
Journal of Computational Mathematics

Vol.28, No.6, 2010, 837–847.

http://www.global-sci.org/jcm

doi:10.4208/jcm.3105-m2897

A FAST SIMPLEX ALGORITHM FOR LINEAR
PROGRAMMING*

Pingqi Pan

Department of Mathematics, Southeast University, Nanjing 210096, China

Email: panpq@seu.edu.cn

Abstract

Recently, computational results demonstrated remarkable superiority of a so-called

“largest-distance” rule and “nested pricing” rule to other major rules commonly used

in practice, such as Dantzig’s original rule, the steepest-edge rule and Devex rule. Our

computational experiments show that the simplex algorithm using a combination of these

rules turned out to be even more efficient.

Mathematics subject classification: 65K05, 90C05.

Key words: Large-scale linear programming, Simplex algorithm, Pivot rule, Nested, Largest-

distance, Scaling.

1. Introduction

Consider the linear programming (LP) problem in the standard form

minimize cT x

subject to Ax = b, x ≥ 0,
(1.1)

where A ∈ Rm×n (m < n) and rank(A) = m. It will be a simple matter to extend results of
this paper to more general LP problems with bounds and ranges.

The pivot rule that is employed to select an index to enter the basis is crucial to computa-
tional efficiency of the simplex algorithm, since it essentially determines the number of iterations
required for solving LP problems. As a result, a variety of pivot rules have been proposed and
tested from time to time (for a survey, see [8] or [13]). Among them, the steepest-edge rule [4,5]
and its approximation, Devex rule [6], are now accepted to be as the best, and are therefore
commonly used in commercial packages, such as CPLEX [1,7].

Recently, Pan reported very encouraging computational results on the largest-distance rule
[10] and the nested pricing rule [11, 12] against major commonly used rules, such as Dantzig’s
original rule as well as the steepest-edge rule and Devex rule. Over 80 test problems, a largest-
distance rule yields run times that are reduced by an average factor of 3.24, while a nested
pricing rule yields run times reduced by an average factor of 5.73, compared to the Devex rule.

It has been unknown what will happen if the nested pricing rule and the largest-distance rule
are put together. For this purpose, we have conducted computational tests on a combination
of the two rules with the same test sets, i.e., the 48 largest Netlib problems in terms of the
number of rows and columns, all of the 16 Kennington problems, and the 17 largest BPMPD
problems in terms of more than 500KB in compressed form. Computational results turned out

* Received August 30, 2008 / Accepted September 15, 2009 /

Published online August 9, 2010 /



838 P.Q. PAN

to be even more favorable than a single of them used: it outperformed the Devex rule by an
average run time factor as high as 7.27.

In the remaining part of this section, we review briefly the largest-distance rule and the
nested pricing rule. In Section 2, we describe the new rule. In Section 3, we report computa-
tional results and make final remarks.

Let B be the current basis and N the associated nonbasis. Without confusion, denote basic
and nonbasic index sets again by B and N , respectively. The reduced costs associated with
nonbasic indices may be computed by

c̄N = cN −NT π, BT π = cB . (1.2)

If index set
J =

{
j | c̄j < 0, j ∈ N

}
(1.3)

is nonempty, Dantzig’s original rule [2, 3] selects an entering index q such that

c̄q = min
{

c̄j | j ∈ J
}

< 0. (1.4)

1.1. Largest-distance rule

The determination of q is not invariant for scaling. In fact, it is seen from (1.2) and (1.4)
that quantities π and c̄N , and hence index q are all dependent of norms of columns of the
coefficient matrix A. To eliminates such dependence, the largest-distance rule [10] uses reduced
costs normalized by norms of corresponding columns.

1.2. Nested pricing rule

At each iteration, the nested pricing rule [11, 12] gives indices in a subset of N priority to
become basic. Pricing is first conducted on it to determine a reduced cost by some criterion. If
one is found significantly negative, then the associated index is selected to enter B. If not, the
same is done with the remaining set; if no such one is found, optimality is declared.

2. Nested Largest-Distance Rule

To make further progress, we combine the largest-distance rule and the nest pricing rule as
follows.

Rule 2.1. Let an optimality tolerance ε > 0 be given. Set J = N initially.
1. If

Ĵ
4
=

{
j | c̄j/‖aj‖ < −ε, j ∈ J

}
(2.1)

is nonempty, go to step 4; else,
2. If

Ĵ
4
=

{
j | c̄j/‖aj‖ < −ε, j ∈ N\J

}
(2.2)

is nonempty, go to step 4; else



A Fast Simplex Algorithm for Linear Programming 839

3. Stop and declare optimality.
4. Determine an entering index q such that

q = arg min
{

c̄j/‖aj‖ | j ∈ Ĵ
}

, (2.3)

and set J = Ĵ\q for the next iteration.

It is noted that full pricing is performed only at the initial iteration and at iterations
where Step 2 is carried out (when set N\J is touched). Following a full pricing, in general,
many iterations perform pricing only on J , each of which is a proper subset of its predecessor.
Therefore, Rule 2.1 falls to the partial pricing category.

It is favorable to implement the normalization of columns of A in a scaling preprocess. If
this is so, Rule 2.1 becomes one with ‖aj‖ = 1, being just the nested pricing rule.

3. Computational Experiments

Our computational experiments with Rule 2.1 turned out to be very favorable. In this
section, we report obtained results, giving an insight into the interesting behavior of the new
rule, and make final remarks.

3.1. Test codes

The following three codes were tested and compared against one another:

• Devex: uses the Devex rule.

• NLD1: uses Rule 2.1 with the 2-norm.

• NLD2: uses Rule 2.1 with the ∞-norm.

To have the competitions fair and easy, all the three codes were implemented within Minos
5.51 [9] by only changing its rule. Code Devex resulted from Minos 5.51 by replacing its rule
by the Devex rule. Codes NLD1 and NLD2 yielded by inserting a few lines for relevant column
normalization in Subroutine m2scla of module M20amat, and using the nested pricing rule.

Compiled using Visual Fortran 5.0, the three codes were run under a Windows XP system
Home Edition Version 2002 on an IBM PC with an Intel(R) Pentium(R) processor 1.86GHz,
1.00GB of 1.86GHz memory, and about 16 digits of precision. All reported CPU times were
measured in seconds with utility routine CPU TIME, excluding the time spent on preprocessing
and scaling.

The codes used the default options, except for the following: Rows 200000; Columns 300000;
Elements 5000000; Iterations 4000000; Scale yes; Solution no; Log frequency 0; Print level 0.

We order test problems by their sizes in terms of m + n, where m and n are the numbers of
rows and columns of the constraint matrix, excluding slack variables.



840 P.Q. PAN

Table 3.1: Statistics for 48 Netlib problems

Problem Devex NLD2 NLD1
Iters Time Iters Time Iters Time

SCRS8 386 0.1 598 0.1 530 0.1
GFRD-PNC 608 0.2 689 0.2 744 0.2
BNL1 934 0.4 1736 0.5 1643 0.5
SHIP04S 150 0.1 229 0.1 138 0.1
PEROLD 2200 1.1 3873 1.4 4071 1.5
MAROS 1442 0.7 1933 0.8 2023 0.8
FIT1P 554 0.3 901 0.4 999 0.4
MODSZK1 644 0.2 1002 0.3 1116 0.3
SHELL 252 0.1 275 0.1 256 0.1
SCFXM3 927 0.5 1483 0.6 1410 0.6
25FV47 3728 2.3 6301 3.0 5981 2.6
SHIP04L 229 0.1 350 0.1 215 0.1
QAP8 5921 6.1 11161 10.7 12286 11.1
WOOD1P 610 0.9 1166 0.9 1144 0.8
PILOT.JA 3379 2.3 5312 2.8 5573 2.8
SCTAP2 731 0.4 698 0.3 747 0.3
GANGES 590 0.3 726 0.3 781 0.3
PILOTNOV 1310 0.9 2587 1.4 1986 1.0
SCSD8 1900 0.8 2161 0.6 1890 0.4
SHIP08S 235 0.2 252 0.1 280 0.1
SIERRA 1160 0.6 1148 0.5 918 0.4
DEGEN3 3599 3.5 4064 3.5 9364 6.7
PILOT.WE 2090 1.2 5278 2.0 5348 2.0
NESM 3035 1.5 4932 1.6 4158 1.2
SHIP12S 376 0.3 401 0.2 411 0.2
SCTAP3 835 0.6 898 0.5 747 0.4
STOCFOR2 1400 1.1 3770 2.7 3768 2.6
CZPROB 1043 0.6 1531 0.6 1387 0.5
CYCLE 2194 2.1 2371 1.7 2214 1.5
SHIP08L 446 0.3 597 0.3 612 0.3
PILOT 8884 21.2 23962 38.5 21436 32.3
BNL2 3788 4.3 5015 4.2 5428 4.4
SHIP12L 818 0.7 844 0.5 947 0.5
D6CUBE 21235 23.6 14972 7.3 13957 6.1
D6CUBE2 20824 23.2 13343 6.6 15219 6.7
PILOT87 10028 55.9 30023 105.6 24986 80.8
D2Q06C 11456 17.8 20997 23.1 21654 22.7
GREENBEA 13201 18.3 12224 12.3 10411 10.1
WOODW 3098 3.7 3690 2.1 3630 1.9
TRUSS 9552 12.6 14445 8.9 12859 7.3
FIT2D 10296 20.5 21683 13.2 17035 6.2
QAP12 77356 696.7 170669 1464.4 185205 1505.8
80BAU3B 8069 9.6 13221 8.7 13276 8.3
MAROS-R7 2720 18.0 6547 21.4 7449 22.3
FIT2P 9171 25.6 13585 33.4 14945 34.7
DFL001 453186 1682.6 132770 376.6 151391 397.7
STOCFOR3 12220 78.3 33154 176.8 31668 166.7

Total 718810 2742.4 599567 2341.6 624236 2354.4

QAP15 596500 20272.6 625953 23410.4 807019 28660.5



A Fast Simplex Algorithm for Linear Programming 841

Table 3.2: Ratio for 48 Netlib problems

Problem m n Devex/NLD2 Devex/NLD1 NLD2/NLD1
Iters Time Iters Time Iters Time

SCRS8 491 1169 0.65 1.00 0.73 1.08 1.13 1.08
GFRD-PNC 617 1092 0.88 1.06 0.82 0.89 0.93 0.84
BNL1 644 1175 0.54 0.75 0.57 0.81 1.06 1.08
SHIP04S 403 1458 0.66 1.00 1.09 1.33 1.66 1.33
PEROLD 626 1376 0.57 0.76 0.54 0.72 0.95 0.95
MAROS 847 1443 0.75 0.95 0.71 0.97 0.96 1.03
FIT1P 628 1677 0.61 0.68 0.55 0.68 0.90 1.00
MODSZK1 688 1620 0.64 0.81 0.58 0.79 0.90 0.96
SHELL 537 1775 0.92 1.00 0.98 1.00 1.07 1.00
SCFXM3 991 1371 0.63 0.85 0.66 0.91 1.05 1.07
25FV47 822 1571 0.59 0.79 0.62 0.89 1.05 1.13
SHIP04L 403 2118 0.65 1.00 1.07 1.22 1.63 1.22
QAP8 913 1632 0.53 0.57 0.48 0.55 0.91 0.97
WOOD1P 245 2594 0.52 1.03 0.53 1.11 1.02 1.08
PILOT.JA 941 1988 0.64 0.82 0.61 0.82 0.95 1.00
SCTAP2 1091 1880 1.05 1.39 0.98 1.30 0.93 0.93
GANGES 1310 1681 0.81 0.97 0.76 0.91 0.93 0.94
PILOTNOV 976 2172 0.51 0.70 0.66 0.93 1.30 1.33
SCSD8 398 2750 0.88 1.53 1.01 1.87 1.14 1.22
SHIP08S 779 2387 0.93 1.23 0.84 1.23 0.90 1.00
SIERRA 1228 2036 1.01 1.33 1.26 1.64 1.25 1.23
DEGEN3 1504 1818 0.89 1.01 0.38 0.52 0.43 0.52
PILOT.WE 723 2789 0.40 0.61 0.39 0.61 0.99 1.00
NESM 663 2923 0.62 0.98 0.73 1.27 1.19 1.30
SHIP12S 1152 2763 0.94 1.14 0.91 1.14 0.98 1.00
SCTAP3 1481 2480 0.93 1.21 1.12 1.41 1.20 1.17
STOCFOR2 2158 2031 0.37 0.41 0.37 0.42 1.00 1.02
CZPROB 930 3523 0.68 1.03 0.75 1.17 1.10 1.13
CYCLE 1904 2857 0.93 1.27 0.99 1.41 1.07 1.11
SHIP08L 779 4283 0.75 1.11 0.73 1.15 0.98 1.04
PILOT 1442 3652 0.37 0.55 0.41 0.66 1.12 1.19
BNL2 2325 3489 0.76 1.02 0.70 0.98 0.92 0.96
SHIP12L 1152 5427 0.97 1.33 0.86 1.44 0.89 1.08
D6CUBE 416 6184 1.42 3.23 1.52 3.88 1.07 1.20
D6CUBE2 416 6184 1.56 3.53 1.37 3.44 0.88 0.97
PILOT87 2031 4883 0.33 0.53 0.40 0.69 1.20 1.31
D2Q06C 2172 5167 0.55 0.77 0.53 0.78 0.97 1.02
GREENBEA 2393 5405 1.08 1.50 1.27 1.82 1.17 1.22
WOODW 1099 8405 0.84 1.77 0.85 1.96 1.02 1.11
TRUSS 1001 8806 0.66 1.40 0.74 1.72 1.12 1.23
FIT2D 26 10500 0.47 1.56 0.60 3.32 1.27 2.13
QAP12 3193 8856 0.45 0.48 0.42 0.46 0.92 0.97
80BAU3B 2263 9799 0.61 1.11 0.61 1.16 1.00 1.05
MAROS-R7 3137 9408 0.42 0.84 0.37 0.80 0.88 0.96
FIT2P 3001 13525 0.68 0.77 0.61 0.74 0.91 0.96
DFL001 6072 12230 3.41 4.47 2.99 4.23 0.88 0.95
STOCFOR3 16676 15695 0.37 0.44 0.39 0.47 1.05 1.06

Average 1610 4256 1.20 1.17 1.15 1.16 0.96 0.99

QAP15 6331 22275 0.95 0.87 0.74 0.71 0.78 0.82



842 P.Q. PAN

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

Problems

R
at

io
 o

f i
te

ra
tio

ns
 to

 m
+

n

Devex
NLD2 
NLD1

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

Problems

R
at

io
 o

f i
te

ra
tio

ns
 to

 m
+

n

Devex
NLD2 
NLD1

(a) (b)
Fig. 3.1. Comparison of Normalized iterations for (a):16 Kennington problems, (b):17 BPMPD prob-

lems.

3.2. Results for 48 Netlib problems

The first set of test problems included the 48 largest Netlib problems. Numerical results
obtained are listed in Table 3.1, where total iterations and time required for solving each
problem are listed in columns labeled Iters and Time under Devex, NLD2 and NLD1. As the
data are heavily dominated by QAP15, results associated with it are listed at the bottom line,
separately. So, the sums listed in the second bottom line are for the other 47 problems.

Table 3.2 serves as an overall comparison between the three codes. It is seen that Devex

Table 3.3: Statistics for 16 Kennington problems

Problem Devex NLD2 NLD1

Iters Time Iters Time Iters Time

KEN-07 1657 1.5 1718 1.3 1926 1.5

CRE-C 3113 4.1 4001 4.0 4938 4.7

CRE-A 2986 4.4 3830 4.4 4778 5.2

PDS-02 3550 4.6 2099 1.9 1319 1.1

OSA-07 1757 6.0 1788 2.2 1726 2.4

KEN-11 12814 77.4 13361 63.0 14889 72.1

PDS-06 32424 170.1 13100 41.3 4891 13.4

OSA-14 3730 27.1 3818 9.3 3342 10.6

PDS-10 105469 988.1 24179 137.8 9297 45.4

KEN-13 29196 355.6 33074 342.3 34774 362.7

CRE-D 415765 4141.5 75142 349.0 29683 95.2

CRE-B 363018 3833.4 53747 242.2 26028 88.2

OSA-30 7048 96.3 6640 28.8 6007 38.4

PDS-20 1589107 33356.3 93045 1220.4 34775 404.4

OSA-60 16188 505.9 14962 158.4 16163 217.9

KEN-18 127756 6818.1 137975 6699.0 152141 7374.1

Total 2715578 50390.5 482479 9305.2 346677 8737.5



A Fast Simplex Algorithm for Linear Programming 843

Table 3.4: Ratio for 16 Kennington problems

Problem m n Devex/NLD2 Devex/NLD1 NLD2/NLD1

Iters Time Iters Time Iters Time

KEN-07 2427 3602 0.96 1.16 0.86 0.99 0.89 0.86

CRE-C 3069 3678 0.78 1.01 0.63 0.86 0.81 0.85

CRE-A 3517 4067 0.78 1.00 0.62 0.84 0.80 0.84

PDS-02 2954 7535 1.69 2.48 2.69 4.04 1.59 1.63

OSA-07 1119 23949 0.98 2.70 1.02 2.47 1.04 0.91

KEN-11 14695 21349 0.96 1.23 0.86 1.07 0.90 0.87

PDS-06 9882 28655 2.48 4.12 6.63 12.71 2.68 3.09

OSA-14 2338 52460 0.98 2.92 1.12 2.55 1.14 0.87

PDS-10 16559 48763 4.36 7.17 11.34 21.76 2.60 3.03

KEN-13 28633 42659 0.88 1.04 0.84 0.98 0.95 0.94

CRE-D 8927 69980 5.53 11.87 14.01 43.49 2.53 3.66

CRE-B 9649 72447 6.75 15.83 13.95 43.48 2.06 2.75

OSA-30 4351 100024 1.06 3.35 1.17 2.51 1.11 0.75

PDS-20 33875 105728 17.08 27.33 45.70 82.48 2.68 3.02

OSA-60 10281 232966 1.08 3.19 1.00 2.32 0.93 0.73

KEN-18 105128 154699 0.93 1.02 0.84 0.92 0.91 0.91

Average 16087 60785 5.63 5.42 7.83 5.77 1.39 1.06

Table 3.5: Statistics for set 3 of 17 BPMPD problems

Problem Devex NLD2 NLD1

Iters Time Iters Time Iters Time

RAT7A 5226 93.6 16665 209.5 15910 187.4

NSCT1 1607 27.6 5834 44.6 5527 39.7

NSCT2 6266 88.1 5168 36.8 4833 33.8

ROUTING 68504 606.5 15342 88.3 9370 50.3

DBIR1 1848 45.8 11583 84.3 6570 46.4

DBIR2 13031 248.8 5824 44.9 1907 14.6

T0331-4L 24435 249.7 49932 329.1 32673 168.6

NEMSEMM2 17117 118.1 9267 27.4 7085 18.2

SOUTHERN 16774 234.6 22600 305.8 25153 338.4

RADIO.PR 2 1.4 2 1.4 2 1.4

WORLD.MD 427776 7403.1 203648 2760.5 196317 2600.9

WORLD 501004 8747.2 232371 3316.9 235491 3252.8

RADIO.DL 3 1.0 3 1.0 3 1.0

NEMSEMM1 10574 168.8 7675 34.9 7797 27.2

NW14 394 9.5 736 6.0 588 4.6

LPL1 2337341 60073.4 235314 3955.3 94994 1417.1

DBIC1 437658 18252.6 74285 1714.9 68402 1272.2

Total 3869560 96369.8 896249 12961.6 712622 9474.5



844 P.Q. PAN

Table 3.6: Ratio for 17 BPMPD problems

Problem m n Devex/NLD2 Devex/NLD1 NLD2/NLD1

Iters Time Iters Time Iters Time

RAT7A 3137 9408 0.31 0.45 0.33 0.50 1.05 1.12

NSCT1 22902 14981 0.28 0.62 0.29 0.70 1.06 1.12

NSCT2 23004 14981 1.21 2.39 1.30 2.61 1.07 1.09

ROUTING 20895 23923 4.47 6.87 7.31 12.05 1.64 1.75

DBIR1 18805 27355 0.16 0.54 0.28 0.99 1.76 1.82

DBIR2 18907 27355 2.24 5.54 6.83 17.07 3.05 3.08

T0331-4L 665 46915 0.49 0.76 0.75 1.48 1.53 1.95

NEMSEMM2 6944 42133 1.85 4.30 2.42 6.48 1.31 1.51

SOUTHERN 18739 35421 0.74 0.77 0.67 0.69 0.90 0.90

RADIO.PR 58867 8052 1.00 1.01 1.00 1.00 1.00 0.99

WORLD.MD 35665 31728 2.10 2.68 2.18 2.85 1.04 1.06

WORLD 35511 32734 2.16 2.64 2.13 2.69 0.99 1.02

RADIO.DL 8053 66918 1.00 1.00 1.00 1.00 1.00 1.00

NEMSEMM1 3946 71413 1.38 4.84 1.36 6.20 0.98 1.28

NW14 74 123409 0.54 1.59 0.67 2.06 1.25 1.30

LPL1 39952 125000 9.93 15.19 24.61 42.39 2.48 2.79

DBIC1 43201 183235 5.89 10.64 6.40 14.35 1.09 1.35

Average 21133 52056 4.32 7.43 5.43 10.17 1.26 1.37

outperformed both NLD2 and NLD1 with QAP15 alone. But the situation is contrary for the
47 problems as a whole. It is seen that ratios of Devex to NLD2 and NLD1 total iterations are
1.20 and 1.15 while ratios of Devex to NLD2 and NLD1 average run time are 1.17 and 1.16,
respectively. The differences of performance between ND1 and ND2 are small.

3.3. Results for 16 Kennington problems

The second test set includes all of the 16 Kennington problems [14]. Associated numerical
results are listed in Table 3.3 and compared in Table 3.4. From the bottom row of the latter,
it is seen that ratios of Devex to NLD2 and NDL1 total iterations are 5.63 and 7.83, and those
of Devex to NLD2 and NLD1 average time are 5.42 and 5.77, respectively. So, the two new
codes outperformed Devex unambiguously. NLD2 is actually faster than Devex with all the 16

Table 3.7: Summary for statistics

Problem Devex NLD2 NLD1

Iters Time Iters Time Iters Time

Netlib(47) 718810 2742.4 599567 2341.6 624236 2354.4

Kennington(16) 2715578 50390.5 482479 9305.2 346677 8737.5

BPMPD(17) 3869560 96369.8 896249 12961.6 712622 9474.5

Total(80) 7303948 149502.7 1978295 24608.4 1683535 20566.4



A Fast Simplex Algorithm for Linear Programming 845

Table 3.8: Ratio Summary

Problem Devex/NLD2 Devex/NLD1 NLD2/NLD1

Iters Time Iters Time Iters Time

Netlib(47) 1.20 1.17 1.15 1.16 0.96 0.99

Kenningt(16) 5.63 5.42 7.83 5.77 1.39 1.06

BPMPD(17) 4.32 7.43 5.43 10.17 1.26 1.37

Average(80) 3.69 6.08 4.34 7.27 1.18 1.20

Table 3.9: Normalized iteration counts

(a) for 16 Kennington problems (b) for 17 BPMPD problems

Prob. Devex NLD2 NLD1

1 0.27 0.28 0.32

2 0.46 0.59 0.73

3 0.39 0.51 0.63

4 0.34 0.20 0.13

5 0.07 0.07 0.07

6 0.36 0.37 0.41

7 0.84 0.34 0.13

8 0.07 0.07 0.06

9 1.61 0.37 0.14

10 0.41 0.46 0.49

11 5.27 0.95 0.38

12 4.42 0.65 0.32

13 0.07 0.06 0.06

14 11.38 0.67 0.25

15 0.07 0.06 0.07

16 0.49 0.53 0.59

Ave. 2.21 0.39 0.28

Prob. Devex NLD2 NLD1

1 0.42 1.33 1.27

2 0.04 0.15 0.15

3 0.16 0.14 0.13

4 1.53 0.34 0.21

5 0.04 0.25 0.14

6 0.28 0.13 0.04

7 0.51 1.05 0.69

8 0.35 0.19 0.14

9 0.31 0.42 0.46

10 0.00 0.00 0.00

11 6.35 3.02 2.91

12 7.34 3.40 3.45

13 0.00 0.00 0.00

14 0.14 0.10 0.10

15 0.00 0.01 0.00

16 14.17 1.43 0.58

17 1.93 0.33 0.30

Ave. 3.11 0.72 0.57

problems except for CRE-A. As for the new codes, NLD1 is superior to NLD2 with this set
with iterations and time ratio 1.39 and 1.06, repectively.

3.4. Results for 17 BPMPD problems

The third test set consists of the 17 largest BPMPD problems, in terms of more than 500KB
in compressed form [15]. Associated numerical results are listed in Table 3.5 and compared in
Table 3.6. From the bottom row of the latter it is seen that the two new codes performed even
more successfully than with the first two test sets. While ratios of Devex to NLD2 and NDL1
total iterations are 4.32 and 5.43, the ratios of Devex to NLD2 and NLD1 average time are as
high as 7.43 and 10.17. In fact, either NLD2 or NLD1 is faster than Devex with 12 out of the
17 problems.



846 P.Q. PAN

3.5. Summary of results

Table 3.7 offers a summary of statistics over all the 80 test problems (excluding QAP15)
and Table 3.8 lists the associated ratios. From the bottom row of the latter, it is seen that
iterations ratios of Devex to NLD2 and NLD1 are 3.69 and 4.34, while time ratios are as high
as 6.08 and 7.27. It is noted, on the other hand, that NLD1 is superior to NLD2 with iterations
and time ratios 1.18 and 1.20, respectively.

Following Forrest and Goldfarb [4], we list in Table 3.9 the ratio of the number of iterations
required by each of the three codes to the sum of the number of rows and columns for each
of the Kennington and BPMPD problems. It would be reasonable to regard a code amenable
to a problem when such a normalized number of iterations is less than one. From Table 3.9,
it is seen that both NLD1 and NLD2 are superior to Devex, but NLD1 is the best. For an
overview of codes’ performance against one another, see plots of the normalized iteration counts
in Figure 3.1.

Based on our computational experiences, including those reported in [10–12], we feel safe
to conclude that the simplex algorithm using the nested largest-distance rule is very fast for
solving large-scale sparse LP problems, relative to major commonly used simplex algorithms.

Acknowledgments. The author would like thank Professor Michael. Saunders for kindly
providing us the MINOS 5.51 package. The research is supported by National Natural Science
Foundation of China under the Projects 10871043 and 70971136.

References

[1] R.E. Bixby, Solving real-world linear programs: A decade and more of progress, Oper. Res., 50:1

(2002), 3-15.

[2] G.B. Dantzig, A. Orden and P. Wolfe, The generalized simplex method for minimizing a linear

form under linear inequality restraints, Pac. J. Math., 5 (1955), 183-195.

[3] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, NJ,

1963.

[4] J.J.H. Forrest and D. Goldfarb, Steepest-edge simplex algorithms for linear programming, Math.

Program., 57 (1992), 341-374

[5] D. Goldfarb and J. Reid, A practicable steepest edge simplex algorithm, Math. Program., 12

(1977), 361-371.

[6] P.M.J. Harris, Pivot selection methods of the Devex LP code, Math. Program., 5 (1973), 1-28.

[7] ILOG CPLEX: http://www.ilog.com/ products/cplex High Performance Software of Mathe-

matical Programming.

[8] I. Maros, Computational Techniques of the Simplex Method, International Series in Operations

Research and Management, Vol. 61, Kluwer Academic Publishers, Boston, 2003.

[9] B.A. Murtagh and M. A. Saunders, MINOS 5.5 User’s Guide, Technical Report SOL 83-20R,

Dept. of Operations Research, Stanford University, Stanford, 1998.

[10] P.-Q. Pan, A largest-distance pivot rule for the Simplex Algorithm, Eur. J. Oper. Res., 187 (2008),

393-402.

[11] P.-Q. Pan, Effcient nested pricing in the simplex algorithm, Oper. Res. Lett., 36 (2008), 309-313.

[12] P.-Q. Pan, An empirical evaluation of pivot rules in the simplex algorithm, http://www.

optimization-online.org/DB FILE/2007/03/1602.pdf

[13] T. Terlaky and S. Zhang, Pivot rules for linear programming: A survey on recent theoretical

developments, Ann. Oper. Res., 46 (1993), 2023-233.

[14] http://www-fp.mcs.anl.gov/otc/Guide/TestProblems/LPtest



A Fast Simplex Algorithm for Linear Programming 847

[15] http://www.sztaki.hu/~meszaros/bpmpd/


