Saunders, Lsqr: An algorithm for sparse linear equations and sparse least

squares, ACM T. Math. Softmart., 8:1 (1982), 43-71.

[57] J.-S. Pang, A posteriori error bounds for the linearly-constrained variational inequality problem,

Math. Method. Oper. Res., 12 (1987), 474-484.

[58] T. H. Reeves and N. G. Kingsbury, Overcomplete image coding using iterative projection-based

noise shaping, 2002 International Conference on Image Processing, 3 (2002), 24-28.

[59] M. Rudelson and R. Vershynin, Geometric approach to error correcting codes and reconstruction

of signals, International Mathematical Research Notices, 64 (2005), 4019-4041.

[60] F. Santosa and W. Symes, Linear inversion of band-limited reflection histograms, SIAM J. Sci.

Comput., 7 (1986), 1307-1330.

[61] J. Shi, W. Yin, S. Osher, and P. Sajda, An algorithm for large-scale `1-regularized logistic

regression, In preparation, 2008.

[62] D. Takhar, J. Laska, M. Wakin, M. Duarte, D. Baron, S. Sarvotham, K. Kelly, and R. Baraniuk, A

new compressive imaging camera architecture using optical-domain compression, In Proceedings

of Computational Imaging IV at SPIE Electronic Image, San Jose, California, 2006.

[63] H. Taylor, S. Bank, and J. McCoy, Deconvolution with the l1 norm, Geophysics, 44 (1979), 39-52.

[64] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Stat. Soc. B, 58 (1996),

267-288.

[65] J. Tropp, Just relax: Convex programming methods for identifying sparse signals, IEEE T.

Inform. Theory, 51 (2006), 1030-1051.

[66] J. Tropp and A. Gilbert, Signal recovery from partial information via orthogonal matching pursuit,

IEEE T. Inform. Theory, 53:12 (2007), 4655-4666.

[67] J. Tropp, M. Wakin, M. Duarte, D. Baron, and R. Baraniuk, Random filters for compressive

sampling and reconstruction, In Proceedings of IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), Toulouse, France, 2006.

[68] Y. Tsaig and D. Donoho, Extensions of compressed sensing, Signal Process., 86:3 (2005), 533-548.

[69] P. Tseng, Convergence of block coordinate descent method for nondifferentiable minimization, J.

Optimiz. Theory App., 109:3 (2001), 1573-2878.

[70] P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable minimiza-

tion, Math. Program., 117:1-2 (2009), 387-423.

[71] E. Van den Berg and M. P. Friedlander, SPGL1: A MATLAB solver for large-scale sparse

reconstruction, http://www.cs.ubc.ca/labs/scl/index.php/main/spgl1. 2007.

[72] E. van den Berg, M. P. Friedlander, G. Hennenfent, F. J. Herrmann, Y. Saad, and P. Yılmaz,

Sparco: A testing framework for sparse reconstruction. UBC Computer Science Technical Report

TR-2007-20, 2007.

[73] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk,

An architecture for compressiving image, In Proceedings of the International Conference on Image

Processing (ICIP), Atlanta, Georgia, 2006.

[74] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk,



194 ELAINE T. HALE, WOTAO YIN AND Y. ZHANG

Compressive imaging for video representation and coding, In Proceedings of Picture Coding

Symposium (PCS), Beijing, China, 2006.

[75] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, A fast algorithm for sparse reconstruction based

on shrinkage, subspace optimization and continuation, Submitted to SIAM Journal on Scientific

Computing, Rice University CAAM Technical Report TR09-01, 2009.

[76] S. Wright, R. Nowak, and M. Figueiredo, Sparse reconstruction by separable approximation,

Submitted, 2008.

[77] J. Yang, Y. Zhang, and W. Yin, A fast TVL1-L2 algorithm for image reconstruction from partial

fourier data, Submitted to IEEE Journal of Selected Topics in Signal Processing Special Issue on

Compressed Sensing. Rice University CAAM Technical Report TR08-27, 2008.

[78] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for `1-minimization

with applications to compressed sensing, SIAM Journal on Imaging Sciences, 1:1 (2008), 143-168.

[79] S. Yun and K.-C. Toh, A coordinate gradient descent method for L1-regularized convex mini-

mization, Optimization-Online, 2008.

[80] H. Zhang and W. W. Hager, A nonmonotone line search technique and its application to uncon-

strained optimization, SIAM Journal on Optimization, 14:4 (2004), 1043-1056.

[81] Y. Zhang, When is missing data recoverable? Rice University CAAM Technical Report TR06-15,

2006.


