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ESTIMATION OF OPTIMAL ACOUSTIC LINER IMPEDANCE

FACTOR FOR REDUCTION OF RADIATED ENGINE NOISE

YANZHAO CAO, M. Y. HUSSAINI, AND HONGTAO YANG

Abstract. We study the optimal design problem of acoustic liner to minimize

fan noise radiation from commercial aircraft engine nacelles. Specifically we

treat the liner impedance factor as a parameter and seek to estimate its optimal

value that minimizes far-field radiated noise. The existence of such an optimal

parameter is proved under the assumption that the Helmholtz equation governs

the noise field. We also present numerical results to demonstrate that the choice

of the optimal liner impedance factor does result in significant reduction of noise

level in the far-field.

Key Words. liner impedance factor, the Helmholtz equation, optimization

problem

1. Introduction

With dynamic growth in aviation forecast well into the 21st century, aircraft
noise will remain a challenging environmental problem. Engine noise being a ma-
jor component of aircraft noise, interest in inlet and acoustic liner design appears
to endure([7, 6, 19]). Minimization of fan noise radiation from commercial air-
craft engine nacelles may be achieved by (i) acoustic shape optimization of the
inlet and (ii) impedance optimization of the liner. The former problem was stud-
ied in [3] using a gradient-based method within the context of a nonprogressive
wave environment governed by a Helmholtz equation. The existence of optimal
shape is proven, which is obtained numerically by spectral element method, and it
yielded 25% noise reduction. As a robust and efficient alternative to gradient-based
methods, surrogate management framework method is proposed in [16] for shape
optimization of a trailing edge flow to control aerodynamic noise. Liner impedance
optimization was studied in [5] using a finite duct noise propagation and radiation
code based on boundary integral equation method. It was also investigated within
the framework of linearized full potential equation (in the frequency domain) and
its discrete adjoint in [21].

In this paper, we treat liner impedance optimization as an optimal control and
parameter estimation problem. The parameter is the acoustic impedance factor
of the acoustic liner. We define a cost function that reflects the amount of noise
radiated from the engine inlet. The parameter estimation problem then is to seek
the parameter that minimizes the cost function. The focus of the paper is both
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the mathematical analysis and numerical simulation. We show that an optimal
parameter exists mathematically. We also show that the spectrum of the state
equation is located in the lower half of the complex plane, which guarantees the
stability of our numerical algorithm. To find the optimal parameter numerically,
we use the finite element method to seek the numerical solution of state equation
and an optimization subroutine to find the minimizer of the cost function. Our
numerical result indicates that the choice of optimal parameter results in reducing
the noise level by about 40%. The technological feasibility of such a liner material
is a different issue that we cannot address.

The paper is organized as follows. In §2, we introduce the optimal control prob-
lem for noise reduction. In §3, we establish the solution existence of the optimal
control problem. The numerical results are presented in the last section, §4.

2. An optimal control problem

We assume the problem to be axisymmetric. The geometry of the domain in
which the control problem is posed has the generic shape represented in Figure 1.
The modal composition of the noise source is supposed to be known on the source
plane Γ1. The nacelle boundary is made up of two parts, the first part being the
interior boundary Γ2 to which some acoustic liner material is attached, and the
second part being Γ3 that constitutes the rest of boundary of the nacelle geometry.
The boundary Γ4 is assumed to be sufficiently far from the noise source so that
the Sommerfeld radiation boundary condition holds. The nacelle symmetry axis is
denoted by Γ5.

Γ1
Γ2

Γ3

Γ4

Γ5

Ω

Figure 1. The computational domain

If the meanflow is uniform with Mach number M0, then the governing equation
for the acoustic pressure u ([11]) is

(2.1) (1 −M2
0 )
∂2u

∂x2
+
∂2u

∂y2
− 2ikM0

∂u

∂x
+ k2u = 0,

where k is the wavenumber. For simplicity of the presentation, we assume that the
mean flow is zero. Then the acoustic pressure u satisfies the Helmholtz equation

(2.2) ∆u+ k2u = 0 on Ω
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subject to the following boundary conditions on the boundary ∂Ω of Ω:

(2.3)

u |Γ1
= g,

(

∂u
∂n + χu

)

|Γ2
= 0,

∂u
∂n |Γ3

= 0,
(

∂u
∂n + iku

)

|Γ4
= 0,

∂u
∂n |Γ5

= 0.

Here χ = ik/ξ and ξ the impedance factor, which is complex and whose real part
is resistance and the imaginary part is reactance. Both the dependent and the
independent variables in the above equations are supposed to be properly non-
dimensionalized.

The optimization problem consists in finding the parameter χ so that the least
amount of noise propagates to the far field. More specifically, we want to find χ so
that the cost functional

(2.4) J(χ, u) = α

∫

Ω

u2dΩ + β

∫

Ω

|∇u|2dΩ + λ|χ− χ0|
2

is minimized, where α ≥ 0, β ≥ 0, and λ ≥ 0 are three constants, and χ0 is a given
complex number.

To conclude this section, we introduce notations that will be used throughout
the paper. As usual, the space of square integrable complex-valued functions on
Ω (or Γj) is denoted by L2(Ω) (or L2(Γj)), and its inner product and norm are
denoted by (·, ·) (or 〈·, ·〉Γj

) and ‖ · ‖ (or ‖ · ‖Γj
), respectively. Let H1

E(Ω) = {u ∈

H1(Ω) : u|Γ1
= 0}, where H1(Ω) is the usual Sobelev space and its inner product

and norm are denoted by ‖ · ‖1 and (·, ·)1, respectively ([1]).

3. Spectrum of the state equation and existence of the optimal param-

eter

3.1. Spectrum of the state equation. We shall study the existence of the so-
lution of (2.2)-(2.3) and its spectrum. The results will play an important role in
defining the set of admissible controls and the construction of numerical algorithms
to compute the optimal parameter. To this end, we need to reformulate the PDE
problem into a variational problem. Indeed, the variational formulation of problem
(2.1)–(2.2) is: Find u ∈ H1(Ω) with u|Γ1

= g such that

(3.1) a(χ, u, v) = 0, ∀v ∈ H1
E(Ω),

where

a(χ, u, v) = (∇u,∇v) − k2(u, v) + χ〈u, v〉Γ2
+ ik〈u, v〉Γ4

.

We have the following theorem about the solution existence of this variational
problem.

Theorem 1. For a given wavenumber k, variational problem (3.1) has a unique
solution in H1(Ω) for all but a countable set S of χ having no limit points.

Proof. It follows from the trace theorem ([1]) that there is a function u∗ ∈ H1(Ω)
such that u∗|Γ1

= g. Then variational problem (3.1) is equivalent to finding w =
u− u∗ ∈ H1

E(Ω) such that

(3.2) a(χ,w, v) = −a(χ, u∗, v), ∀v ∈ H1
E(Ω).
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Notice that for φ, ψ ∈ H1
E(Ω),

|〈φ, ψ〉Γj
| ≤ ‖φ‖Γj

‖ψ‖Γj
≤ Cj‖φ‖1‖ψ‖1, j = 2, 4,

|(φ, ψ)| ≤ ‖φ‖1‖ψ‖1,

where the trace theorem ([1]) was used and Cj are positive constants. Recall that

the embeddings from H1(Ω) to L2(Ω) and H1/2(∂Ω) to L2(∂Ω) are compact ([1]).
By the Riez Representation Theorem, we have compact bounded linear operators
Bj(j = 0, 2, 4) from H1

E(Ω) to itself such that

〈φ, ψ〉Γ2
= (B2φ, ψ)1, 〈φ, ψ〉Γ4

= (B4φ, ψ)1, (φ, ψ) = (B0φ, ψ)1

for all φ, ψ ∈ H1
E(Ω). Hence,

a(χ,w, v) = ((I − (1 + k2)B0 + χB2 + ikB4)w, v)1.

By the Riez Representation Theorem again, we have for some f ∈ H1
0 (Ω)

−a(χ, u∗, v) = (f, v)1, ∀v ∈ H1
0 (Ω).

Therefore, variational problem (3.2) becomes the following linear operator equation:

(3.3) (I − (1 + k2)B0 + χB2 + ikB4)w = f.

We first show that the operator P (χ) = I − (1 + k2)B0 + χB2 + ikB4 is invertible
for some χ by using the stability argument in the proof of Theorem 2.1 in [2]. It
is obvious that I +B0 + ikB4 is invertible. Since B2 −B0 is compact, we conclude
that Q(χ) = I +B0 + ikB4 + χ(B2 −B0) is invertible except for a countable set of
χ ([13]). Since

‖P (χ) −Q(χ)‖1 = |χ− 2 − k2|‖B0‖1 → 0, as χ→ 2 + k2,

it follows from the stability of bounded invertibility (see Chapter 4 of [12]) that
P (χ∗) is invertible for some χ∗ sufficiently close to 2 + k2. Since P (χ) = P (χ∗) +
(χ − χ∗)B2, the conclusion of the the theorem follows from the fact that B2 is
compact. �

Remark 1. Similarly, we can prove that for a given χ, the variational problem (3.1)
has a unique solution for all but possibly a countable set of wavenumbers k.

The complex number χ ∈ S is so-called the Steklov eigenvalue. The Steklov
eigenvalue problem is to find χ such that problem (2.1)–(2.2) has some nonzero
solution when g = 0. We shall call S the spectrum of the state equation and have
the following result concerning its location.

Theorem 2. If I − (1 + k2)B0 is invertible, then S lies in the closed lower half
plane of the complex numbers.

Proof. Let w ∈ H1
E(Ω) be an eigenfunction associated with χ ∈ S. Then we have

(3.4) (I − (1 + k2)B0 + χB2 + ikB4)w = 0.

Thus,

((I − (1 + k2)B0 + χB2 + ikB4)w,w) = 0,

i.e.,

‖∇w‖2 − k2‖w‖2 + χ‖w‖2
Γ2

+ ik‖w‖2
Γ4

= 0.

Hence,

ℑ(χ)‖w‖2
Γ2

+ k‖w‖2
Γ4

= 0,
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where ℑ(χ) is the imaginary part of χ. If ℑ(χ) > 0, then w = 0 on Γ2 and Γ4 and
thus equation (3.4) becomes

(I − (1 + k2)B0)w = 0.

Therefore, w = 0 and it can not be an eigenfunction. The proof is completed. �

Remark 2. Since B0 is a self-adjoint compact operator, I − (1 + k2)B0 is invertible
for all but a countable set of k having no limit points. It is easy to see that
I − (1 + k2)B0 is invertible if and only if the following boundary problem has only
the trivial solution:

∆u+ k2u = 0 in Ω,

u |Γ1
= 0 on Γ1,

∂u

∂n
= 0 on ∂Ω\Γ1.

Our numerical experiment indicates that this boundary value problem does have
only the trivial solution for the wavenumber chosen in our numerical examples in
Section 4.

Denote by u(χ) the unique solution of (3.1) for χ ∈ C\S, where C is the set of
complex numbers. We have the following result about the sensitivity derivative of
u with respect to χ.

Theorem 3. Mapping u : C\S → H1
0 (Ω), χ 7→ u(χ) is differentiable, and for each

χ ∈ C\S, u′(χ) is the unique solution of the following variational equation:

(3.5) a(χ, u(χ), v) = −〈u(χ), v〉Γ2
, ∀v ∈ H1

E(Ω).

Proof. It follows from (3.3) that u(χ) is a continuous mapping. For a given χ ∈ C\S,
when h ∈ C\{0} and |h| is sufficiently small, we have χ+h ∈ C\S and thus by (3.3)
again

u(χ+ h) − u(χ)

h
= −(I − (1 + k2)B0 + χB2 + ikB4)

−1B2u(χ+ h),

which implies differentiability of u(χ) and

u′(χ) = −(I − (1 + k2)B0 + χB2 + ikB4)
−1B2u(χ),

i.e.,

(I − (1 + k2)B0 + χB2 + ikB4)u
′(χ) = −B2u(χ).

Hence, u(χ) is the solution of variational equation (3.5). �

A consequence of the above theorem is that the approximations of u(χ) and
u′(χ) can be computed by using the same finite element procedure. This is very
efficient when the cost functional J is numerically minimized by an optimization
algorithm requiring derivatives.

3.2. Existence of an optimal parameter. We now restate our minimization
problem by using the variation formulation (3.1) as follows:

(MIN)

{

Find (χ∗, u∗) ∈ Uad such that it minimizes the cost function J(χ, u)
over the admissible set Uad,

where

Uad := {(χ, u) : (χ, u) ∈ C ×H1(Ω) satisfies (3.1)},
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and C is the set of all complex numbers. It is apparent that Uad is a nonempty set
by Theorem 1.

In practice, the real part of ξ is always positive (see [18]) and thus the imaginary
part of χ is positive. It means that we should restrict χ in the upper half complex
plane. According to Theorem 2, if I − (1 + k2)B0 is invertible, the variational
problem (3.1) has a unique solution for χ with a positive imaginary part. Therefore,
the admissible set can be chosen as follows:

Uad := {(χ, u) : ℑ(χ) ≥ ǫ0 and u is the unique solution of (3.1)},

where ǫ0 is a small positive number.
It is well-known that the solution to the minimization problem like (MIN) may

not be unique. We have the following result about the existence of a minimizer.

Theorem 4. Problem (MIN) has at least one solution provided that α > 0 and
λ > 0.

Proof. It is easy to see that inf(χ,u)∈Uad
J(χ, u) exists and is finite. Thus there is a

sequence {(χn, un)}∞n=1 ⊂ Uad such that

lim
n→∞

J(χn, un) = inf
(χ,u)∈Uad

J(χ, u).

This implies that {J(χn, un)} is bounded, and thus {χn} is bounded and {un} is
bounded in L2(Ω). Let C be a constant such that

|χn| ≤ C, ‖un‖ ≤ C, n = 1, 2, . . .

We shall use C to denote all constants independent of un and χn. Without loss of
generality, we assume that χn converges to χ∗.

For χ = χn, u = un and v = un − u∗ in (3.1), we have that

a(χn, un, un) = a(χn, un, u∗).

Since

a(χn, un, un) = ‖un‖
2
1 − (1 + k2)‖un‖

2 + χn‖un‖Γ2
+ ik‖un‖Γ4

,

we have

(3.6) ‖un‖
2
1 ≤ (1 + k2)‖un‖

2 + (|χn| + k)‖un‖
2
∂Ω + |a(χn, un, u∗)|.

By Schwarz’s inequality and the inequality

ab ≤ ǫa2 +
1

4ǫ
b2, ǫ > 0, a, b ∈ R,

we have

(3.7) |a(χn, un, u∗)| ≤
1

4
‖un‖

2
1 +

|χn| + k

2
‖un‖

2
∂Ω + C.

By the trace theorem (see [14]), we get

(3.8) ‖un‖
2
∂Ω ≤ C‖un‖‖un‖1 ≤ ǫ‖un‖

2
1 + C

for all ǫ > 0. Combining (3.6)–(3.8), we obtain

‖un‖
2
1 ≤ C,

which means that ‖un‖1 is bounded in H1(Ω). Thus we can assume that un → u∗

weakly in H1(Ω) and un → u∗ weakly in L2(∂Ω). For each v ∈ H1
E(Ω), by letting

n→ ∞ in
a(χn, un, v) = 0,
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we get

a(χ∗, u∗, v) = 0, ∀v ∈ H1
E(Ω).

Thus (χ∗, u∗) ∈ Uad. It is well known that J is weekly lower semi-continuous ([15]).
Hence, we have

J(χ∗, u∗)) ≤ lim inf
n→∞

J(χn, un) = lim
n→∞

J(χn, un) = inf
(χ,u)∈Uad

J(χ, u),

which concludes the proof of the theorem. �

4. Numerical examples

In this section we present examples to show that the choice of optimal parameter
results in reducing the noise level significantly. The variational problem (3.1) is
solved by a linear finite element method. The computational domain is triangulated
in such a way that the coarse meshes are used in the regions far from the noise
source. The resulting linear system is solved by BiCG. Initially, we set χ = 0 which
means a hard wall condition on Γ2. Then the direct search algorithm of Hooke and
Jeeves is employed to drive the cost function J towards a minimum.

In the following examples, we take χ0 = 0 and k = 2π. The percentage of the
noise reduction is defined by E = (J(0) − J(χ∗))/J(0). The mesh size near the
noise source is about 0.0195. The profiles of noise sources are displayed in Figure
2. The computational results are presented in Table 1 and Table 2 which show
that the noise level is reduced significantly when the optimal impedance factors are
used. We also observed that the real part of the optimal impedance factor ξ∗ is
positive, which agrees with our theoretical analysis (Theorem 2) and the practical
requirement (see [18]). Figure 3 presents a graphic illustration of the convergence
of the cost function to what looks like a global minimum. The contour maps of the
amplitude of the acoustic velocity potential u are displayed in Figure ?? – Figure
?? for χ = 0 and χ = χ∗. We observe that the distribution of noise is confined near
the fan inlet as desired.

Table 1. Example I: g(y) = exp
(

π cos2(2πy)
)

Parameters α = 1, β = γ = 0 α = β = 1, γ = 0 α = β = γ = 1
J(0) 619 25805 25805
χ∗ −5.0464 + 1.9717i −4.7223 + 2.2851i −4.7080 + 2.2826i
ξ∗ 0.42203 − 1.0802i 0.5217 − 1.0781i 0.52389 − 1.0806i
J(χ∗) 331 14896 14924
E 46% 42% 42%

Table 2. Example II: g(y) = 20.0 + exp(3y) sin(10πy)

Parameters α = 1, β = γ = 0 α = β = 1, γ = 0 α = β = γ = 1
J(0) 3358 136947 136947
χ∗ −4.8647 + 1.6859i −4.6694 + 1.9370i −4.6665 + 1.9369i
ξ∗ 0.39962 − 1.1531i 0.47624 − 1.1480i 0.47674 − 1.1486i
J(χ∗) 2070 87293 87318
E 38% 36% 36%
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Figure 2. Profile of the source function g
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Figure 3. 3-D contour plots of cost functions when α = β = γ = 1

Figure 4. Example 1: The contour maps of |u(0)| and |u(χ∗)|
when α = 1, β = γ = 0

5. Conclusions

In this paper we posed the optimal design problem of acoustic liner to minimize
fan noise radiation from commercial aircraft engine nacelles. The optimization
problem is to find the optimal liner impedance factor to minimize far-field radiated
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Figure 5. Example 1: The contour maps of |u(0)| and |u(χ∗)|
when α = β = 1, γ = 0

Figure 6. Example 1: The contour maps of |u(0)| and |u(χ∗)|
when α = β = γ = 1

Figure 7. Example 2: The contour maps of |u(0)| and |u(χ∗)|
when α = 1, β = γ = 0

noise. The cost function is defined to reflect the amount of noise radiated from the
engine inlet. We first proved that the governing boundary value problem of the
Helmholtz equation is uniquely solvable except a countable set of liner impedance
factors having zero as its accumulation point. In particular, under a reasonable
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Figure 8. Example 2: The contour maps of |u(0)| and |u(χ∗)|
when α = β = 1, γ = 0

Figure 9. Example 2: The contour maps of |u(0)| and |u(χ∗)|
when α = β = γ = 1

assumption, we also showed that this spectral set is located in the left half of the
complex plane, which agrees with common practice of engineering communities
and guarantees the stability of our numerical algorithm. Then the existence of an
optimal liner impedance factor was established. Finally, we presented numerical
results to demonstrate that the choice of the optimal liner impedance factors does
result in reducing the noise level by about 40%, which is quite significant. In the
future we are going to study the corresponding optimization problem when the
wave number is considered as a random variable.
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