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Abstract

We build finite difference schemes for a class of fully nonlinear parabolic equations.

The schemes are polyhedral and grid aligned. While this is a restrictive class of schemes,

a wide class of equations are well approximated by equations from this class. For regular

(C2,α) solutions of uniformly parabolic equations, we also establish of convergence rate of

O(α). A case study along with supporting numerical results is included.
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1. Introduction

Although the theory of viscosity solutions has been well established for a broad class of
nonlinear elliptic and parabolic equations, there are no general methods available for building
convergent difference schemes to solve these equations. Schemes need to be custom built for
each equation, or for classes of equations.

For degenerate, quasilinear equations such as motion of level sets by mean curvature, and the
infinity Laplace equations, specialized convergent schemes have been build [13,14]. Convergent
schemes have been built for the class of equations which are functions of the eigenvalues of
the Hessian [16]. In general, these schemes requires successively wider stencils in order to
converge. This means that the approximation error depends on an additional parameter, dθ,
the directional resolution. In practice, schemes of width one or two are sufficient, since the dθ
error is small compared to the spatial resolution error.

In this article, we focus on the particular subclass of polyhedral grid aligned equations. The
subclass is artificial: it is designed for the purpose of building convergent schemes. However,
many of the previously mentioned equations can be approximated by this class. We build con-
vergent schemes, and establish error estimates, which depend on the regularity of the solutions.

Related results

Convergence rates for second order elliptic and parabolic equations, without any regularity
assumptions, are obtained in example Krylov [8,11], Kuo and Trudinger [12], Barles and Jacob-
sen [1], and Caffarelli and Souganidis [5] and the references therein. The methods used come
from regularity theory for nonlinear elliptic PDEs and are substantially more technical than
the methods herein.

Here we obtain convergence rates using available regularity results. This approach simplifies
the argument considerably, since it avoids a reiteration of the regularity theory.
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Contents

The remainder of this section recalls the setting for our nonlinear parabolic equations and the
necessary regularity results.

Section 2 is a case study with a simple example equation. Error estimates are obtained
directly in this simpler setting, and supporting numerical results are presented.

The first part of section 3 recalls general results on nonlinear elliptic schemes. The second
part presents new material on error estimates in terms of the residual for perturbed equations,
the methods of lines, and finally for fully discrete difference schemes.

The main results are in the section 4. Here the class of schemes is established. The schemes
are shown to be elliptic, and consistent, which is enough to prove convergence. Then the error
estimates of the previous section are used to obtain a convergence rate.

1.1. Nonlinear parabolic equations

Our results concern the fully nonlinear parabolic Partial Differential Equation (PDE)

ut(x, t) + F [u](x, t) = 0, for (x, t) in Ω× [0, T ) (PDE)

where Ω is a domain in Rn, along with initial and boundary conditions{
u(x, t) = g(x, t), for (x, t) on Ω× {0}
u(x, t) = h(x, t), for (x, t) on ∂Ω× (0, T ).

(BC)

The fully nonlinear elliptic partial differential operator F [u] is given by

F [u](x) ≡ F (D2u(x), Du(x), u(x), x). (1.1)

Here Du and D2u denote the gradient and Hessian of u, respectively. The function F (X, p, r, x)
is defined on Sn × Rn × R× Ω, and Sn is the space of symmetric n× n matrices. The natural
setting for equations of this type is viscosity solutions [7].

Definition 1.1. The differential operator (1.1) is nonlinear or degenerate elliptic if

F (N, p, r, x) ≤ F (M,p, s, x) whenever r ≤ s and M ≤ N. (1.2)

Here M ≤ N means that M−N is a nonnegative definite symmetric matrix. The corresponding
parabolic operator (PDE) is called nonlinear or degenerate parabolic.

1.2. Regularity

When the equation F is convex and uniformly parabolic, solutions of (PDE) are C2,α,
[17,18]. These results build upon the elliptic regularity [4,9]. In two dimensions and for special
nonconvex equations, more regularity is available [3].

Here we use the convention of [10], where C2,α means C2,α in x and C1,α/2 in t.

Remark 1.1. It is often the case (for both theory and numerics) that the time variable scales
quadratically with the space variable, as in [6] below.
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2. A Case Study with Numerics

Before stating the main results in generality, we begin with a case study of a fully nonlinear
equation. We build an elliptic (monotone) scheme, and show directly how the global error is
controlled by the consistency error. Then we present computational results which are consistent
with a convergence rate of 1 + α, better than the analytic result which gives a rate of α.

2.1. The one dimensional equation

Let Ω = [−1, 1] ⊂ R and consider the operator

F [u] = max {uxx, 2uxx}+ f.

Let u(x, t) be the viscosity solution of the parabolic equation

ut = max {uxx, 2uxx}+ f. (2.1)

in Ω, with initial values u(x, 0) = h(x) and zero Dirichlet boundary values. The solution is
known to be C2,α but will fail to be C3 at any point where uxx changes sign.

While exact solutions of the parabolic equation were not available, two viscosity solutions
of the stationary equation are

− 1
24
(
2x2 min (x, 2x)− 3x+ 1

)
which is C2,1, corresponding to f(x) = x, and

− 2
15

(
2 |x|3/2 min (x, 2x)− 3x+ 1

)
which is C2,.5, corresponding to f(x) = |x|.5.

2.2. A monotone finite difference method

Divide the real line into intervals of length h and the time line into intervals of length ρ.
Use the notation unj = u(jh, nρ). Begin with finite differences

(Dhxxu)nj =
1
h2

(
unj−1 − 2unj + unj+1

)
(2.2)

(Dρt u)nj =
1
ρ

(
un+1
j − unj

)
. (2.3)

Define the spatial and temporal residuals

δh[u]nj = (Dhxxu)nj − (uxx)nj ,

δρ[u]nj = (Dρt u)nj − (ut)nj .

The residuals are O(h2) and O(ρ) when u ∈ C4.
To discretize (2.1), simply insert (2.2) into the operator, to obtain

Fh[u] = max
{
Dhxxu, 2Dhxxu

}
+ f. (2.4)

Use (2.3) for the time derivative. The the total approximation error is given by

δh,ρ = δρ + Fh[u]− F [u].
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Substituting (2.2, 2.3, 2.4) into (2.1) and using the definition of the approximation errors gives

1
ρ

(
un+1
j − unj

)
=

1
h2

max
{
unj−1 − 2unj + unj+1, 2(unj−1 − 2unj + unj+1)

}
+ δh,ρ[u]nj .

Solving for un+1
j we obtain

un+1
j = (1− α)unj + αmax

{
(unj−1 + 2unj + unj+1)/4, (unj−1 + unj+1)/2

}
+ ρδh,ρ[u]nj ,

where we have defined
α ≡ 4ρ/h2.

For emphasis, define the nonlinear average which appears in the last equation

A(x0, x+, x−;α) = (1− α)x0 + αmax {(x− + 2x0 + x+)/4, (x− + x+)/2}

and write
un+1
j = A(unj , u

n
j+1, u

n
j−1;α) + ρδh,ρ[u]nj . (2.5)

For monotonicity [15] we require that the coefficients of the schemes be nonnegative,

α ≤ 1, equivalently ρ ≤ h2

4
. (2.6)

2.3. Error estimates

Let U = Uh,ρ be the solution of the finite difference scheme

Un+1
j = A(Unj , U

n
j+1, U

n
j−1;α) (2.7)

along with consistent initial and boundary conditions. Define

Znj = Unj − unj

to be the error at each grid point. Then subtracting (2.5) from (2.7) we obtain

Zn+1
j = A(Unj , U

n
j+1, U

n
j−1;α)−A(unj , u

n
j+1, u

n
j−1;α)− ρδh,ρ[u]nj . (2.8)

along with zero initial and boundary conditions.
Now provided that (2.6) holds, A is a nonlinear average, which means

A(x0, x+, x−;α) ≤ max{x0, x+, x−}

and, using the fact that ∣∣∣max
i
{Xi} −max

i
{Yi}

∣∣∣ ≤ max
i
|Xi − Yi|

it is easy to verify that∣∣A(Unj , U
n
j+1, U

n
j−1;α)−A(unj , u

n
j+1, u

n
j−1;α)

∣∣ ≤ A(
∣∣Znj ∣∣ , ∣∣Znj+1

∣∣ , ∣∣Znj−1

∣∣ ;α).

Together, these facts imply that∣∣Zn+1
j

∣∣ ≤ max{
∣∣Znj ∣∣ , ∣∣Znj+1

∣∣ , ∣∣Znj−1

∣∣}+ ρ
∣∣δh,ρ[u]nj

∣∣ .
Since the initial and boundary values of Z are zero, we can induct and conclude

max
j

∣∣Znj ∣∣ ≤ ρ n∑
k=1

∣∣δh,ρ[u]nk
∣∣ .
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2.4. Numerical Results

For both cases, the solutions were numerically computed on t ∈ [0, .5], with initial data given
by the exact solution. The error in the maximum norm (from the exact solution) at t = .5 is
shown as a function of the number of grid points in Figure 2.1. The convergence rate observed
is better than O(α), indeed it is consistent with O(1 + α).
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Fig. 2.1. Error in maximum norm versus number of grid points. The bottom and top curves correspond

to the solutions, u ∈ C2,1, v ∈ C2,.5. The slopes of the line of best fit are -2.04 and -1.54, respectively.

3. General Elliptic Finite Difference Schemes

Before restricting to polyhedral schemes, we state some results which apply to elliptic
schemes in general.

In the first subsection, we recall the framework established in [15] for building monotone
finite difference schemes. In the second subsection, we present contraction properties of time-
dependent schemes. In the last sections, we present three results on error estimates for increas-
ing discrete schemes, going from perturbed equations, to the method of lines, to fully discrete
finite difference schemes. In the last case the nonlinear (CFL) condition appears.

3.1. Characterization of elliptic difference schemes

Let Gh be a suitable finite difference grid on the domain Ω. Let the grid points be indexed
by xi, i = 1, . . . , N . For a function u(x, t) defined on Ω × [0, T ], write uni = u(xi, nρ). For
a given grid point i, let i′ = i1, . . . , ik be the list of neighboring grid points. A grid function
is a vector U = (U1, . . . , UN ) of values at the grid points, and a finite difference scheme is a
nonlinear function which maps grid functions to grid functions. (A solution of the scheme is a
grid function which satisfies Fh[U ] = 0, the zero grid function). Write the scheme Fh at the
grid point i as

F i[U ] ≡ F i (Ui, Ui − Ui1 , . . . , Ui − Uik) ≡ F i(Ui, Ui − Ui′),

where Ui−Ui′ is shorthand for the same expression repeated for each of the neighbors. (When
the context is clear, we will drop the superscript h from the scheme and the grid functions).
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Definition 3.1. The nonlinear scheme Fh is elliptic if each component F i is nondecreasing in
each variable, i.e.

X ≤ Y imples F i(X) ≤ F i(Y ) (3.1)

The nonlinear elliptic structure condition on schemes is the discrete version of the same
conditions for PDEs. In both cases, the local structure condition implies that the solution
operator is a contraction in the maximum norm, see [15] for proofs.

Lemma 3.1. The function F (X, p, r, x) is degenerate elliptic if and only if

F [u](x) ≥ F [v](x), (3.2)

whenever x is a nonnegative local maximum of u− v, for twice differentiable functions u, v.

Lemma 3.2. The scheme F is elliptic if and only if

F i[U ] ≥ F i[V ], (3.3)

whenever i is a nonnegative local maximum of U − V , for grid functions U, V .

3.2. Contraction properties is continuous or discrete time

When we discretize (PDE) in space, using a finite difference scheme, the result is the fol-
lowing system of ODEs.

d

dt
U(t) + Fh[U(t)] = 0, t > 0, U ∈ RN (ODE)

where Fh[U ] incorporates the boundary conditions as well.
When we also discretize time by using the forward Euler method in (ODE), we get the

following explicit method
Un+1 = Un − ρFh[Un]. (3.4)

The method consists of iteratively applying the explicit map, which we record below.

Definition 3.2 (The explicit Euler map) For ρ > 0, define the map Sρ which takes grid
functions to grid functions, by

Sρ(U) = U − ρF [U ]. (3.5)

Definition 3.3 (Nonlinear CFL condition) Let Fh[U ] be an elliptic scheme, and suppose
that it is Lipschitz continuous with constant Kh. The nonlinear Courant-Friedrichs-Lewy con-
dition [6] for the Euler map Sρ is

ρ ≤ 1
Kh

. (CFL)

Remark 3.1. We can also consider locally Lipschitz continuous schemes, in which case K(h) =
K(h, U). In some cases we still get global existence of solutions and K(h, U) does not decrease
in time. For example, this is the case for the scheme for the equation ut = u2

x and for the
time-dependent Monge-Ampère equation, see [16].

The contraction properties in time arise as a result from the local structure condition that
the operators or schemes be elliptic.
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Lemma 3.3 (L∞ Stability) Let u(x, t), v(x, t) be solutions of (PDE), subject to different ini-
tial conditions. Then

‖u(·, t)− v(·, t)‖∞ ≤ ‖u(·, s)− v(·, s)‖∞, for s ≤ t.

Proof. Write
N(t) = max

x∈Ω
|u(x, t)− v(x, t)|

and choose
x+(t) ∈ arg max

x∈Ω
u(x, t)− v(x, t).

We will establish that N(t) is a decreasing function of time. Without loss of generality, we can
assume that N(t) is achieved at x+(t). Compute

d

dt
u(x+(t), t)− v(x+(t), t)

=ut(x+(t), t)− vt(x+(t), t) +
(
Du(x+(t), t)−Dv(x+(t), t)

)
d

dt
x+(t)

=− F (D2u,Du, u, x) + F (D2v,Dv, v, x) |x=x+(t)≤ 0,

where we have used the fact that Du = Dv at a local max of u− v, in the first step, and (3.2)
in the second step. (The argument can be made valid for viscosity solutions, by replacing u, v
in the calculation by smooth test functions touching above or below, as necessary). �

Lemma 3.4. If Fh[U ] is an elliptic scheme, then the solution operator of (ODE) is a contrac-
tion in the maximum norm. In other words,

N(t) = max
j
|Uj(t)− Vj(t)| is a decreasing function of time,

whenever U(t), V (t) are solutions of (ODE).

Proof. Let k ∈ arg maxj Uj(t)− Vj(t). Without loss of generality, we can assume that N(t)
is achieved at k. Then since the scheme is elliptic, (3.3) holds, which gives

d

dt
(Uk(t)− Vk(t)) = F k(U)− F k(V ) ≤ 0.

This completes the proof of the lemma. �

Lemma 3.5. Let F be a Lipschitz continuous, degenerate elliptic scheme. Then the Euler map
(3.5) is a contraction in RN equipped with the maximum norm, provided (CFL) holds.

Proof. Refer to [15]. �

3.3. Error estimates for perturbed equations

We begin by recording the error estimates in the continuous setting.
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Lemma 3.6 (Error estimate) Let u(x, t) ∈ C2,α be the viscosity solution of (PDE), and let
uε be the solution of a family of approximate equations, uεt +F ε[uε] = 0, where for ε > 0, F ε is
an elliptic operator, subject to consistent initial and boundary conditions. Then

‖u(·, t)− uε(·, t)‖L∞ ≤
∫ t

0

max
x
|δε[u]| ds.

Proof. Compute

d

dt
(u− uε) = F ε[uε]− F [u]

= F ε[uε] + F ε[u]− F ε[u]− F [u]

= F ε[uε]− F ε[u] + δε,

where we have used the equation satisfied by uε, (PDE), and the definition of the truncation
error (4.8). As in Lemma 3.3, the first two terms have a favorable sign at a local maximum, or
minimum, of uε − u. As a result,

d

dx
‖u(·, t)− uε(·, t)‖L∞ ≤ ‖δε‖L∞(·,t)

and the result follows. �

3.4. Error estimates for the method of lines

Lemma 3.7 (Error estimates for the method of lines.) Let u(x, t) ∈ C2,α be the viscos-
ity solution of (PDE). Let F ε be an elliptic scheme for (1.1) and let U ε(t) be the solution of
the method of lines (ODE). Then the scheme converges and

max
j
|U εj (t)− uj(t)| ≤

∫ t

0

max
j
|δε[u(s)]j | ds.

Proof. Compute

d

dt
(uj(t)− U εj (t)) = F ε[U ε]j − F [u]j

= F ε[U ε]j + F ε[u]j − F ε[u]j − F [u]j
= F ε[U ε]j − F ε[u] + δεj ,

where we have used (ODE), (PDE), and the definition of the truncation error (4.8).
Having set up the equation above, we reiterate the proof that the solution mapping is

a contraction, carrying the inhomogeneous term to arrive at the conclusion. Let N(t) =
maxj |Uj(t) − uj(t)|. Assume that N(t) = maxj Uj(t) − uj(t). (A similar computation will
work if the sign is reversed). Compute for any k(t) ∈ arg maxj Uj(t)− uj(t),

d

dt
N(t) = F ε[U ]k − F ε[u]k + δεk(t) ≤ δεk(t)

where we have used the fact that F ε is elliptic (3.3). Since N(0) = 0, the result follows. �
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3.5. Error Estimates for the forward Euler method

Lemma 3.8. (Error estimates for Forward Euler) Let u(x, t) ∈ C2,α be the viscosity solution
of (PDE). Let Fh be an elliptic scheme for (1.1) and let Uh = (Uh)nj be the solution of the
forward Euler method (3.4). Suppose (CFL) holds. Then the scheme converges and,

max
j

∣∣(Uh)nj − unj
∣∣ ≤ ρ n∑

m=1

max
j

∣∣δh,ρ[u]mj
∣∣ . (3.6)

Proof. We first show that

un+1 = Sρ(un) + ρ δh,ρ[u]n.

This is simply a matter of collecting the definitions of the truncation errors and plugging them
into the equations,

un+1 = un + ρ (δρ[u]n + (ut)n) from (4.9)

= un + ρ (δρ[u]n − F [u]n) from (PDE)

= un + ρ
(
δρ[u]n − Fh[u]n + δh[u]n

)
by (4.8)

= Sρ(un) + ρ
(
δρ[u]n + δh[u]n

)
by (3.5)

= Sρ(un) + ρ δh,ρ[u]n by (4.9)

From (3.4), dropping the h superscript,

Un+1 = Sρ(Un).

So subtracting
Un+1 − un+1 = Sρ(Un)− Sρ(un)− ρ δh,ρ[u]n.

By Lemma 3.5, the Euler map is a contraction, thus

‖Un+1 − un+1‖∞ ≤ ‖Un − un‖∞ + ρ‖δh,ρ[u]n‖∞.

Since U0 = u0, the result follows by induction. �

4. Elliptic Schemes for Polyhedral Equations

4.1. Polyhedral grid aligned equations

We now turn our attention to a restricted class of nonlinear elliptic operators F [u]. Suppose
that F can be written as a (possibly nonconvex) polyhedral operator

F dθ[u] = min
i=1,...,K

max
j=1,...,K

{Lij [u]}, (4.1)

where each
Lij [u] ≡ aij(x) : D2u+ bij(x) ·Du+ cij(x)u+ dij(x)

is a linear, possibly degenerate elliptic equation with bounded coefficients.
Here, in addition to the standard assumption that each coefficient matrix aij is elliptic

(although possibly degenerate), we also assume that at each x each coefficient matrix aij is grid
aligned on a stencil of width W , for each i, j.
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Definition 4.1. The symmetric non-negative definite n×n matrix a is grid aligned on a stencil
of width W if it can be written as

a =
n∑
k=1

λkvk ⊗ vk, (4.2)

for orthogonal vectors vk of the form

vk = (m1, . . . ,mn), mi ∈ Z, |mi| ≤W, i = 1, . . . , n. (4.3)

See Figure 4.1.

Fig. 4.1. (a) Stencils of width 1 and 2 (with redundant points removed) (b) Modified stencil near the

boundary.

These operators arise as the value function of a stochastic differential game problem. Here
the polyhedral approximation corresponds to approximating the controlled diffusions by a re-
stricted set of controlled diffusions. In the simpler case, with just a minimum (or a maximum)
in (4.1) we obtain a stochastic control problem.

4.2. Elliptic schemes for polyhedral equations

In this section we build the elliptic schemes and demonstrate that the schemes are elliptic
using the framework from section 3.

The main tool for building elliptic finite difference schemes is the second finite difference
operator in the grid direction v. Generalize (2.2) to define

Dh
vvu(x) ≡ u(x+ hv)− 2u(x) + u(x− hv)

h2|v|2
. (4.4)

Next, define the finite difference scheme.

Definition 4.2. Let the nonlinear elliptic operator F be of the polyhedral form (4.1), where each
linear operator Lij is grid aligned. For each Lij define the corresponding discretized operator
Lhij by inserting the directional second derivatives (4.4) into the expression (4.2), to obtain

(a : D2u)h ≡
n∑
k=1

λkD
h
vvu.
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The first order terms in Lij are discretized by upwinding [15], and the remaining terms are
simply evaluated at the grid points. The grid aligned finite difference scheme for F is then
given by the pointwise maximum (or minimum) of the Lhij

Fh[u] = min
i=1,...,K

max
i=1,...,K

{Lhij [u]}. (4.5)

Lemma 4.1. The polyhedral finite difference scheme defined by (4.5) is elliptic.

Proof. We need to verify that the scheme satisfies (3.1). Notice first, that by definition, for
each grid direction v, the scheme (4.4) is elliptic. This follows since (4.4) is a positive multiple
of (u(x+hv)−u(x)) + (u(x−hv)−u(x)), so it is non-decreasing in the differences. Next, since
each λk is non-negative, the expression (4.2) is also elliptic. Finally, the expression (4.5) is a
minimum of a maximum of elliptic terms, and both of these operations preserved ellipticity. �

Remark 4.1. In some cases, where F is convex, but we may nevertheless choose a non-convex
approximation, as was done in [16] for the Monge-Ampère equation.

4.3. Approximately polyhedral equations

While the class of polyhedral grid aligned nonlinear elliptic equations is restrictive, many
equations can be approximated by this class. For example, the schemes in [13, 14, 16] were
approximated by equations from (or similar to) this class.

For approximately polyhedral equations, the consistency of the approximation depends on
the additional parameter, dθ, the directional resolution of the stencil. (In two dimensions, it
is the largest angle of a wedge that avoids grid points in the stencil.) Then we also want to
estimate |udθ − u|, the difference between the solution of the polyhedral equation F dθ[udθ] and
the original equation F [u], in terms of the consistency error.

Definition 4.3. We say the operator (1.1) is approximately polyhedral if, given dθ > 0 there
exists a grid with directional resolution dθ and a polyhedral grid aligned F dθ such that for all
smooth functions φ

F dθ[φ]− F [φ]→ 0 as dθ → 0. (4.6)

Example 4.1. To take an example from [16] the directional approximation error on smooth
functions, φ, is

δdθ[φ] = (λmax[φ]− λmin[φ]) dθ2,

where the first term on the right hand side is the difference between the largest and smallest
eigenvalue of the Hessian of φ at x.

4.4. Consistency of the schemes.

In this section consistency is defined in terms of the approximation errors. Consistency will
be used to prove convergence, and the approximation errors (when defined) will control the
convergence rate.

Without additional hypotheses on the elliptic operator, F , which ensure regularity of so-
lutions, the approximation error may be unbounded on viscosity solutions, making the error
estimates meaningless. However the consistency of the approximation need only be verified
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on smooth test functions, which allows for convergence results (without a rate) without any
regularity assumptions.

We assume that the schemes are either exact in dθ, (i.e., the equation is polyhedral and
grid aligned) or that the equation is nearly grid aligned, which is equivalent to consistency.
The previously cited references give examples of approximations by polyhedral grid aligned
functions on wide stencil grids.

Definition 4.4. Let F ε be an approximation scheme for the equation (1.1), where ε = (dθ, h, ρ),
to indicate that the scheme depends on the directional, spatial, and temporal resolution. The
total approximation error δε[u] for the function u is the function

δε = δh + δρ + δdθ, (4.7)

which is the sum of the spatial, temporal and directional approximation errors,

δh[u] ≡ Fh[u]− F [u], (4.8)

δρ[u] ≡ ut −Dρt u, (4.9)

δdθ[φ] ≡ F dθ[φ]− F [φ]. (4.10)

The scheme F is consistent if

δε[φ](x, t)→ 0 uniformly on compact subset of Ω× (0, T )

for all smooth φ(x, t).

Lemma 4.2. Consider functions u(x, t) ∈ C2,α
1 (Ω × [0, t)), and φ(x, t) smooth. Let F ε be the

the finite difference scheme for (PDE) comprised of the finite difference method (4.5) for the
spatial discretization and the forward Euler method in time (2.3). Suppose also that the CFL
condition (CFL) holds. Then

δh[φ] + δρ[φ] = O(h2), (4.11)

δh[u] + δρ[u] = O(hα). (4.12)

Proof. 1. It is a standard result from finite differences that for smooth functions φ(x, t) the
accuracy of the centered second finite difference scheme (4.4) is of O(h2) and the forward Euler
method (2.3) is O(ρ)

Dhvvφ− ∂vvφ = O(h2)

δρ[φ] = O(ρ).

2. For functions u(x) ∈ C2,α, we establish

Dhvvu(x)− ∂2

∂v2
u(x) = O(hα).

The application of Taylor series to u(x) ∈ C2,α(Ω) in the direction ±hv gives

u(x+ hv) = u(x) + h|v|uv(x) +
h2

2
|v|2uvv(x) +O(h2+α)

u(x− hv) = u(x)− h|v|uv(x) +
h2

2
|v|2uvv(x) +O(h2+α).
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Adding these equations and dividing by h2 gives the identity

u(x+ hv)− 2u(x) + u(x− hv)
h2|v|2

− uvv = O(hα), u ∈ C2,α.

3. Next, we estimate the spatial and temporal approximation errors. Notice that by virtue
of (4.1) and the boundedness of the coefficients in the Lij , F is Lipschitz continuous as a
function of the derivatives, with constant K. Correspondingly, F ε is Lipschitz continuous as a
function of the finite difference terms, with constant Kh. Thus

δh[u] = O(hα) δh[φ] = O(h2)

Finally, the Lipschitz constant of Kh as a function of h is O(h2), provided not all second order
terms are zero. Thus from (CFL), ρ = O(h2), so (4.11) and (4.12) hold. �

4.5. Convergence

In order to prove convergence, we use the theorem of [2], which says that consistent, mono-
tone, stable schemes converge. The results of [15], make this verification simple: it is enough
to check that the scheme is elliptic, and that (CFL) holds. We summarize the results of the
previous sections in the following theorem.

Theorem 4.1. Let F be an approximately polyhedral elliptic operator, and let u(x, t) be the
unique solution of (PDE), (BC). Let F ε be the finite difference equation for (PDE) which
is comprised of (4.5) for the spatial discretization (including the approximation in dθ by a
polyhedral operator) and the forward Euler method in time (2.3). Write U ε for the solution of
F ε . Then

U ε → u, uniformly on compact subsets of Ω× [0, t).

Proof. Consistency in h, ρ has been established in lemma 4.2: only the fact that the left
hand terms of (4.11) go to zero as h, ρ is needed. Consistency in dθ is assumed. Since we
assume F is approximately polyhedral, (4.6) holds. Stability follows from (CFL). The fact
that the scheme is elliptic has been established in lemma (4.1). Together these facts ensure
convergence. �

4.6. A convergence rate

Given the regularity of solutions, we obtain a corresponding convergence rate for the nu-
merical schemes, up to an additional directional approximation error term.

Theorem 4.2. Let F be a convex uniformly elliptic operator, which is also approximately poly-
hedral. Let u(x, t) be the unique solution of (PDE), (BC). Then u ∈ C2,α

1 (Ω×([0, t)). Let F ε be
the finite difference equation for (PDE) which is comprised of (4.5) for the spatial discretization
(including the approximation in dθ by a polyhedral operator) and the forward Euler method in
time (2.3). Write U ε for the solution of F ε. Then

max
j
|U ε − u|nj ≤ ρ

n∑
m=1

max
j

∣∣δε[u]mj
∣∣ ≤ tO(hα) + tδdθ[u], (4.13)

where t = nρ.
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Proof. The estimate in terms of the residual is provided by Lemma (3.8). The first inequality
of (4.13) is a restatement of (3.6). The entire approximation error, δε, is defined in (4.7) as

δε = δh + δρ + δdθ.

We will carry the third term, the directional approximation error, and estimate the first two.
The cited references [17, 18] give the C2,α regularity for uniformly elliptic equations. The

consistency results of our scheme, applied to functions u with the regularity above for the spatial
and temporal terms, are given in Lemma 4.2. Then (4.12) gives

δh[u] + δρ[u] = O(hα).

The result follows from inserting the last equation into (3.6), after observing that the summation
is a quadrature approximation to the time integral, and the error terms for the quadrature and
higher order and therefore negligible. �

Remark 4.2. When the equation is polyhedral, we obtain a convergence rate of α as an im-
mediate corollary of the previous theorem.
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