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Abstract

We present a compact upwind second order scheme for computing the viscosity solution

of the Eikonal equation. This new scheme is based on:

1. the numerical observation that classical first order monotone upwind schemes for the

Eikonal equation yield numerical upwind gradient which is also first order accurate

up to singularities;

2. a remark that partial information on the second derivatives of the solution is known

and given in the structure of the Eikonal equation and can be used to reduce the size

of the stencil.

We implement the second order scheme as a correction to the well known sweeping method

but it should be applicable to any first order monotone upwind scheme. Care is needed to

choose the appropriate stencils to avoid instabilities. Numerical examples are presented.

Mathematics subject classification: 35L60, 65N06, 65N12, 65N15
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1. Introduction

The Eikonal equation: {
|∇φ(x)| = n(x), x ∈ Ω/Γ

φ(x) = φ0(x), x ∈ Γ
(1.1)

is a special class of the Hamilton-Jacobi equations. It has wide applications in geometric optics,
computer vision, optimal control and etc. This boundary value problem (1.1) is a first order
hyperbolic partial differential equation (PDE). The classical method of characteristics can be
applied to solve the problem. Solutions remain smooth until the characteristics cross and the
fronts (level sets of the solution) intersect. Crandall and Lions [3] introduced the concept of
the viscosity solutions for the Hamilton-Jacobi equations and a unique global weak solution can
be defined in that sense. A weak solution remains smooth locally with the singularity in the
gradient along some sub-manifold of codimension 1, 2 or 3 (in 3D).
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It therefore makes sense to design high order schemes which have to remain high order away
from the singularities called kinks. High order schemes are of particular importance in the high
frequency wave propagation where the Eikonal equation is coupled to a transport equation
through its gradient [17,26].

Different first order numerical schemes have been developed to compute the viscosity so-
lutions. There are two types of approaches to compute the viscosity solution of the Eikonal
equation. One approach is to transform it to a time-dependent problem. For example, Os-
her [15] provided a natural link between the time-dependent and the static problems by us-
ing level-set ideas. Semi-Lagrangian schemes [7, 8] are obtained with the dynamical program-
ming principle under the optimal control framework. Another approach is to treat the prob-
lem as a stationary problem and directly solve it with efficient numerical algorithms such as
Dijkstral type of fast marching method (FMM) [6, 9, 21–23, 29] and iterative fast sweeping
method [2, 5, 11,12,18–20,27,28,31,32].

However both approaches rely, in theory and in practice, on the idea of ”upwind” or ”causal-
ity”. An efficient ordering of the application of the stencil on the grid must follow the traveltime
or the level set propagation. First order upwind schemes can do it monotonically (the itera-
tions converge monotonically to the solution) and the convergence is proven using the viscosity
theory [1,4,25]. Even though the gradient may be singular, the method remains stable because
the characteristics defining the upwind directions enter the kinks (exactly as in the case of the
shocks for the hyperbolic conservation laws).

On the other hand, second order schemes cannot be monotone [14] and in that case the
viscosity theory to prove the convergence is inoperative. The popular high order ENO and
WENO methods [10, 16, 24] use adaptive stencils (actually different stencils) to capture the
smoothest possible approximation of the second derivatives and therefore avoid, in theory, the
possible singularity of the solution. These ENO and WENO type of discretizations have been
incorporated into fast sweeping method in [30]. Recently second order discontinuous Galerkin
method has been developed for fast sweeping method for the Eikonal equation [13]. Also a
second order fast marching method was proposed in [22]. In this approach both the solution
and its gradient at accepted points, which are computed and stored during previous updates, are
used to provide high order approximation of directional derivatives at a considered point during
the marching process. The discretization is based on direction by direction approximation and
accurate ∇u are needed near the boundary to start with the fast marching method.

Our approach is different and is based on the following two observations. The first ob-
servation is a superconvergence phenomena for first order monotone upwind methods. More
precisely, the upwind numerical gradient of the solution obtained by these methods seems to
remain first order accurate up to singularity, i.e., away from kinks. Apparently this phenomena
has not been observed and studied in the literature. We substantiate this observation by a
detailed numerical study and we are currently working on a proof. The second observation is
that one only needs second derivative approximation tangential to the front, i.e., the curvature
estimation, to achieve second order local truncation error by using the PDE and a decomposi-
tion of the Taylor expansion. This results in a compact and upwind second order stencil. For
example, the stencil is 4 points in 2D (3 points is needed for the first order upwind scheme),
which is more compact than direction by direction second order approximation. Moreover, if
the second order accurate stencil can be placed upwind then we can avoid the singularity in the
gradient and remain second order accurate. Our method can be regarded as an efficient one
pass deferred correction to any first order monotone upwind method. It works in this way: after
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the first order solution is computed, the second order correction is applied to all grid points
in one pass in the ascending order of the first order solution. The upwind gradient of the first
order solution is used to determine the upwind stencil and compute the second order correction.
In this paper we use the fast sweeping method to produce the first order solution.

Here is the outline of the paper. In Section 2 a brief summary of the fast sweeping method
is presented. Numerical evidence for superconvergence of the numerical gradient for monotone
upwind schemes is presented. In Section 3, the compact second order scheme is derived. Some
stability issues for choosing the upwind stencil and discretization are discussed in Section 4.
The full algorithm as a one pass deferred correction is prescribed in Section 5. Finally numerical
results in homogeneous (constant n(x)) and heterogeneous cases are presented in Section 6.

2. Fast Sweeping Method and First Order Gradient

In this section, we first recall the fast sweeping method (FSM) on a rectangular mesh but
with 9-point stencil (Figure 2.1) which is more accurate than the classical stencil [20,31]. Then
we show a numerical study of the superconvergence for the gradient.

Fig. 2.1. 9-point stencil

2.1. The 9 point stencil

At each center point (0, 0), we do a piecewise linear approximation on each of the eight
triangles in Figure 2.1. Let us focus on triangle T1. We denote ∇φ(x) = (a1, b1), and do a first
order Taylor expansion {

φ0,−h = φ0,0 − b1h +O(h2),

φ−h,−h = φ0,0 − (a1 + b1)h +O(h2),
(2.1)

then truncate the O(h2) terms to solve for (a1, b1):





a1 =
φ0,−h − φ−h,−h

h

b1 =
φ0,0 − φ0,−h

h

(2.2)

We obtain a first order approximation of the Eikonal equation: a1
2 + b1

2 = n2, or

(φ0,−h − φ−h,−h)2 + (φ0,0 − φ0,−h)2 = n2h2. (2.3)
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Set on all points, this is a large non-linear system. It is generally solved by an iterative method
based on relaxation: fix the values at surrounding grid points and compute at the center point
φ0,0 and iterate. To ensure the convergence of the iterative process and the convergence to the
viscosity solution one must pick the triangle (or stencil) which satisfies a causality condition.

We now define the causality condition.
The discriminant of (2.3) is 4 = 4[n2h2 − (φ0,−h − φ−h,−h)2]. The nonnegativity of 4

requires

|φ0,−h − φ−h,−h| ≤ nh (2.4)

Two real roots are:

φ0,0 = φ0,−h ±
√

n2h2 − (φ0,−h − φ−h,−h)2.

We choose

φ0,0 = φ0,−h +
√

n2h2 − (φ0,−h − φ−h,−h)2 (2.5)

according to the upwind property: φ0,0 ≥ φ0,−h. And we require ∇φ, the characteristic passing
through C, intersects the base (AB) of the triangle (e.g., Figure 2.1) and is oriented from the
base (AB) toward C, that is,

φ0,0 ≥ φ0,−h, φ0,0 ≥ φ−h,−h, φ0,−h ≥ φ−h,−h,

φ0,0 − φ0,−h

h
≥ φ0,−h − φ−h,−h

h
.

Therefore, the Causality condition is:

0 ≤
√

2(φ0,−h − φ−h,−h) ≤ nh, (2.6)

which also implies

φ0,0 − φ0,−h ≤ nh ≤
√

2(φ0,0 − φ0,−h). (2.7)

The causality condition is equivalent to the monotonicity of the fast sweeping method [18].
Therefore we can prove the convergence of the numerical solution to the viscosity solution [1,18].

For this triangle we get a candidate solution φ1.

• if the causality condition (2.6) is satisfied, φ1 is given by (2.5).

• else φ1 = min(φA + n(C)|AC|, φB + n(C)|BC|).

Here |AC| (or |BC|) is the length of edge AC (or BC). The full 9-point stencil method
consists in applying the same triangle solver to all 8 triangles and selecting the minimum value,
i.e., φ0,0 = min(φ1, φ2, . . . , φ8).

2.2. Fast sweeping method

The fast sweeping method consists in the Gauss-Seidel iterations of the 9-point solver over
the grid in the following way.
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Fast Sweeping Method:

• Initialization: To enforce the boundary condition, φ(xi,j) = φ0 for xi,j ∈ Γ, assign
exact values or interpolated values at those grid points on or near Γ. Assign large
positive values elsewhere (start with a viscosity subsolution).

• Gauss-Seidel iteration with alternating orderings:

(1) i = 1 : I, j = 1 : J (2) i = 1 : I, j = J : 1

(3) i = I : 1, j = 1 : J (4) i = I : 1, j = J : 1.

At each grid replace its old value with the newly computed value only if the old value
is larger during the iterations.

2.3. First order gradient

The fast sweeping method is a monotone upwind scheme, so it is at most first order accurate
[14]. We therefore expect the gradient to be O(1). However, we observe here numerically that
its gradient remains first order accurate away from singularities, e.g., kinks, in the maximum
norm. This striking result has apparently not been reported or analyzed in the literature. We
currently have partial theoretical results.

As can be seen from the following numerical results, both the solution and its numerical
upwind gradient (at grid points) are first order in the maximum norm.

Table 2.1: Example 2.1: Distance function on uniform rectangular meshes

source point=(0.2, 0.2)

Mesh 80x80 160x160 320x320 640x640 1280x1280 2560x2560

E φx 0.0529669 0.0290819 0.0151099 0.0076870 0.0038753 0.0019454

Order - 0.865 0.945 0.975 0.988 0.994

E φy 0.0529669 0.0290819 0.0151099 0.0076870 0.0038753 0.0019454

Order - 0.865 0.945 0.975 0.988 0.994

E φ 0.0026306 0.0013020 0.0006480 0.0003237 0.0001617 0.0000808

Order - 1.015 1.007 1.001 1.001 1.001

#iter 5 5 5 5 5 5

source point=(0.4999, 0.4997)

Mesh 80x80 160x160 320x320 640x640 1280x1280 2560x2560

E φx 0.0532476 0.0290716 0.0150992 0.0076804 0.0038716 0.0019476

Order - 0.873 0.945 0.975 0.988 0.991

E φy 0.0534723 0.0293191 0.0151945 0.0077276 0.0038951 0.0019470

Order - 0.867 0.948 0.975 0.988 1.000

E φ 0.0020922 0.0010269 0.0005093 0.0002537 0.0001266 0.0000632

Order - 1.026 1.012 1.005 1.003 1.002

#iter 5 5 5 5 5 5
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Table 2.2: Example 2.2: φ(x, y) = 1− e−[(x−x0)2+(y−y0)2] on uniform rectangular meshes

(x0, y0) = (0.2, 0.2)

Mesh 80x80 160x160 320x320 640x640 1280x1280 2560x2560

E φx 0.0037678 0.0018813 0.0009400 0.0004698 0.0002348 0.0001174

Order - 1.002 1.001 1.001 1.001 1.000

E φy 0.0037678 0.0018813 0.0009400 0.0004698 0.0002348 0.0001174

Order - 1.002 1.001 1.001 1.001 1.000

E φ 0.0076833 0.0038544 0.0019304 0.0009660 0.0004831 0.0002416

Order - 0.995 0.998 0.999 1.000 1.000

#iter 5 5 5 5 5 5

(x0, y0) = (0.4999, 0.4997)

Mesh 80x80 160x160 320x320 640x640 1280x1280 2560x2560

E φx 0.0124930 0.0062491 0.0031248 0.0015624 0.0007812 0.0003906

Order - 0.999 1.000 1.000 1.000 1.000

E φy 0.0124933 0.0062491 0.0031249 0.0015624 0.0007812 0.0003906

Order - 0.999 1.000 1.000 1.000 1.000

E φ 0.0075728 0.0037984 0.0019022 0.0009518 0.0004761 0.0001881

Order - 0.995 0.998 0.999 0.999 1.340

#iter 5 5 5 5 5 5

Table 2.3: Example 2.3: φ(x, y) = sin[π(1+x)] sin(πy), source (0.5, 0.5), on uniform rectangular meshes

Mesh 80x80 160x160 320x320 640x640 1280x1280 2560x2560

E φx 0.0613285 0.0307979 0.0154156 0.0077099 0.0038552 0.0019276

Order - 0.994 0.998 1.000 1.000 1.000

E φy 0.0613285 0.0307979 0.0154156 0.0077099 0.0038552 0.0019276

Order - 0.994 0.998 1.000 1.000 1.000

E φ 0.0216920 0.0111907 0.0056818 0.0028625 0.0014367 0.0007197

Order - 0.955 0.978 0.989 0.995 0.997

#iter 5 5 5 5 5 5

2.3.1. Uniform rectangular grid

In the following examples, we test both homogeneous and heterogeneous cases on a uniform
rectangular mesh. The computational domain is [0, 1]× [0, 1].

Example 2.1: Homogeneous case: distance function to one source point outside a disk with
fixed radius around the source. Boundary condition is assigned to the disk. Table 2.1 shows
the results.

Example 2.2: Heterogeneous case 1: Table 2.2 shows the results for

φ(x, y) = 1− e−[(x−x0)
2+(y−y0)

2]

where (x0, y0) is the source point.

Example 2.3: Heterogeneous case 2: Table 2.3 shows the results for

φ(x, y) = sin[π(1 + x)] sin(πy),
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Table 2.4: Example 2.4: Distance function on non-uniform rectangular meshes

source point=(0.2, 0.2)

Mesh 80x80 160x160 320x320 640x640 1280x1280 2560x2560

E φx 0.0593022 0.0376018 0.0213904 0.0103294 0.0051558 0.0026291

Order - 0.657 0.814 1.050 1.002 0.972

E φy 0.0605857 0.0353263 0.0187774 0.0089362 0.0054762 0.0026653

Order - 0.778 0.912 1.071 0.706 1.039

E φ 0.0030526 0.0013952 0.0007047 0.0003471 0.0001720 0.0000860

Order - 1.130 0.985 1.022 1.013 1.000

#iter 6 6 6 6 6 6

source point=(0.4999, 0.4997)

Mesh 80x80 160x160 320x320 640x640 1280x1280 2560x2560

E φx 0.0718876 0.0382733 0.0220579 0.0098473 0.0050713 0.0028083

Order - 0.909 0.795 1.163 0.957 0.853

E φy 0.0522860 0.0297888 0.0185513 0.0104084 0.0056949 0.0029713

Order - 0.812 0.683 0.834 0.870 0.939

E φ 0.0022527 0.0011291 0.0005544 0.0002729 0.0001353 0.0000676

Order - 0.996 1.026 1.023 1.012 1.001

#iter 6 6 6 6 6 6

Table 2.5: Example 2.5: φ(x, y) = 1− e−[(x−x0)2+(y−y0)2] on non-uniform rectangular meshes

(x0, y0) = (0.2, 0.2)

Mesh 80x80 160x160 320x320 640x640 1280x1280 2560x2560

E φx 0.0096266 0.0047490 0.0030360 0.0013689 0.0007363 0.0003752

Order - 1.019 0.645 1.149 0.895 0.973

E φy 0.0090814 0.0052429 0.0025928 0.0015664 0.0007839 0.0003728

Order - 0.793 1.016 0.727 0.999 1.072

E φ 0.0083566 0.0041136 0.0020730 0.0010290 0.0005137 0.0002573

Order - 1.023 0.987 1.010 1.002 0.997

#iter 6 10 5 5 5 5

(x0, y0) = (0.4999, 0.4997)

Mesh 80x80 160x160 320x320 640x640 1280x1280 2560x2560

E φx 0.0108591 0.0044969 0.0020478 0.0010590 0.0005139 0.0003388

Order - 1.272 1.135 0.951 1.043 0.601

E φy 0.0100936 0.0056676 0.0022326 0.0014519 0.0005796 0.0002883

Order - 0.833 1.344 0.621 1.325 1.007

E φ 0.0082796 0.0041161 0.0020622 0.0010311 0.0005136 0.0002572

Order - 1.008 0.997 1.000 1.005 0.998

#iter 5 6 6 6 6 6

where the source point is at (0.5, 0.5).

2.3.2. Non-uniform rectangular grid

In the following examples, we test both homogeneous and heterogeneous cases on a non-uniform
rectangular mesh. The non-uniform rectangular mesh is generated by perturbating a uniform
rectangular mesh in the following way: given a uniform rectangular mesh of size h, then each
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grid point (xi, yi) is perturbed as xi = xi + 0.3h ∗ rand(−1, 1), yi = yi + 0.3h ∗ rand(−1, 1)
where rand(−1, 1) is a uniformly distributed random number. The computational domain is
[0, 1]× [0, 1].

Example 2.4: Homogeneous case: distance function to one source point outside a disk with
fixed radius around the source. Boundary condition is assigned to the disk. Table 2.4 shows
the results.

Example 2.5: Heterogeneous case 1: Table 2.5 shows the results for

φ(x, y) = 1− e−[(x−x0)
2+(y−y0)

2]

where (x0, y0) is the source point.

Example 2.6: Heterogeneous case 2: Table 2.6 shows the results for

φ(x, y) = sin[π(1 + x)] sin(πy),

where the source point is at (0.5, 0.5).

2.3.3. Triangular mesh

We test two cases on a triangular mesh to show the first order numerical gradient (computed
from the upwind triangle) on triangular meshes. The sweeping strategies were designed in [18].
Figure 2.2 shows a triangular mesh generated by pdetool in matlab. The computational domain
is [0, 1]× [0, 1]. The following two examples show that the numerical gradient is still first order
accuracte in maximum norm.

Example 2.7: Homogeneous case: distance function to one source point outside a disk with
fixed radius around the source. Boundary condition is assigned to the disk. Table 2.7 shows
the results (N=nodes, T=triangles).

Example 2.8: Heterogeneous case: Table 2.8 shows the results for

φ(x, y) = 1− e−[(x−x0)
2+(y−y0)

2].

Fig. 2.2. 1217 nodes, 2304 triangles
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Table 2.6: Example 2.6: φ(x, y) = sin[π(1 + x)] sin(πy), source (0.5, 0.5), on non-uniform rectangular

meshes

Mesh 80x80 160x160 320x320 640x640 1280x1280 2560x2560

E φx 0.1265495 0.0543291 0.0310489 0.0164091 0.0089669 0.0047503

Order - 1.220 0.807 0.920 0.872 0.917

E φy 0.0943599 0.0608614 0.0303352 0.0165642 0.0090523 0.0047208

Order - 0.633 1.005 0.873 0.872 0.939

E φ 0.0245629 0.0122128 0.0061812 0.0030636 0.0015287 0.0007650

Order - 1.008 0.982 1.013 1.003 0.999

#iter 6 6 6 6 6 6

Table 2.7: Example 2.7: Triangular mesh: distance function

source point=(0.5, 0.5)

(N,T) (321,576) (1217,2304) (4737,9216) (18689,36864) (74241,147456)

E φx 0.2070550 0.1176064 0.0729189 0.0401607 0.0208485

Order - 0.8489 0.7034 0.8691 0.9506

E φy 0.2078222 0.1178848 0.0727418 0.0402041 0.0208150

Order - 0.8509 0.7105 0.8640 0.9545

E φ 0.0203922 0.0099214 0.0049357 0.0023715 0.0011487

Order - 1.0812 1.0275 1.0681 1.0510

#iter 5 5 5 5 5

Table 2.8: Example 2.8: Triangular mesh: φ(x, y) = 1− e−[(x−x0)2+(y−y0)2]

(x0, y0) = (0.5, 0.5)

(N,T) (321,576) (1217,2304) (4737,9216) (18689,36864) (74241,147456)

E φx 0.0578306 0.0444789 0.0216892 0.0110174 0.0055591

Order - 0.3939 1.0569 0.9870 0.9918

E φy 0.0577844 0.0444843 0.0216903 0.0110177 0.0055591

Order - 0.3926 1.0570 0.9870 0.9918

E φ 0.0414766 0.0203827 0.0098675 0.0048889 0.0024295

Order - 1.0662 1.0676 1.0233 1.0139

#iter 5 5 5 5 5

3. The Compact Upwind Second Order Scheme

3.1. Adding the curvature of the wavefront in the discretization

The most popular high order schemes for hyperbolic type of PDEs are based on the ENO
or WENO technique [10,16,24] which moves a second order stencil around a grid point to fetch
the smoothest (kink free) approximation direction by direction. The approach followed
here is different. Using the Lagrangian structure of the Eikonal equation we propose a pure
upwind geometric second order correction to the first order scheme. The correction is based
on a decomposition of the Hessian into normal and tangential components of the wavefront.
By exploring the PDE, it turns out that only the tangential component, i.e. curvature of the
wavefront, is needed for the correction. We will assume the first order solution φ1 and numerical
gradient (a1, b1) have been computed.
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The second order Taylor expansion is:

φ(X + δX) = φ(X) + δX · ∇φ(X) +
1
2

< δX, D2φ(X) · δX > +O(δX3). (3.1)

We differentiate the Eikonal equation

D2φ(X) · ∇φ(X) = n(X)∇n(X)

and will use it to decompose the variation δX in a local coordinate system made of the La-
grangian direction and its orthogonal

δX =
1

n2(X)
{(δX · ∇φ)∇φ + (δX · ∇φ⊥)∇φ⊥}.

Plugging this decomposition into the second order term of (3.1) yields

1
2

< δX, D2φ(X) · δX >=
1

2 n4
(δX · ∇φ)2 < ∇φ,D2φ · ∇φ >

+
1
n4

(δX · ∇φ)(δX · ∇φ⊥) < ∇φ⊥, D2φ · ∇φ >

+
1

2 n4
(δX · ∇φ⊥)2 < ∇φ⊥, D2φ · ∇φ⊥ > . (3.2)

We first restrict to the simpler homogeneous case n ≡ 1. Derivatives of n vanish and then (3.1)
becomes

φ(X + δX) = φ(X) + δX · ∇φ(X) +
1
2
(δX · ∇φ⊥)2 < ∇φ⊥, D2φ · ∇φ⊥ > +O(δX3). (3.3)

As < ∇φ⊥, D2φ · ∇φ⊥ > is the curvature of the level sets of the phase (also called wavefronts),
we will denote it as C. Neglecting the third order term, our new approximation of the phase
(3.3) is of the form (denote ∇φ = (a, b))

φ(X + δX) = φ(X) + δX · (a, b) +
C

2 n4
(δX · (−b, a))2. (3.4)

This is a parabolic ”local curvature” correction to the piecewise linear approximation.
In the above second order approximation, there are three coefficients (a, b, C) to be deter-

mined. Suppose a > 0, b > 0, we choose the upwind quadrant and use the four grid points
({0, 0}, {−h, 0}, {0,−h}, {−h,−h}) for the expansion (we will come back on choice of stencils
later). 




φ−h,0 = φ0,0 − h a + C
2 (h b)2 +O(h3),

φ0,−h = φ0,0 − h b + C
2 (−h a)2 +O(h3),

φ−h,−h = φ0,0 − h (a + b) + C
2 (h (b− a))2 +O(h3).

(3.5)

Truncating the third order terms we can get a grid value approximation of the curvature C and
eliminate the last equation for instance,

line 1 + line 2− line 3 ⇒ C =
φ0,−h − φ0,0 + φ−h,0 − φ−h,−h

h2 a b
. (3.6)

The next natural steps should be
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1. to solve for (a, b) as a function of (φ0,0, φ−h,0, φ0,−h, φ−h,−h) and replace in the Eikonal
equation to write the numerical Hamiltonian;

2. relax: compute φ0,0 as a function of the values at grid points ({−h, 0}, {0,−h}, {−h,−h}).

This turns out to be a difficult nonlinear problem, involving the roots of a 6th order polynomial.
Before explaining how to simplify this into a more tractable problem. We derive a natural and
elegant interpretation of our scheme.

3.2. A non linear ray direction weighted approximation

Remembering that the Eikonal equation can be recast locally as (a, b) = (n cos θ, n sin θ),
we can use (3.5) - (3.6) to write a local weighted centered finite difference (FD) formula in the
upwind quadrant





a = (1− 1
2 tan θ)

φ0,0 − φ−h,0

h
+ 1

2 tan θ
φ0,−h − φ−h,−h

h
,

b = (1− 1
2 tan−1 θ)

φ0,0 − φ0,−h

h
+ 1

2 tan−1 θ
φ−h,0 − φ−h,−h

h
.

(3.7)

This is not a practical solution formula as θ depends on (a, b) but it shows that we average the
local first order FD according to the Lagrangian direction. For instance if the ray makes a π

4

angle with the x axis, i.e., exactly cuts in half the quadrant, then we use an arithmetic average
of the FD derivatives of the four grid points of this quadrant. If the ray approaches an axis,
then the weight is non-linearly adjusted by the tan θ functions.

If the ray direction is on a grid line (either the x or y axis) then the cotangent or tangent
coefficient is infinite. In this case C is not guaranteed to be determined uniquely by system
(3.1) (after truncation) as can be seen by replacing (a, b) by (0, 1) or (1, 0). If rays approach the
grid lines the method is unstable. A natural way to avoid this instability is to use a different
stencil according to the upwind direction. This is explained in section 4. We now focus on this
particular stencil and assume the ray direction stays away from the grid lines (θ = 0, π

2 ).

3.3. Simplification of the second order terms

In order to simplify our local solver and obtain a tractable scheme, we remember that
the first order scheme determines the upwind direction and does so with first-order accuracy.
Assume (a1, b1) is in the positive x and y directions, we can therefore work with the upwind
quadrant ({0, 0}, {−h, 0}, {0,−h}, {−h,−h}). Using remark that (a1, b1) = (a, b) + O(h), we
notice that replacing (a, b) in the quadratic terms of the Taylor expansions (3.5) with (a1, b1)
preserves second order accuracy





φ−h,0 = φ0,0 − h a +
C

2
(h b1)2 +O(h3),

φ0,−h = φ0,0 − h b +
C

2
(−h a1)2 +O(h3),

φ−h,−h = φ0,0 − h (a + b) +
C

2
(h (b1 − a1))2 +O(h3).

(3.8)
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We can again eliminate C with formula (3.6) where (a, b) is replaced by (a1, b1). Then (3.7)
simplifies to





a = (1− 1
2 tan θ1)

φ0,0 − φ−h,0

h
+ 1

2 tan θ1
φ0,−h − φ−h,−h

h
,

b = (1− 1
2 tan−1 θ1)

φ0,0−φ0,−h

h + 1
2 tan−1 θ1

φ−h,0 − φ−h,−h

h
,

(3.9)

where θ1 is the first order angle given by the first order scheme and therefore tan θ1 = b1/a1.
We can now write our second order numerical Hamiltonian (restricted to the upwind quadrant)

g(φ0,0, φ0,−h, φ−h,0, φ−h,−h) =
√

a2 + b2 − n0,0 = 0, (3.10)

where (a, b) is given by (3.9).
This numerical scheme has the following properties: (i) Consistency of second order local

truncation error; (ii) Stability as long as θ1 stays away from grid lines; (iii) Monotonicity,
as a second order scheme it is of course non-monotone (it is easily checked that g cannot be
simultaneously a decreasing function of φ0,−h and φ−h,0 at the same time).

We need to address the solution of the discrete system. As for the first order monotone
scheme we use relaxation. We need to be able to solve for φk+1

0,0

g(φk+1
0,0 , φk

0,−h, φk
−h,0, φ

k
−h,−h) = 0. (3.11)

This boils down to finding the roots of a second order polynomial. For simplicity we omit the
k superscripts, the equation is

a2 + b2 = n2
0,0

where (a, b) are given in (3.9). This can be rewritten (carefully) as

c1 φ2
0,0 + c2 φ0,0 + c3 = 0, (3.12)

where (c1, c2, c3) are easily computed and depend on the values at other grid points and on
(a1, b1). Let us study more precisely this quadratic equation:

A =
b1

2 a1
(φ0,−h − φ−h,−h)−

(
1− b1

2 a1

)
φ−h,0,

B =
a1

2 b1
(φ−h,0 − φ−h,−h)−

(
1− a1

2 b1

)
φ0,−h,

c1 =
(

1− b1

2 a1

)2

+
(

1− a1

2 b1

)2

,

c2 = 2
(

1− b1

2 a1

)
A + 2

(
1− a1

2 b1

)
B,

c3 = B2 + A2 − h2 n2.

The discriminant can be reduced to

∆ = c1 h2 n2 −
{(

2− b1

a1

)
B −

(
2− a1

b1

)
A

}2

. (3.13)

So we get real roots when
∥∥∥∥
(

2− b1

a1

)
B −

(
2− a1

b1

)
A

∥∥∥∥ ≤
√

c1 h n,
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which can be reduced to

∥∥∥∥

(
2− b1

a1

)
φ−h,0 −

(
2− a1

b1

)
φ0,−h +

(
b1

a1
− a1

b1

)
φ−h,−h

√(
1− b1

2 a1

)2

+
(

1− a1

2 b1

)2

∥∥∥∥ ≤ nh. (3.14)

The roots are

roots =
−c2 ±

√
∆

2 c1
.

However we find that the part

−c2

2c1
=

1
(1− b1

2a1
)2 + (1− a1

2b1
)2

(α0,−hφ0,−h + α−h,0φ−h,0 + α−h,−hφ−h,−h),

α0,−h = −
(

1− b1

2a1

)
b1

2a1
+

(
1− a1

2b1

)2

,

α−h,0 = −
(

1− a1

2b1

)
a1

2b1
+

(
1− b1

2a1

)2

,

α−h,−h =
(

1− a1

2b1

)
a1

2b1
+

(
1− b1

2a1

)
b1

2a1
,

is a weighted average of the upwind values (remark α−h,0 +α0,−h +α−h,−h = (1− b1
2 a1

)2 +(1−
a1
2 b1

)2) and
√

∆ is of O(h). So as we march in the upwind direction, we must pick the larger
root (−c2 +

√
∆)/(2c1), noting that

1
(1− b1

2a1
)2 + (1− a1

2b1
)2

(
α−h,0{−h, 0}+ α0,−h{0,−h}+ α−h,−h{−h,−h}

)

=
−h

(1− b1
2a1

)2 + (1− a1
2b1

)2

{
1− b1

2a1
, 1− a1

2b1

}

is under the line y = −a1x/b1 which is orthogonal to {a1, b1}, the wavefront reaches this point
before reaching {0,0}.

4. General Case and Choice of Stencils

Here we discuss about more general cases and explain how to select different stencils when
(1) either a1 or b1 vanishes (ray direction on a grid line), (2) there are shocks/kinks.

4.1. The heterogeneous case: variable index of refraction

We proceed as in the previous section with equation (5) and (6) to get

φ(x + δx) =φ(x) + δx · ∇φ(x) +
1

2n4
(δx · ∇φ)2 < ∇φ,D2φ · ∇φ >

+
1
n4

(δx · ∇φ)(δx · ∇φ⊥) < ∇φ⊥, D2φ · ∇φ > +
C

2n4
(δx · ∇φ⊥)2. (4.1)

We note again C =< ∇φ⊥, D2φ · ∇φ⊥ > is the curvature of the level set of the wavefront.
This will be replaced in the formula above. The other terms involving the Hessian matrix of φ
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(a) Stencil (b) Region 1 and stencil

(c) Region 2 and stencil (d) Region 3 and stencil

Fig. 4.1. Upwind quadrant, different regions and corresponding stencils (marked as ?)

can be eliminated using the index of refraction n and its gradient ∇n = (nx, ny) by taking the
gradient of the Eikonal equation

D2φ · ∇φ = n∇n.

These terms were vanishing in the previous section where we assumed the constant index of
refraction.
Denoting ∇φ = (a, b), we proceed as in section 3 and remark that (4.1) has three unknowns:

(a, b, C) which determine a parabolic second order approximation of the phase. Depending on
the the upwind direction given by the first order gradient (a1, b1) we will use different stencils
to compute (a, b, C).

Let us again assume that a1 > 0 and b1 > 0. In the upwind quadrant, e.g. Figure 4.1(b)
Region 1, with stencil ({−h, 0}, {0,−h}, {−h,−h}), we do second order Taylor expansion:

φ−h,0 = φ0,0 − ah +
h2

2n3

(
(a3 + 2ab2)nx − a2bny

)
+

h2b2

2n4
C, (4.2a)

φ0,−h = φ0,0 − bh +
h2

2n3

(
− ab2nx + (b3 + 2a2b)ny

)
+

h2a2

2n4
C, (4.2b)

φ−h,−h = φ0,0 − (a + b)h +
h2

2n3

(
(a3 + ab2 + 2b3)nx + (b3 + a2b + 2a3)ny

)

+
h2(b− a)2

2n4
C. (4.2c)

An upwind scheme should use the neighboring values, e.g. at grid points ({−h, 0}, {0,−h},
{−h,−h}) to update the value at the center point {0, 0}. So assuming these values are given and
already second order accurate we can solve system (4.2) with the Eikonal equation a2 + b2 = n2



A Compact Upwind Second Order Scheme for the Eikonal Equation 503

to get (a, b, C, φ0,0). In other words with the algebraic trick above, we only need one additional
point to the first order stencil to get second order accuracy.

Similarly as in the case for the constant index of refraction (section 3) this system is difficult
to solve and boils down to a 6th order polynomial in φ0,0. So we replace (a, b) in high order
terms of (4.2) with first order approximation (a1, b1)

φ−h,0 = φ0,0 − ah +
h2

2n3

(
(a1

3 + 2a1b1
2)nx − a1

2b1ny

)
+

h2b1
2

2n4
C, (4.3a)

φ0,−h = φ0,0 − bh +
h2

2n3

(
− a1b1

2nx + (b1
3 + 2a1

2b1)ny

)
+

h2a1
2

2n4
C, (4.3b)

φ−h,−h = φ0,0 − (a + b)h +
h2

2n3

(
(a1

3 + a1b1
2 + 2b1

3)nx + (b1
3 + a1

2b1 + 2a1
3)ny

)

+
h2(b1 − a1)2

2n4
C (4.3c)

Now, we can easily solve the new system (4.3) for (a, b, C),

a =
1
h

(
(1− b1

2a1
)φ0,0 − φ−h,0

)
+

hnnx

2a1
+

b1

2a1

F0
h

, (4.4a)

b =
1
h

(
(1− a1

2b1
)φ0,0 − φ0,−h

)
+

hnny

2b1
+

a1

2b1

F0
h

, (4.4b)

C =
(F0− φ0,0)n4

a1b1h2
+

n(b1
3nx + a1

3ny)
a1b1

, (4.4c)

and

φ−h,0 =
(

1− b1

2a1

)
φ0,0 − ah +

h2nnx

2a1
+

b1

2a1
F0, (4.5a)

φ0,−h =
(

1− a1

2b1

)
φ0,0 − bh +

h2nny

2b1
+

a1

2b1
F0, (4.5b)

φ−h,−h =
(

1− (b1 − a1)
2

2a1b1

)
φ0,0 − (a + b)h +

h2(b1nnx + a1nny)
2a1b1

+
(b1 − a1)

2

2a1b1
F0, (4.5c)

where F0 = φ−h,0 + φ0,−h − φ−h,−h.

Then, the numerical Hamiltonian a2 + b2 = n2 is only a quadratic polynomial for φ0,0:

(
(1− b1

2a1
)φ0,0 − φ−h,0 +

h2nnx

2a1
+

b1

2a1
F0

)2

+
(

(1− a1

2b1
)φ0,0 − φ0,−h +

h2nny

2b1
+

a1

2b1
F0

)2

= n2h2. (4.6)

Rewrite (4.6) as
c1φ

2
0,0 + c2φ0,0 + c3 = 0,

where

c1 = g2
1 + g2

3 , c2 = 2(g1g2 + g3g4), c3 = g2
2 + g2

4 − n2h2, g1 = 1− b1

2a1
;

g2 = −φ−h,0 +
h2nnx

2a1
+

b1

2a1
F0, g3 = 1− a1

2b1
, g4 = −φ0,−h +

h2nny

2b1
+

a1

2b1
F0.
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The discriminant of (4.6) is:

4 = c2
2 − 4c1c3

= 4
(

(g1g2 + g3g4)2 − (g2
1 + g2

3)(g2
2 + g2

4 − n2h2)
)

= 4
(

(g2
1 + g2

3)n2h2 − (g1g4 − g2g3)2
)

.

The nonnegativity of 4 implies

‖g1g4 − g2g3‖√
g2
1 + g2

3

≤ nh,

which is

∥∥∥∥
(1− b1

2a1
)φ−h,0 − (1− a1

2b1
)φ0,−h + ( b1

2a1
− a1

2b1
)φ−h,−h + nh2

4 ( 2ny−nx

b1
− ny−2nx

a1
)√

(1− b1
2a1

)2 + (1− a1
2b1

)2

∥∥∥∥

≤nh. (4.7)

Two real roots are:

roots =
−c2 ±

√4
2c1

,

with

−c2

2c1
=

1
(1− b1

2a1
)2 + (1− a1

2b1
)2

(
α−h,0φ−h,0 + α0,−hφ0,−h + α−h,−hφ−h,−h + β0,0

)

α−h,0 = −
(

1− a1

2 b1

)
a1

2b1
+

(
1− b1

2a1

)2

, α0,−h = −
(

1− b1

2 a1

)
b1

2a1
+

(
1− a1

2b1

)2

,

α−h,−h =
(

1− a1

2 b1

)
a1

2b1
+

(
1− b1

2a1

)
b1

2 a1
, β0,0 =

h2n

2

(
(1− b1

2a1
)
nx

a1
+ (1− a1

2b1
)
ny

b1

)
.

(4.8)

We choose the larger root: (−c2 +
√4)/(2c1).

4.2. Rays on grid lines

In (4.4), b1/a1 or a1/b1 may blow up if the ray falls close to the grid lines, which results in
instability.

In order to resolve this problem, we separate the neighborhood (local mesh) into eight
regions (e.g., Figure 4.1(a), grey and blank, ε = π

4 ). And choose different stencils according to
where (a1, b1) falls to approximate (a, b, C).

In region 1, e.g., Figure 4.1(b), we use stencil ({−h, 0}, {0,−h}, {−h,−h}), and the
formulas are as above.
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In region 2, e.g., Figure 4.1(c), we use stencil ({0,−h}, {−h,−h}, {h,−h}) instead.

φ0,−h = φ0,0 − bh +
h2

2n3

(
− a1b1

2nx + (b1
3 + 2a1

2b1)ny

)
+

h2a1
2

2n4
C, (4.9a)

φ−h,−h = φ0,0 − (a + b)h +
h2

2n3

(
(a1

3 + a1b1
2 + 2b1

3)nx

+ (b1
3 + a1

2b1 + 2a1
3)ny

)
+

h2(b1 − a1)
2

2n4
C, (4.9b)

φh,−h = φ0,0 + (a− b)h +
h2

2n3

(
(a1

3 + a1b1
2 − 2b1

3)nx

+ (b1
3 + a1

2b1 − 2a1
3)ny

)
+

h2(b1 + a1)
2

2n4
C. (4.9c)

Solve for (a, b, C),

a =
φ0,−h − φ−h,−h

h
+

nhnx

b1
− 2a1 − b1

2b1

F0
h,

, (4.10a)

b =
φ0,0 − φ0,−h

h
+

nh

2

(
− a1nx

b1
2 +

ny

b1

)
+

a1
2

2b1
2

F0
h

, (4.10b)

C =
F0n4

b1
2h2

− n

b1
2

(
(a1

3 + 2a1b1
2)nx − a1

2b1ny

)
, (4.10c)

and then

φ0,−h = φ0,0 − bh +
nh2

2

(
− a1nx

b1
2 +

ny

b1

)
+

a1
2

2b1
2 F0, (4.11a)

φ−h,−h = φ0,0 − (a + b)h +
nh2

2

(
(2b1 − a1)nx

b1
2 +

ny

b1

)
+

(b1 − a1)2

2b1
2 F0, (4.11b)

φh,−h = φ0,0 + (a− b)h +
nh2

2

(
− (a1 + 2b1)nx

b1
2 +

ny

b1

)
+

(a1 + b1)2

2b1
2 F0, (4.11c)

where F0 = φ−h,−h + φh,−h − 2φ0,−h.

Then the numerical Hamiltonian a2 + b2 = n2 is given by

(
φ0,−h − φ−h,−h +

h2nnx

b1
− 2a1 − b1

2b1
F0

)2

+
(

φ0,0 − φ0,−h +
h2n

2
(−a1nx

b1
2 +

ny

b1
) +

a1
2

2b1
2 F0

)2

= n2h2. (4.12)

Rewrite (4.12) as
c1φ

2
0,0 + c2φ0,0 + c3 = 0

with
c1 = g2

1 + g2
3 , c2 = 2(g1g2 + g3g4), c3 = g2

2 + g2
4 − n2h2;

g1 = 0, g2 = φ0,−h − φh,−h +
h2nnx

b1
− 2a1 − b1

2b1
F0;

g3 = 1, g4 = −φ0,−h +
h2n

2

(−a1nx

b2
1

+
ny

b1

)
+

a2
1

2b2
1

F0.
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The discriminant of (4.12) is:

4 = c2
2 − 4c1c3

= 4[(g1g2 + g3g4)2 − (g2
1 + g2

3)(g2
2 + g2

4 − n2h2)]

= 4[(g2
1 + g2

3)n2h2 − (g1g4 − g2g3)2]

= 4[n2h2 − g2
2 ].

The nonnegativity of 4 implies ‖g2‖ ≤ nh, that is

∥∥∥∥
2a1

b1
φ0,−h −

(
a1

b1
+

1
2

)
φ−h,−h −

(
a1

b1
− 1

2

)
φh,−h +

h2nnx

b1

∥∥∥∥ ≤ nh. (4.13)

The two real roots are:

roots =
−c2 ±

√4
2c1

,

with

−c2

2c1
= α0,−hφ0,−h + α−h,−hφ−h,−h + αh,−hφh,−h + β0,0, (4.14a)

α0,−h = 1 +
a2
1

b2
1

, α−h,−h = − a2
1

2b2
1

, (4.14b)

αh,−h = − a2
1

2b2
1

, β0,0 = −h2n

2

(−a1nx

b2
1

+
ny

b1

)
.

We choose the larger root (−c2 +
√4)/(2c1).

In region 3, e.g., Figure 4.1(d), we use stencil ({−h, 0}, {−h,−h}, {−h, h}) instead.

φ−h,0 = φ0,0 − ah +
h2

2n3

(
(a1

3 + 2a1b1
2)nx − a1

2b1ny

)
+

h2b1
2

2n4
C, (4.15a)

φ−h,−h = φ0,0 − (a + b)h +
h2

2n3

(
(a1

3 + a1b1
2 + 2b1

3)nx

+ (b1
3 + a1

2b1 + 2a1
3)ny

)
+

h2(b1 − a1)
2

2n4
C, (4.15b)

φ−h,h = φ0,0 + (b− a)h +
h2

2n3

(
(a1

3 + a1b1
2 − 2b1

3)nx

+ (b1
3 + a1

2b1 − 2a1
3)ny

)
+

h2(b1 + a1)
2

2n4
C. (4.15c)

Solving for (a, b, C) gives

a =
φ0,0 − φ−h,0

h
+

nh

2

(
nx

a1
− b1ny

a1
2

)
+

b1
2

2a1
2

F0
h

, (4.16a)

b =
φ−h,0 − φ−h,−h

h
+

nhny

a1
− 2b1 − a1

2a1

F0
h

, (4.16b)

C =
F0n4

a1
2h2

− n

a1
2

(
− a1b1

2nx + (b1
3 + 2a1

2b1)ny

)
, (4.16c)
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and

φ−h,0 = φ0,0 − ah +
nh2

2

(
nx

a1
− b1ny

2a1
2

)
+

b1
2

2a1
2
F0, (4.17a)

φ−h,−h = φ0,0 − (a + b)h +
nh2

2

(
nx

a1
+

(2a1 − b1)ny

a1
2

)
+

(b1 − a1)2

2a1
2

F0, (4.17b)

φ−h,h = φ0,0 + (b− a)h +
nh2

2

(
nx

a1
− (2a1 + b1)ny

a1
2

)
+

(a1 + b1)2

2a1
2

F0, (4.17c)

where F0 = φ−h,−h + φ−h,h − 2φ−h,0.
Then the numerical Hamiltonian a2 + b2 = n2 is given by

(
φ0,0 − φ−h,0 +

h2n

2
(−b1ny

a1
2

+
nx

a1
) +

b1
2

2a1
2
F0

)2

+
(

φ−h,0 − φ−h,−h +
h2nny

a1
− 2b1 − a1

2a1
F0

)2

= n2h2. (4.18)

Rewrite (4.18) as
c1φ

2
0,0 + c2φ0,0 + c3 = 0,

with
c1 = g2

1 + g2
3 , c2 = 2(g1g2 + g3g4), c3 = g2

2 + g2
4 − n2h2;

g1 = 1, g2 = −φ−h,0 +
h2n

2

(−b1ny

a2
1

+
nx

a1

)
+

b2
1

2a2
1

F0;

g3 = 0, g4 = φ−h,0 − φh,−h +
h2nny

a1
− 2b1 − a1

2a1
F0.

The discriminant of (4.18) is:

4 = c2
2 − 4c1c3

= 4[(g1g2 + g3g4)2 − (g2
1 + g2

3)(g2
2 + g2

4 − n2h2)]

= 4[(g2
1 + g2

3)n2h2 − (g1g4 − g2g3)2]

= 4[n2h2 − g2
4 ].

The nonnegativity of 4 implies ‖g4‖ ≤ nh, that is
∥∥∥∥

2b1

a1
φ−h,0 −

(
b1

a1
+

1
2

)
φ−h,−h −

(
b1

a1
− 1

2

)
φ−h,h +

h2nny

a1

∥∥∥∥ ≤ nh. (4.19)

Two real roots are:

roots =
−c2 ±

√4
2c1

with

−c2

2c1
= α−h,0φ−h,0 + α−h,−hφ−h,−h + α−h,hφ−h,h + β0,0

α−h,0 = 1 +
b2
1

a2
1

, α−h,−h = − b2
1

2a2
1

,

α−h,h = − b2
1

2a2
1

, β0,0 = −h2n

2

(−b1ny

a2
1

+
nx

a1

)
. (4.20)
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We choose the larger root: (−c2 +
√4)/(2c1).

In (4.4), (4.10) and (4.16), we avoid the instability near the grid lines, that is, neither b1/a1

nor a1/b1 blows up if we choose the appropriate stencil. Altogether there are eight different
stencils depending on (a1, b1) in 2D. The other cases are similar to the derivations above.

The stencil ({−h, 0}, {0,−h}, {−h,−h}), ({0,−h}, {−h,−h}, {h,−h}) or
({−h, 0}, {−h,−h}, {−h, h}) chosen according to (a1, b1) is a good choice when the center point
is in the smooth region. However, when on a shock/kink, it may not be a good choice.

4.3. Stencil near singularity

The above choice of stencils is valid away from singularities, e.g., shocks/kinks. Near a shock,
one should avoid using stencils across the shock to approximate the second derivatives. Also
when tracing back along the characteristic the current grid point value should be interpolated
from neighboring stencils, i.e., the CFL (Courant-Friedrichs-Lewy) condition, for stability. In
summary we need to choose an upwind stencil which (1) provides smoother approximations of
second derivatives, and (2) satisfies the CFL condition. In particular we use numerical approx-
imation of |φxx|, |φyy| or |φxx| + |φyy| from the upwind direction to measure the smoothness.
Again assuming we have first order approximation of the gradient a1 > 0, b1 > 0, here is our
general Stencil-choosing criterion: (see Figure 4.2),

1. when the ray direction is in region 1,

• if b1
a1

< 1.

– If ({−h, 0}, {0,−h}, {−h,−h}) has been updated,

Dc = |φ1
0,−h − 2φ1

−h,−h + φ1
−2h,−h|+ |φ1

−h,0 − 2φ1
−h,−h + φ1

−h,−2h|.

else, Dc = ∞.

– If ({−h, 0}, {−h,−h}, {−h, h}) has been updated,

Da = |φ1
0,0 − 2φ1

−h,0 + φ1
−2h,0|+ |φ1

−h,h − 2φ1
−h,0 + φ1

−h,−h|,

else, Da = ∞.

– If Dc ≤ Da, choose ({−h, 0}, {0,−h}, {−h,−h}),
else, choose ({−h, 0}, {−h,−h}, {−h, h}).

• if b1
a1

> 1.

– If ({−h, 0}, {0,−h}, {−h,−h}) has been updated,

Dc = |φ1
0,−h − 2φ1

−h,−h + φ1
−2h,−h|+ |φ1

−h,0 − 2φ1
−h,−h + φ1

−h,−2h|.

else, Dc = ∞.

– If ({0,−h}, {−h,−h}, {h,−h}) has been updated,

Db = |φ1
h,−h − 2φ1

0,−h + φ1
−h,−h|+ |φ1

0,0 − 2φ1
0,−h + φ1

0,−2h|,

else, Db = ∞.

• If Dc ≤ Db, choose ({−h, 0}, {0,−h}, {−h,−h}),
else, choose ({0,−h}, {−h,−h}, {h,−h}).
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• if b1
a1

= 1.

– If ({−h, 0}, {0,−h}, {−h,−h}) has been updated,

Dc = |φ1
0,−h − 2φ1

−h,−h + φ1
−2h,−h|+ |φ1

−h,0 − 2φ1
−h,−h + φ1

−h,−2h|.

else, Dc = ∞.

– If ({−h, 0}, {−h,−h}, {−h, h}) has been updated,

Da = |φ1
0,0 − 2φ1

−h,0 + φ1
−2h,0|+ |φ1

0,h − 2φ1
0,0 + φ1

0,−h|,

else, Da = ∞.

– If ({0,−h}, {−h,−h}, {h,−h}) has been updated,

Db = |φ1
h,0 − 2φ1

0,0 + φ1
−h,0|+ |φ1

0,0 − 2φ1
0,−h + φ1

0,−2h|,

else, Db = ∞.

– If Dc ≤ min{Da, Db}, choose ({−h, 0}, {0,−h}, {−h,−h}),
else if Da ≤ Db, choose ({−h, 0}, {−h,−h}, {−h, h}),
else, choose {0,−h}, {−h,−h}, {h,−h}).

2. when the ray is in region 2,

• If ({0,−h}, {−h,−h}, {h,−h}) has been updated,

D1 = |φ1
h,−h − 2φ1

0,−h + φ1
−h,−h|, else, D1 = ∞.

• If ({0,−h}, {−h,−h}, {−2h,−h}) has been updated,

D2 = |φ1
0,−h − 2φ1

−h,−h + φ1
−2h,−h|, else, D2 = ∞.

• If D1 ≤ D2, choose ({0,−h}, {−h,−h}, {h,−h}),
else, choose ({0,−h}, {−h,−h}, {−2h,−h}).

3. when the ray is in region 3,

• If ({−h, 0}, {−h,−h}, {−h, h}) has been updated,

D1 = |φ1
−h,h − 2φ1

−h,0 + φ1
−h,−h|, else, D1 = ∞.

• If ({−h, 0}, {−h,−h}, {−h,−2h}) has been updated,

D2 = |φ1
−h,0 − 2φ1

−h,−h + φ1
−h,−2h|, else, D2 = ∞.

• if D1 ≤ D2, choose ({−h, 0}, {−h,−h}, {−h, h}),
else, choose ({−h, 0}, {−h,−h}, {−h,−2h}).

The explanation of our strategy is the following: when the ray is in region 1 and b1
a1

< 1,
we choose between two stencils: ({−h, 0}, {0,−h}, {−h,−h}) and ({−h, 0}, {−h,−h}, {−h, h})
to update the value at {0, 0} since characteristic in (a1, b1) direction intersects both stencils.
We approximate the second derivative |φxx|+ |φyy| at points {−h,−h}, {−h, 0} and choose the
smaller one. The strategy for other cases is similar.

For the chosen stencil, we need to calculate (a, b, C) from system of equations as (4.5), (4.11)
and (4.17), and the numerical Hamiltonian (4.6), (4.12) and (4.18). We skip the computation
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Fig. 4.2. Alternative stencil on a possible shock

and discussion here since they are the same.
In the following section 5, we will present our scheme, with a detailed procedure incorpo-

rating the stencil-choosing criterion.

5. A one Pass Deferred Correction Scheme

Now we present our complete algorithm as a one pass deferred correction to the numerical
solution, which we refer to as first order solution, to any upwind monotone scheme. The value
of the first order solution is used for the ordering of all grid points. The upwind numerical
gradient of the first order solution is used to determine upwind quadrant/stencils as well as
the second order correction. The scheme goes through all grid points in the ascendent order
of the first order solution and second order correction is propagated from sources or boundary
conditions in an efficient one pass fashion. Note that only accurate values are needed at the
boundary.

During the one pass correction process, the key issue is how to choose an upwind stencil
that satisfies the Stencil-choosing criterion: (1) the stencil is composed of neighboring grid
points that have been updated to second order accurate, (2) the stencil provides a smooth
approximations of second derivatives and a stable interpolation. Once the stencil is chosen,
second order correction can be implemented. When we make the second order correction
sequentially according to the ordering of the first order solution, we are following the propagation
of the wavefront (the level set of φ). Since each possible compact upwind stencil extends a angle
at most 90◦, there is no problem in finding a stencil that satisfies the above criterion during the
one pass correction if the wavefront can be resolved by the underlying grid. Since characteristics
go into shocks, our Stencil-choosing criterion will be able to pick a smooth updated stencil near
shocks. In the case not all the values of the upwind stencil we choose have been updated to



A Compact Upwind Second Order Scheme for the Eikonal Equation 511

second order accurate or the nonnegativity of the discriminant is not satisfied, special treatment
is needed. (see detailed description of the scheme below). This may happen, for instance, near
a point source (a rarefaction wave) due to high-curvature wavefront.

A One Pass Second Order Correction Scheme:

Step 1. Use monotone upwind scheme (e.g., FSM, 9-point stencil) to compute a first

order solution φ1 and the corresponding upwind gradient (a1, b1). Order all grid points

in the ascendent order of φ1.

Step 2. Initialize boundary conditions. Put mark = 1 on points where the boundary

values are prescribed.

Step 3. Go over each point according to ordering and make the second order correction.

Here is the detailed procedure for choosing the appropriate upwind stencil and making the
second order correction. Denote the current grid as {0, 0}. We give the algorithm for the
case a1 ≥ 0, b1 ≥ 0. Other cases (including a1 = 0 or b1 = 0) are treated similarly. The
upwind quadrant and different regions are illustrated in Figures 4.1 and 4.2. The detail of
Stencil-choosing criterion is described in Section 4.3.

F if (a1, b1) is in region 1.

• Choose the stencil according to the ”Stencil-choosing criterion”.

• If the stencil has been updated.

– If the numerical Hamiltonian has a real root, then we update φ(0, 0) and update

mark(0, 0) = 1.

– else,

∗ If the stencil is ({−h, 0}, {0,−h}, {−h,−h}),
· if b1

a1
< 1, use (4.5a) to update φ(0, 0) with (a, b) = (a1, b1), and update

mark(0, 0) = 1.

· if b1
a1

> 1, use (4.5b) to update φ(0, 0) with (a, b) = (a1, b1), and update

mark(0, 0) = 1.

· if b1
a1

= 1, use (4.5c) to update φ(0, 0) with (a, b) = (a1, b1), and update

mark(0, 0) = 1.

∗ If the stencil is ({0,−h}, {−h,−h}, {h,−h}), use (4.11a) to update φ(0, 0)

with (a, b) = (a1, b1), and update mark(0, 0) = 1.

∗ If the stencil is ({−h, 0}, {−h,−h}, {−h, h}), use (4.17a) to update φ(0, 0)

with (a, b) = (a1, b1), and update mark(0, 0) = 1.

• If the stencil has not been updated.

– if b1
a1

< 1,

∗ if mark(−h, 0) = 1, use (4.5a) to update φ(0, 0) with (a, b) = (a1, b1), and

update mark(0, 0) = 1.

∗ else, use (4.5c) to update φ(0, 0) with (a, b) = (a1, b1), and also update

mark(0, 0) = 1.
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• if b1
a1

> 1,

– if mark(0,−h) = 1, use (4.5b) to update φ(0, 0) with (a, b) = (a1, b1), and

update mark(0, 0) = 1.

– else, use (4.5c) to update φ(0, 0) with (a, b) = (a1, b1), and also update

mark(0, 0) = 1.

• if b1
a1

= 1, use (4.5c) to update φ(0, 0) with (a, b) = (a1, b1),

and update mark(0, 0) = 1.

F if (a1, b1) is in region 2.

• Choose the stencil according to the ”Stencil-choosing criterion”.

• If the stencil has been updated.

– If the numerical Hamiltonian has a real root, then we update φ(0, 0) and update

mark(0, 0) = 1.

– else, use (4.11a) to update φ(0, 0) with (a, b) = (a1, b1), and also update

mark(0, 0) = 1.

• If the stencil has been updated, use (4.11a) to update φ(0, 0) with (a, b) = (a1, b1),

and update mark(0, 0) = 1. F if (a1, b1) is in region 3.

– Choose the stencil according to the ”Stencil-choosing criterion”.

– If the stencil has been updated.

∗ If the numerical Hamiltonian has a real root, then we update φ(0, 0) and update

mark(0, 0) = 1.

∗ else, use (4.17a) to update φ(0, 0) with (a, b) = (a1, b1), and also update

mark(0, 0) = 1.

– else, use (4.17a) to update φ(0, 0) with (a, b) = (a1, b1), and update mark(0, 0) = 1.

6. Numerical Examples

In this section, we test our scheme with both homogeneous and heterogeneous cases. We
use the 9-point stencil fast sweeping method to compute the first order solution in all our tests.
Error1) is recorded. The computational domain is [0, 1]× [0, 1].

Table 6.1: Example 6.1 Distance function to one source. Error magnitude 10−7.

Source point=(0.5,0.5)

Mesh 80x80 160x160 320x320 640x640 1280x1280

E L∞ 995.594825 222.604406 52.641615 12.992351 3.202858

Order - 2.161 2.080 2.019 2.020

Source point=(0.4999,0.4997)

Mesh 80x80 160x160 320x320 640x640 1280x1280

E L∞ 999.521155 223.493026 53.710565 13.018126 3.209031

Order - 2.161 2.057 2.045 2.020

1) E L∞ and E L1 represent maximum norm error and L1 norm error.
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Table 6.2: Example 6.1 Distance function to multiple sources: (0.2001,0.2001), (0.39985,0.19965),

(0.5001,0.20039), (0.59985,0.24965), (0.2003,0.5002), (0.74985,0.49965), (0.25021,0.70019),

(0.29985,0.74965), (0.49985,0.749965) and (0.749985,0.749965). Error magnitude 10−7.

Multiple sources

Mesh 80x80 160x160 320x320 640x640 1280x1280

E L∞ 5909.268831 5606.583983 3463.307601 1592.033549 469.877280

Order - 0.076 0.695 1.121 1.761

E L1 1447.185635 312.339249 64.565416 16.185021 3.966551

Order - 2.212 2.274 1.996 2.029

Table 6.3: Example 6.2 φ(x, y) = 1− e−[(x−x0)2+(y−y0)2]: one source. Error magnitude 10−7.

Source point= (0.5,0.5)

Mesh 80x80 160x160 320x320 640x640 1280x1280

E L∞ 1620.656952 257.349879 104.916781 26.361747 6.613370

Order - 2.655 1.294 1.992 1.995

Source point= (0.4999,0.4997)

Mesh 80x80 160x160 320x320 640x640 1280x1280

E L∞ 1519.841986 369.526585 84.622353 17.952740 4.872976

Order - 2.040 2.127 2.237 1.881

Table 6.4: Example 6.2 Same as Table 6.2, except with the function.

Multiple sources

Mesh 80x80 160x160 320x320 640x640 1280x1280

E L∞ 4145.408510 2946.903103 1158.282506 781.124027 526.569565

Order - 0.492 1.347 0.568 0.569

E L1 21186.626686 4748.593298 997.761039 213.280224 49.575092

Order - 2.158 2.251 2.226 2.105

Table 6.5: Example 6.3 Phase function: φ(x, y) = sin[π(1 + x)] sin(πy), source=(0.5, 0.5). Error

magnitude 10−7.

Mesh 80x80 160x160 320x320 640x640 1280x1280

E L∞ 10272.185787 2568.194937 642.510826 160.633922 40.158919

Order - 2.000 2.000 2.000 2.000

Example 6.1: Homogeneous case we show some test results for the distance function to
one source point and multiple source points in Tables 6.1 and 6.2. A disk with fixed radius is
wrapped up around each source, then the boundary condition is assigned to the disk(s). Figure
6.1 shows the plots of a multiple-source case on a 160× 160 mesh.

Example 6.2: Heterogeneous case 1: we build heterogeneous test cases by choosing a phase
function φ(x, y) = min(xi,yi){1 − e−[(x−xi)

2+(y−yi)
2]} with single source and multiple sources

(the exact solution) and build the index of refraction by taking the norm of the gradient of this
function. Tables 6.3 and 6.4 show the results. Figure 6.2 shows the plots of the multiple-source
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Fig. 6.1. Distance function to multiple sources. Left: solution plots (blue: exact solution, red-dashed:

second order solution). Right: error plot.

Fig. 6.2. φ(x, y) = min(xi,yi){1 − e−[(x−xi)
2+(y−yi)

2]}. Left: solution plots (blue: exact solution,

red-dashed: second order solution). Right: error plot.

Fig. 6.3. Left: solution plots (blue: exact solution, red-dashed: second order solution). Right: error

plot.

case on a 160× 160 mesh.

Example 6.3: Heterogeneous case 2: this example shows a test for φ(x, y) = sin[π(1 +
x)] sin(πy). Table 6.5 shows the results. Figure 6.3 shows the plots on a 160× 160 mesh.

The above examples show that the maximum error for the solution in a smooth region that
is outside an O(h) neighborhood of the shock/kink (away from shock/kink) is second order
accurate. When inside this O(h) neighborhood of the shock/kink, it reduces to at most first
order accurate. However the L1 norm error is still second order accurate on the whole domain.

7. Conclusion

A compact upwind second order scheme is presented. The scheme is used as a one pass
second order correction to first order monotone upwind schemes. The method uses the ob-
served gradient superconvergence phenomena of first order monotone upwind schemes and the
Lagrangian structure of the equation itself.
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The method is simpler than the usual ENO methods but less general. It is doubtful that
the same ideas can be used to construct schemes of order higher than 2.

The scheme also depends on the ”Lagrangian structure” of the Eikonal equation and can
be extended to more general convex (or concave) Hamilton-Jacobi equations:

H(X,∇φ(X)) = 0.

The Lagrangian structure then becomes:

D2φ ·Hp(X,∇φ) = −HX(X,∇φ)

and the decomposition of the Hessian in the Taylor expansion is still done along the ray (of
direction Hp(X,∇φ) ) and its orthogonal direction.

The same kind of idea can be applied to a transport equation coupled to the Eikonal equa-
tion. Amplitude equation can be simplified down to ∇Y0 · ∇φ = 0 and taking the gradient we
can use in a similar fashion the following ”Lagrangian structure”:

D2Y0 · ∇φ = −D2φ∇Y0

to simplify the second order terms in the Taylor Expansion of Y0.
Future projects include extension to 3D and to unstructured mesh. We believe a similar

approach can be used to construct the stencils, therefore the second order scheme.
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