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Abstract

In this paper, we consider the local discontinuous Galerkin method (LDG) for solv-

ing singularly perturbed convection-diffusion problems in one- and two-dimensional set-

tings. The existence and uniqueness of the LDG solutions are verified. Numerical ex-

periments demonstrate that it seems impossible to obtain uniform superconvergence for

numerical fluxes under uniform meshes. Thanks to the implementation of two-type dif-

ferent anisotropic meshes, i.e., the Shishkin and an improved grade meshes, the uniform

2p + 1-order superconvergence is observed numerically for both one-dimensional and two-

dimensional cases.
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1. Introduction

The discontinuous Galerkin method (DGM) was first introduced in 1973 by Reed and Hill

[25] for solving the neutron transport equation. Successively in 1974, Lesaint and Raviart [20]

made the first analysis for the linear advection equation. Since then there has been an active

development of DGM for hyperbolic, elliptic, and parabolic partial differential equations. For

a fairly thorough compilation of the history of these methods and their applications see [15].

The local discontinuous Galerkin (LDG) method was first proposed by Cockburn and Shu

in [11] as a generalization of the DGM proposed by Bassi and Rebay [2] for the compressible

Navier-Stokes equations. In [11] the stability and error estimates for the method were studied.

The first convergence analysis of the LDG method for elliptic problems was given by P. Castillo

et al. [9]. Actually the LDG method possesses several properties which make it popular for

practical computations. The LDG method is local (element-wise) conservative, a property

which is particularly difficult to preserve by high-order finite elements. This method is also

suitable for hp-adaptive implementation and allows a very efficient parallelization. A more

detail review about the LDG method was given in [7, 15].

In recent years the numerical solutions of singularly perturbed boundary value problems have

been received much attention. There are numerous papers, see, e.g., [6, 21, 23, 24, 30, 34–36],

written on this subject. A book by Roos et al. [27] provides an extensive list of literature on

this topic. One of the difficulties in numerically computing the solution of singularly perturbed

problems lays in the so-called boundary layer behavior, i.e., the solution varies very rapidly in

a very thin layer near the boundary.
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Currently, there are mainly two ways to solve this problem. The first way is through the use

of the h version on layer-adapted meshes [6, 26, 35, 36]. The uniform convergence independent

of the perturbation parameter ε can be obtained when this technique is used. The second

alternative is through the use of p or hp version [29,32,33]. The exponent rates of convergence

can be established when the domain is smooth.

In [10], Celiker and Cockburn investigated the superconvergence of the numerical traces of

some DG methods at the nodes of the mesh for 1-D convection-diffusion problems. Particularly,

the authors proved that the superconvergence order of both numerical traces ûε
h and −q̂h + cûc

h

is 2p + 1 when polynomials of degree at most p are used for the approximation (qh, uh) based

on a suitably designed LDG method. Nevertheless in that paper, the uniform superconvergence

of numerical traces was not investigated as the diffusion parameter ε goes to zero.

In [7], Castillo et al. showed, for special numerical fluxes, that the LDG method converges

with the optimal rate of convergence of order hp+1 in the energy norm for the model problem of

constant-coefficient linear convection-diffusion equation in the one spacial dimension. The first

a priori error analysis of the LDG method for purely elliptic problems was given by Castillo

et al. [9]. In this paper, meshes including elements of various shapes and general numerical

fluxes were studied. It was shown that the convergence rates of the error in u and ▽u in the L2

norm are k + 1
2 and k, respectively. In [16], Cockburn et al., established the superconvergence

of the LDG method for multidimensional elliptic problems on Cartesion grids with special

numerical fluxes. The convergence order in L2 norm of the error in u and ▽u are k + 1 and

k + 1
2 , respectively, when tensor product polynomials of degree at most k are used. Comparing

with the results in [9], the error bounds was improved by a factor
√

h. In this sense, it is a

superconvergence result. Actually it is an extension to the multidimensional case of the results

obtained by Castillo et al. [7, 8].

In [34], Xie and Zhang studied the LDG method for solving singularly perturbed convection-

diffusion problems with mixed boundary condition. Their numerical test results indicate that

the LDG method does not produce any oscillation outside the boundary layer region even under

uniform mesh for small ε. The superconvergence rate O(h2p+1) of the numerical traces at the

nodes was also proved.

In this paper we will compare two-type layer-adapted meshes when they are used in the

h version of the LDG method for one and two dimensional problems. The numerical results

exhibit that the LDG method does not produce any oscillation even under uniform meshes

for arbitrary ε for both 1-D and 2-D cases. On the other hand, the 2p + 1 order uniform

superconvergence of numerical fluxes are observed numerically for the LDG method under both

the Shishkin and an improved grade meshes. Here the so-called “uniform convergence” means

that the convergence rate is uniformly valid with respect to ε. It is worthwhile to point out

that theoretical analysis of the uniform convergence is extremely difficult and remains an open

problem for the LDG method.

The rest of this paper is organized as follows: In Section 2, the construction of the Shishkin

mesh and improved grade mesh is described. The LDG method for one and two dimensions will

be introduced in Section 3. In Section 4, the analysis of existence and uniqueness of the LDG

solution is exhibited. We will in Section 5 present fruitful numerical results which illustrate the

robustness of the LDG method for solving singularly perturbed problems based on two type

layer-adapted meshes mentioned above. We end this paper with some conclusions in the final

section.
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2. Shishkin Mesh and Improved Grade Mesh

2.1. Shishkin mesh

The Shishkin meshes proposed by Shishkin are piecewise uniform meshes that are adapted

to the layer structure of the singularly perturbed problems. First, we consider Shishkin mesh

in one-dimensional interval [0, 1]. For the implementation in our model problem in Section 3,

which has a boundary layer at the outflow boundary x = 1, the construction of Shishkin mesh

is to choose a prior mesh transition parameter τ which denotes the approximate width of the

boundary layer. Then the intervals (0, 1 − τ) and (1 − τ, 1) are each divided into N/2 equal

subintervals with N even. The set of mesh points for the one dimension can be denoted by

ΩN = {xi : i = 1, · · · , N + 1},

where

xi =

{

2(i − 1)(1 − τ)/N, i = 1, · · · , 0.5N + 1,

1 − 2(N + 1 − i)τ/N, i = 0.5N + 2, · · · , N + 1.
(2.1)

So the length of element is given by

hj =

{

2(1 − τ)/N, j = 1, · · · , 0.5N,

2τ/N, j = 0.5N + 1, · · · , N.
(2.2)

Thus the global mesh is piecewisely uniform.

The Shishkin mesh for 2-D is constructed for both x and y directions in a tensor product

way. Still let τx and τy denote two mesh transition parameters which reflect the approximate

width of the boundary layer. In our model problems, we take τ = τx = τy for simplicity. So

the domain Ω is divided into four subdomains

Ω0 = (0, 1 − τ)2, Ωx = (1 − τ, 1) × (0, 1 − τ),

Ωy = (0, 1 − τ) × (1 − τ, 1), Ωxy = (1 − τ, 1)2.

An example of the Shishkin mesh for 2-D is shown in Fig 2.1 with τ = 0.1 and N = 16. We

specify a set of mesh points for the two dimension, i.e.,

ΩN = {(xi, yj) ∈ Ω : i, j = 1, · · · , N + 1}

by

xi =

{

2(i − 1)(1 − τ)/N, i = 1, · · · , 0.5N + 1,

1 − 2(N + 1 − i)τ/N, i = 0.5N + 2, · · · , N + 1,
(2.3)

yj =

{

2(j − 1)(1 − τ)/N, j = 1, · · · , 0.5N + 1,

1 − 2(N + 1 − j)τ/N, j = 0.5N + 2, · · · , N + 1.
(2.4)

2.2. Improved grade mesh

The Shishkin mesh introduced in the above subsection can be modified to obtain another

layer-adapted mesh which is denoted by improved grade mesh. It may be obtained by properly

selecting the mesh generating function in [22]. The detailed construction of improved grade

meshes is defined below.
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Fig. 2.1. Shishkin mesh.
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Fig. 2.2. Improved grade mesh.

First, we consider the 1-D case, choose a mesh transition parameter τ, which is the same as

that in the definition of Shishkin mesh. The interval Ω = (0, 1) is also divided into two parts

Ω1 = (0, 1−τ) and Ω2 = (1−τ, 1). The first part Ω1 is still divided into N/2 equal subintervals.

Nevertheless, the interval Ω2 is divided into N/2 non-uniform subintervals. Given a parameter

h = 2/N, the partition {xj}N+1
j=1 of the interval (0, 1) are given by

xj =











0, j = 1,

xj−1 + 2(1 − τ)/N, j = 2, · · · , 0.5N + 1,

1 − τ((N + 1 − j)h)λ, j = 0.5N + 2, · · · , N + 1.

(2.5)

where λ is a mesh parameter which is greater than or equal to 1 in practical computation. So

the length of element is given by

hj =











2(1 − τ)/N j = 1, · · · , 0.5N,

xj+1 − xj = τ
(

(N − j)h
)λ[

(1 + 1/(N − j))λ − 1
]

j = 0.5N + 1, · · · , N − 1,

xN+1 − xN = τhλ j = N.

(2.6)

It is apparent that the Shishkin mesh is the special case of improved grade mesh with λ = 1.

With increasing λ, more and more mesh points will concentrate in the neighborhood of 1.

Consequently the solution is approximated well on the boundary layers.

Similar to the Shishkin mesh, the design of the improved grade mesh for the one dimensional

case can be extended to the two dimensional case easily. We also specify a set of mesh points

of improved grade meshes for the two dimensional case, i.e., ΩN = {(xi, yj) ∈ Ω : i, j =

1, · · · , N + 1}, where

xi =











0, i = 1,

xi−1 + 2(1 − τ)/N, i = 2, · · · , 0.5N + 1,

1 − τ((N + 1 − i)h)λ, i = 0.5N + 2, · · · , N + 1,

(2.7)

and

yj =











0, j = 1,

yj−1 + 2(1 − τ)/N, j = 2, · · · , 0.5N + 1,

1 − τ((N + 1 − j)h)λ, j = 0.5N + 2, · · · , N + 1.

(2.8)

An example of improved grade mesh for 2-D is shown in Fig 2.2 with τ = 0.1, N = 16 and

λ = 4.
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3. The Local Discontinuous Galerkin Method

3.1. One-dimensional problem

For the sake of simplicity, we consider the singularly perturbed convection-diffusion problem

with Dirichlet boundary condition, i.e,

− εu′′ + bu′ = f, in Ω = (0, 1), (3.1a)

u(0) = u0, u(1) = u1, (3.1b)

where b > 0 and ε is a small positive parameter. The choice of b > 0 guarantees that the

location of the boundary layer is at the outflow boundary x = 1.

By setting q = u′, Eq. (3.1) can be rewritten as

− εq′ + bu′ = f, in (0, 1), (3.2a)

q − u′ = 0, in (0, 1), (3.2b)

u(0) = u0, u(1) = u1. (3.2c)

Denote the mesh by Ij = [xj− 1
2
, xj+ 1

2
] for j = 1, 2, · · · , N with x 1

2
= 0, xN+ 1

2
= 1. The

center of the cell is xj = (xj− 1
2

+ xj+ 1
2
)/2 and hj = |Ij |. Set

h = max
1≤j≤N

hj , Ωh =
⋃

j=1,··· ,N

Ij .

We denote by u+
j+ 1

2

and u−
j+ 1

2

the values of u at xj+ 1
2
, from the right cell and the left cell of

xj+ 1
2
, respectively. Denote the jump at xj+ 1

2
by [uj+ 1

2
] = u+

j+ 1
2

− u−
j+ 1

2

. We multiply the first

two equations of (3.2) by test functions v and w, separately, and integrate by parts in each cell

Ij to obtain

ε

∫

Ij

qv′dx − b

∫

Ij

uv′dx − (εq − bu)−
j+ 1

2

v−
j+ 1

2

+ (εq − bu)+
j− 1

2

v+
j− 1

2

=

∫

Ij

fvdx, (3.3a)

∫

Ij

uw′dx +

∫

Ij

qwdx − u−
j+ 1

2

w−
j+ 1

2

+ u+
j− 1

2

w+
j− 1

2

= 0. (3.3b)

This is the weak formulation we shall use to define the DG methods. We can now define the

piecewise polynomial space Vh as the space of polynomials of degree p ≥ 1 in each cell Ij , i.e.,

Vh = {v : v ∈ Pp(Ij), j = 1, 2, · · · , N}.

Moreover, we define the space

Hk(Ωh) = {v : v ∈ Hk(Ij), j = 1, 2, · · · , N}

with k ≥ 0. We will search for an approximate solution of (3.2) in terms of piecewise polynomial

function uh, qh ∈ Vh that satisfy (3.2) in a weak sense. Following Cockburn and Shu [11], we

consider the following general formulation:

Find uh, qh ∈ Vh such that

ε

∫

Ij

qhv′dx − b

∫

Ij

uhv′dx − (εq̂h − bũh)j+ 1
2
v−

j+ 1
2

+ (εq̂h − bũh)j− 1
2
v+

j− 1
2

=

∫

Ij

fvdx, (3.4a)

∫

Ij

uhw′dx +

∫

Ij

qhwdx − ûhj+ 1
2
w−

j+ 1
2

+ ûh
j− 1

2

w+
j− 1

2

= 0, (3.4b)
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for any v and w ∈ Vh. To complete the specification of a DG method, one must define the

numerical traces q̂h, ûh and ũh at the nodes. Through the specification of the numerical traces,

the interaction of uh and qh in different intervals Ij and the boundary conditions are imposed.

The impact of the choice of the numerical traces on the DG method for solving the linear elliptic

equation was shown in [1]. First we define the convective flux as the classical upwind one, i.e.,

ũh 1
2

= u0, ũh
j+ 1

2

= (uh)−
j+ 1

2

, j = 1, · · · , N. (3.5)

The LDG numerical fluxes are designed by Cockburn and Shu, i.e.

ûh
j+ 1

2

=











u0, j = 0,

{uh}j+ 1
2
− C12 · [uh]j+ 1

2
, j = 1, · · · , N − 1,

u1, j = N,

(3.6)

q̂h
j+ 1

2

=















(qh)+1
2

j = 0,

{qh}j+ 1
2

+ C12 · [qh]j+ 1
2
, j = 1, · · · , N − 1,

qh
−
N+ 1

2

− α
(

(uh)−
N+ 1

2

− u1

)

, j = N,

(3.7)

where α = max{1, p}ε/hN and C12 = 1/2.

3.2. Two-dimensional problem

Consider the following two-dimensional convection-diffusion problem

− ε∆u + ~β · ∇u = f, in Ω = (0, 1) × (0, 1), (3.8a)

u = u0, on ∂Ω, (3.8b)

where ~β = (β1, β2) ≥ (α, α) > (0, 0) and β1, β2 are constants, ε is a small parameter. By setting

q = ∇u, Eq. (3.8) can be rewritten as

q = ∇u, in Ω, (3.9a)

− ε∇ · q + ~β · ∇u = f, in Ω, (3.9b)

u = u0, on ∂Ω. (3.9c)

Multiplying the first two equations of (3.9) by test functions r ∈ L2(Ω)2, v ∈ L2(Ω), respectively

and integrating them by parts over the rectangle k of the Cartesian grid Th with which we

triangulate the domain Ω, we obtain

∫

k

q · rdx = −
∫

k

u∇ · rdx +

∫

∂k

ur · nkds, (3.10a)

ε

∫

k

q · ∇vdx −
∫

k

u~β · ∇vdx − ε

∫

∂k

vq · nkds +

∫

∂k

uv~β · nkds =

∫

k

fvdx, (3.10b)

where nk is the unit outward normal to ∂k. Next we will define the approximate solution (qh,

uh) of the exact solution (q, u) in the finite element spaces MN and VN , where

MN := {q ∈ L2(Ω)2 : q|k ∈ S(k)2, ∀k ∈ Th},
VN := {u ∈ L2(Ω) : u|k ∈ S(k), ∀k ∈ Th},
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with S(k) := Qp(k)={polynomials of degree at most p in each variable on k }.
Now we will search for the approximate solutions of (3.9) in terms of piecewise polynomial

functions qh ∈ MN , uh ∈ VN , that satisfy (3.9) in a weak sense. The aim is to find qh ∈
MN , uh ∈ VN such that for any r ∈ MN , v ∈ VN ,

∫

k

qh · rdx = −
∫

k

uh∇ · rdx +

∫

∂k

ûhr · nkds, (3.11)

ε

∫

k

qh · ∇vdx −
∫

k

uh
~β · ∇vdx − ε

∫

∂k

vq̂h · nkds +

∫

∂k

ũhv~β · nkds =

∫

k

fvdx. (3.12)

The function q̂h, ûh and ũh are the numerical fluxes which approximate the fluxes of u and

q on the boundary of the elements. To define these numerical fluxes, we need to introduce some

notations. We denote by Γ the union of the boundaries of the elements k ∈ Th and Γ0 the set

of all interior faces of the triangulation Th. Let ∂Ω = Γ+ ∪ Γ− denote the boundary of Ω with

Γ+ := {e ⊂ ∂Ω : v · n > 0}, Γ− := {e ⊂ ∂Ω : v · n < 0}, where v = [v1, v2]
T is a constant

vector with vi > 0, (i = 1, 2) and n is the unit outward normal to ∂Ω. In this paper, we take

v = [1, 1]T . Let e be an internal edge shared by two adjacent elements of k1 and k2. For any

point x ∈ e, let n+ and n− be the corresponding outward unit normals at x. We first introduce

the average value operator { ·} and the jump operator [ ·], i.e.,

{u} := (u+ + u−)/2, [u] := u+n+ + u−n−,

{q} := (q+ + q−)/2, [q] := q+ · n+ + q− · n−.

Next we will define the numerical fluxes with the notations above. If e is an internal boundary

of Ω, the numerical fluxes are defined by

q̂h = {qh} − C12[qh] − C11[uh], ûh = {uh} + C12[uh]. (3.13)

If e is an external boundary of Ω, the numerical fluxes are

q̂h = q+
h − C11(uh − u0)n

+, ûh = u0. (3.14)

In (3.13) and (3.14), C11 ≥ 0, C12 is a vector function such that C12 · n = sign(v · n)/2. The

numerical flux associated with the convection is the classical upwind flux, namely,

ũ =











u0, on Γ−,

{uh} + D11 · [uh], on Γ0,

u+
h , on Γ+,

(3.15)

where D11 is a vector function satisfying D11(i) > 0, i = 1, 2. Actually, in Section 5, we take

C11 = 1, D11 =
[

1
2 , 1

2

]T
.

4. Existence and Uniqueness of the LDG Solutions

4.1. One-dimensional case

Proposition 4.1. The LDG method defined by (3.4) with the numerical traces (3.5), (3.6) and

(3.7) produces a unique solution.

Proof. See Theorem 3.2 [37]. �

Remark 4.1. Existence and uniqueness of the LDG method under some other flux selections

has been established elsewhere, see, e.g., [10].
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4.2. Two-dimensional case

Proposition 4.2. Consider the LDG method defined by the weak formulation (3.11) and (3.12)

with the numerical fluxes (3.13), (3.14) and (3.15). If C11 ≥ 0, D11(i)β(i) > 0, i = 1, 2, then

the LDG method defines a unique approximate solution (qh, uh) ∈ MN × VN of (3.2).

Proof. Due to the linearity of the model problems (3.11) and (3.12), it is enough to show

that the only solution to (3.11) and (3.12) with f = 0 is qh = 0 and uh = 0.

Denoting T (Γ) := Πk∈Th
L2(∂k), a straightforward computation shows that for qk ∈ T (Γ)

and φk ∈ [T (Γ)]2,

∑

k∈Th

∫

∂k

qkφk · nkds =

∫

Γ

{φ} · [q]ds +

∫

Γ0

{q}[φ]ds. (4.1)

By use of (4.1), we sum (3.11) over all the elements and obtain

∫

Ω

qh · rdx = −
∫

Ω

uh∇ · rds +

∫

Γ

{r} · [ûh]ds +

∫

Γ0

[r]{ûh}dx, (4.2)

which can be written by integration by parts as

∫

Ω

qh · rdx =

∫

Ω

∇uh · rdx +

∫

Γ

{r} · [ûh − uh]ds +

∫

Γ0

[r]{ûh − uh}ds. (4.3)

By implementing (4.1) again, Eq. (3.12) can be written as

ε

∫

Ω

qh · ∇vdx −
∫

Ω

uh∇ · (βv)dx − ε

∫

Γ

{q̂h} · [v]ds − ε

∫

Γ0

[q̂h]{v}ds

+

∫

Γ

{βv} · [ũh]ds +

∫

Γ0

[βv]{ũh}ds =

∫

Ω

fvdx. (4.4)

In (4.3) and (4.4), taking r = qh and v = uh implies

‖qh‖2
2 =

∫

Ω

qh · ∇uhdx +

∫

Γ

{qh} · [ûh − uh]ds +

∫

Γ0

[qh]{ûh − uh}, (4.5)

and
∫

Ω

qh · ∇uhdx =
1

ε

[

∫

Ω

uh∇ · (βuh)dx −
∫

Γ

{βuh} · [ũh]ds −
∫

Γ0

[βuh]{ũh}ds
]

+

∫

Γ

{q̂h} · [uh]ds +

∫

Γ0

[q̂h]{uh}ds +
1

ε

∫

Ω

fuhdx. (4.6)

Substituting (4.6) into (4.5), we obtain

‖qh‖2
2 +

1

ε

[

−
∫

Ω

uh∇ · (βuh)dx +

∫

Γ

{βuh} · [ũh]ds +

∫

Γ0

[βuh]{ũh}ds

]

−
∫

Γ

{q̂h} · [uh]ds

−
∫

Γ0

[q̂h]{uh}ds −
∫

Γ

{qh} · [ûh − uh]ds −
∫

Γ0

[qh]{ûh − uh}ds

=
1

ε

∫

Ω

fuhdx. (4.7)
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Again integration by parts and the implementation of (4.1) in (4.7) yields

‖qh‖2
2 +

1

ε

{
∫

Ω

(βuh) · ∇uhdx +

∫

Γ

{βuh} · [ũh − uh]ds +

∫

Γ0

[βuh]{ũh − uh}ds]

}

−
∫

Γ

{q̂h} · [uh]ds −
∫

Γ0

[q̂h]{uh}ds −
∫

Γ

{qh} · [ûh − uh]ds −
∫

Γ0

[qh]{ûh − uh}ds

=
1

ε

∫

Ω

fuhdx. (4.8)

By setting

I1 =
1

ε

∫

Ω

(βuh) · ∇uhdx, (4.9a)

I2 =
1

ε
{
∫

Γ

{βuh} · [ũh − uh]ds +

∫

Γ0

[βuh]{ũh − uh}ds}, (4.9b)

I3 = −
∫

Γ

{q̂h} · [uh]ds −
∫

Γ0

[q̂h]{uh}ds, (4.9c)

I4 = −
∫

Γ

{qh} · [ûh − uh]ds −
∫

Γ0

[qh]{ûh − uh}ds, (4.9d)

Eq. (4.8) can be written as

‖qh‖2
2 + I1 + I2 + I3 + I4 =

1

ε

∫

Ω

fuhdx. (4.10)

As the numerical fluxes are consistent, we have [q̂h] = 0 and [ûh] = 0 on Γ0. As a result,

I3 + I4 = −
∫

Γ\Γ0

{q̂h} · [uh]ds −
∫

Γ0

{q̂h} · [uh]ds −
∫

Γ\Γ0

{qh} · [ûh − uh]ds

+

∫

Γ0

{qh} · [uh]ds −
∫

Γ0

[qh]{ûh − uh}ds

= −
∫

Γ\Γ0

{q̂h} · [uh]ds −
∫

Γ\Γ0

{qh} · [ûh − uh]ds

−
∫

Γ0

(q̂h − {qh}) · [uh]ds −
∫

Γ0

[qh](ûh − {uh})ds. (4.11)

Inserting the numerical fluxes defined in (3.13) and (3.14) in (4.11), we obtain

I3 + I4 = −
∫

Γ\Γ0

{q̂h} · [uh]ds −
∫

Γ\Γ0

{qh} · [ûh − uh]ds +

∫

Γ0

C11[uh]T [uh]ds

= −
∫

Γ\Γ0

(q̂h − {qh}) · [uh]ds +

∫

Γ0

C11[uh]T [uh]ds

=

∫

Γ\Γ0

C11(u
+
h )2ds +

∫

Γ0

C11[uh]T [uh]ds. (4.12)

Integrating by parts and then implementing (4.1) in (4.9a) leads to

I1 =
1

ε

∫

Ω

(βuh) · ▽uhdx

= −1

ε

∫

Ω

▽ · (βuh)uhdx +
1

ε

∫

Γ

{βuh} · [uh]ds +
1

ε

∫

Γ0

[βuh]{uh}ds. (4.13)
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Direct computation shows that

∫

Ω

(βuh) · ▽uhdx =

∫

Ω

▽ · (βuh)uhdx. (4.14)

The combination of (4.13) and (4.14) yields

I1 =
1

2ε

(
∫

Γ

{βuh} · [uh]ds +

∫

Γ0

[βuh]{uh}ds

)

. (4.15)

By (4.9b) and (4.15), we obtain

I1 + I2 =
1

ε

(

1

2

∫

Γ

{βuh} · [uh]ds +
1

2

∫

Γ0

[βuh]{uh}ds

)

+
1

ε

∫

Γ\Γ0

{βuh} · [ũh − uh]ds

+
1

ε

∫

Γ0

{βuh} · [ũh − uh]ds +
1

ε

∫

Γ0

[βuh]{ũh − uh}ds. (4.16)

Since a straightforward computation leads to

∫

Γ0

{βuh} · [uh]ds =

∫

Γ0

[βuh]{uh}ds, (4.17)

Eqs. (4.16) and (4.17), together with the definition of ũh, yield

I1 + I2 =
1

ε

(

1

2

∫

Γ\Γ0

{βuh} · [uh]ds +

∫

Γ\Γ0

{βuh}[ũh − uh]ds +

∫

Γ0

[βuh]D11 · [uh]ds

)

=
1

ε

(

1

2

∫

Γ\Γ0

(β · η+u+
h

2
)ds +

∫

Γ\Γ0

{βuh}[ũh − uh]ds +

∫

Γ0

[uh]T M [uh]ds

)

=
1

ε

(

1

2

∫

Γ−

β · n+u+
h

2
ds +

1

2

∫

Γ+

β · n+u+
h

2
ds +

∫

Γ0

[uh]T M [uh]ds

+

∫

Γ−

{βuh}[ũh − uh]ds +

∫

Γ+

{βuh}[ũh − uh]ds

)

=
1

2ε

(
∫

Γ−

(−β · n+)u+
h

2
ds +

∫

Γ+

β · n+u+
h

2
ds + 2

∫

Γ0

[uh]T M [uh]ds

)

, (4.18)

where M = diag(β1D11(1), β2D11(2)) is a 2 × 2 symmetric positive definite matrix under the

assumption of this theorem.

Suppose f = 0 on the right side of (4.10). From (4.10), (4.12) and (4.18), we conclude that

qh ≡ 0, [uh] = 0, on Γ0, and uh = 0, on ∂Ω. (4.19)

Inserting (4.19) into (4.3) and implementing the consistency of the numerical fluxes in it, we

have
∫

k

∇uh · rdx = 0, ∀r ∈ S(k)2,

which implies ∇uh ≡ 0 on k. As a result, uh is a piecewise constant. Since [uh] = 0 on Γ0 and

uh = 0 on ∂Ω, we conclude that uh ≡ 0. This completes the proof. �
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Fig. 5.1. u and ûh (left) and q and q̂h (right) under uniform mesh, N = 32, p = 1, ε = 10−6.

5. Numerical Results

5.1. One-dimensional model

In this section we present some numerical results for problem (3.1). For this purpose,

we choose, in (3.1), b = 1 and the right-hand function f = ex with the Dirichlet boundary

conditions u0 = u1 = 0. Therefore, the exact solution is given by

u(x) =















ex(1 − e−
1
ε ) + e1− 1

ε − 1 + (1 − e)e
x−1

ε

(1 − ε)(1 − e−
1
ε )

, ε 6= 1,

e

e − 1
(ex − 1) − xex, ε = 1,

(5.1)

which exhibits a boundary layer with the width O(ε| ln ǫ|), at the outflow boundary x = 1. In

view of this fact, we take the approximate width of the boundary layer as τ = (2p+1)ǫ ln(N+1).

Plotted in Fig. 5.1 are the numerical traces ûh and q̂h under uniform mesh with ε = 10−6

and N = 32, respectively. We see that the LDG numerical solutions do not have any oscillatory

behavior even for small ε under uniform meshes. In other words, the LDG method is more local

than the traditional finite element and finite difference methods.

Table 5.1: The discrete L∞ error, under uniform mesh, ε = 0.5, 1-D.

p = 1 p = 2 p = 3

i ‖u − ûh‖L∞
order ‖u − ûh‖L∞

order ‖u − ûh‖L∞
order

3 1.33e-04 2.86 9.14e-08 4.88 3.05e-11 6.89

4 1.72e-05 2.95 2.92e-09 4.97 2.44e-13 6.97

5 2.19e-06 2.97 9.26e-11 4.98 1.64e-14 —–

6 2.76e-07 2.99 3.09e-12 4.91 6.63e-14 —–

7 3.47e-08 2.99 9.28e-13 —– 1.67e-13 —–

i ‖q − q̂h‖L∞
order ‖q − q̂h‖L∞

order ‖q − q̂h‖L∞
order

3 6.22e-04 2.90 4.59e-07 4.92 1.58e-10 6.94

4 8.04e-05 2.95 1.46e-08 4.97 1.26e-12 6.96

5 1.02e-05 2.97 4.63e-10 4.98 9.91e-14 —–

6 1.29e-06 2.99 1.44e-11 5.00 4.00e-13 —–

7 1.62e-07 2.99 3.78e-12 —– 7.99e-13 —–
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Fig. 5.2. Convergence curve of ûh (left) and q̂h (right) under uniform mesh for 1-D, p = 1.

Throughout this section, the errors in the discrete L∞ norm at nodes xj+ 1
2

are denoted by

‖u − ûh‖L∞
= max

0≤j≤N

∣

∣

∣
u(xj+ 1

2
) − ûh(xj+ 1

2
)
∣

∣

∣
,

‖q − q̂h‖L∞
= max

0≤j≤N

∣

∣

∣
q(xj+ 1

2
) − q̂h(xj+ 1

2
)
∣

∣

∣
.

In the legend of figures, S-mesh and G-mesh demonstrate the Shishkin mesh and improved grade

mesh, respectively. Listed in Tables 5.1-5.2 are the errors and numerically observed convergence

order with polynomial orders varying from p = 1 to p = 3 for a discrete L∞ norm for ǫ = 0.5

and ε = 0.05, respectively. The first row shows the degree p of the polynomials we use to

approximate the unknowns u and q. The first column is the mesh number, where i = 3, 4, · · · , 7

indicates a mesh with N = 2i elements. As shown in Tables 5.1-5.2, the convergence rate for

the discrete L∞ norm of ûh and q̂h at the nodes xj+ 1
2

is 2p + 1. Plotted in Fig. 5.2 are the

corresponding convergence curves of the numerical traces for ε = 0.5, ε = 0.1 and ε = 0.01,

respectively, when p = 1. Though the 2p+1 superconvergence rate is observed, the error bound

is strongly dependent on ε.

In the following, we turn to the LDG method based on the Shishkin and improved grade

meshes. Listed in Tables 5.3-5.4 are the errors in the discrete L∞ norm of the numerical traces

and the corresponding convergence rates with ε = 10−4 and ε = 10−6 for Shishkin and improved

Table 5.2: The discrete L∞ error under uniform mesh, ε = 0.05, 1-D.

p = 1 p = 2 p = 3

i ‖u − ûh‖L∞
order ‖u − ûh‖L∞

order ‖u − ûh‖L∞
order

3 6.71e-02 1.20 4.38e-03 2.95 1.44e-04 4.81

4 1.43e-02 2.23 2.38e-04 4.20 1.97e-06 6.19

5 1.92e-03 2.90 7.85e-06 4.92 1.60e-08 6.94

6 2.61e-04 2.88 2.62e-07 4.91 1.32e-10 6.92

7 3.38e-05 2.95 8.37e-09 4.97 9.09e-13 7.18

i ‖q − q̂h‖L∞
order ‖q − q̂h‖L∞

order ‖q − q̂h‖L∞
order

3 1.34e-00 1.20 8.76e-02 2.95 2.88e-03 4.81

4 2.86e-01 2.23 4.77e-03 4.20 3.93e-05 6.19

5 3.83e-02 2.90 1.57e-04 4.92 3.20e-07 6.94

6 5.22e-03 2.88 5.23e-06 4.91 2.64e-09 6.92

7 6.76e-04 2.95 1.67e-07 4.97 3.58e-11 6.21
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Table 5.3: The numerical results on Shishkin mesh for 1-D.

ε = 10−4 ε = 10−6

p i ‖êu‖L∞
order ‖êq‖L∞

order ‖êu‖L∞
order ‖êq‖L∞

order

1 4 8.67e-03 1.65 5.05e-03 1.65 8.67e-03 1.65 5.05e-03 1.65

5 2.06e-03 2.07 1.20e-03 2.07 2.06e-03 2.07 1.20e-03 2.07

6 4.73e-04 2.12 2.75e-04 2.12 4.73e-04 2.12 2.75e-04 2.12

7 9.77e-05 2.28 5.68e-05 2.28 9.77e-05 2.28 5.68e-05 2.28

8 1.87e-05 2.39 1.09e-05 2.39 1.87e-05 2.39 1.09e-05 2.39

2 4 1.07e-03 2.44 6.23e-04 2.44 1.07e-03 2.44 6.22e-04 2.44

5 1.19e-04 3.16 6.95e-05 3.16 1.19e-04 3.16 6.95e-05 3.16

6 9.09e-06 3.71 5.29e-06 3.71 9.09e-06 3.71 5.29e-06 3.71

7 6.48e-07 3.81 3.77e-07 3.81 6.48e-07 3.81 3.77e-07 3.81

8 4.04e-08 4.00 2.35e-08 4.00 4.09e-08 3.99 2.38e-08 3.99

3 4 1.30e-04 3.25 7.59e-05 3.25 1.30e-04 3.25 7.59e-05 3.25

5 7.04e-06 4.21 4.10e-06 4.21 7.04e-06 4.21 4.10e-06 4.21

6 2.16e-07 5.02 1.26e-07 5.02 2.16e-07 5.03 1.26e-07 5.03

7 5.07e-09 5.42 2.95e-09 5.42 5.87e-09 5.20 3.42e-09 5.20

8 8.84e-11 5.84 5.07e-11 5.86 3.82e-10 – 2.22e-10 –

Table 5.4: The numerical results on improved grade mesh for 1-D.

ε = 10−4 ε = 10−6

p i ‖êu‖L∞
order ‖êq‖L∞

order ‖êu‖L∞
order ‖êq‖L∞

order

1 4 5.40e-03 1.79 3.14e-03 1.79 5.40e-03 1.79 3.14e-03 1.79

5 9.68e-04 2.48 5.63e-04 2.48 9.68e-04 2.48 5.63e-04 2.48

6 1.51e-04 2.68 8.82e-05 2.68 1.51e-04 2.68 8.82e-05 2.68

7 2.25e-05 2.75 1.31e-05 2.75 2.25e-05 2.75 1.31e-05 2.75

8 3.20e-06 2.81 1.86e-06 2.81 3.19e-06 2.81 1.86e-06 2.81

2 4 3.74e-04 3.05 2.18e-04 3.05 3.74e-04 3.05 2.18e-04 3.05

5 1.85e-05 4.34 1.08e-05 4.34 1.85e-05 4.34 1.08e-05 4.34

6 8.54e-07 4.44 4.97e-07 4.44 8.54e-07 4.44 4.97e-07 4.44

7 3.41e-08 4.65 1.99e-08 4.65 3.41e-08 4.65 1.99e-08 4.65

8 1.31e-09 4.71 7.60e-10 4.71 1.31e-09 4.71 7.60e-10 4.71

3 4 2.69e-05 4.24 1.57e-05 4.24 2.69e-05 4.24 1.57e-05 4.24

5 4.08e-07 6.04 2.37e-07 6.04 4.08e-07 6.04 2.37e-07 6.04

6 5.35e-09 6.25 3.11e-09 6.25 5.35e-09 6.25 3.11e-09 6.25

7 5.89e-11 6.50 3.43e-11 6.50 5.89e-11 6.50 3.43e-11 6.50

8 4.90e-13 6.91 3.51e-13 6.61 5.68e-13 6.70 3.49e-13 6.62

grade meshes, separately. The corresponding convergence curves are plotted in Figs. 5.3-5.4.

As the derivative u′ becomes very large in the boundary layer when ε is small, instead of the

absolute error, the error in terms of qh in Tables 5.3-5.4 and Figs. 5.3 (right) and Fig. 5.4 (right)

is the relative one, i.e., ‖u′ − qh‖∞/‖u′‖∞.

The 2p + 1 order uniform superconvergence of the LDG solution is clearly observed nu-

merically, as the bound of errors is independent of ǫ. The numerical results in Tables 5.3-5.4

and Figs. 5.3-5.4 also show that the improved grade mesh works better than Shishkin mesh.

Numerically it seems that the error estimates of the LDG solutions under both meshes with

τ = (2p + 1)ǫ log(N + 1) are

‖êu‖∞ < C
( lnN

N

)2p+1

, ‖êq‖∞ < C
( lnN

N

)2p+1

|u|1,∞.
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Fig. 5.3. Convergence curve of ûh (left) and q̂h (right) for 1-D, p = 1, with layer adapted meshes.

10
0

10
1

10
2

10
3

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

S−mesh ε =10−4

S−mesh ε =10−6

G−mesh ε =10−4

G−mesh ε =10−6

slope=(log(N)/N)5

slope=(1/N)5

10
0

10
1

10
2

10
3

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

S−mesh ε =10−4

S−mesh ε =10−6

G−mesh ε =10−4

G−mesh ε =10−6

slope=(log(N)/N)5

slope=(1/N)5

Fig. 5.4. Convergence curve of ûh (left) and q̂h (right) for 1-D, p = 2, with layer adapted meshes.

It is worthwhile to point out that the constants C are completely independent of the singular

perturbation parameter ǫ.

5.2. Two-dimensional model

This section is to demonstrate the numerical results of the LDG methods for solving (3.8).

For this purpose, we choose ~β(x, y) = (1, 1) and

f(x, y) = (x + y)
(

1 − e−
1−x

ε · e− 1−y

ε

)

+ (x − y)
(

e−
1−y

ε − e−
1−x

ε

)

,

in (3.8). Actually the corresponding exact solution is u(x, y) = xy(1 − e−
1−x

ε )(1 − e−
1−y

ε ).

Clearly the boundary layer is located at the neighborhood of x = 1 and y = 1.

According to the theory of the singularly perturbed problems in terms of (3.8), the width

of the boundary layer is also of order O(ǫ| ln ǫ|). To simulate the width of the boundary layer,

we take τ = τx = τy = (2p + 1)ǫ ln(N + 1) when the layer-adapted mesh is used. Tables 5.5-5.6

illustrate the discrete L∞ norm at nodes for ûh under uniform mesh with ε = 0.1 and ε = 0.05,

respectively. Plotted in Fig. 5.5 are the corresponding convergence curves under uniform mesh

with ε = 0.5, ε = 0.1 and ε = 0.01 for p = 1 and p = 2, respectively. From Tables 5.5-5.6 and

Fig. 5.5, the superconvergence rate 2p+1 is clearly observed. However the error is also strongly

dependent on ǫ. To overcome this difficulty, we turn to the LDG method based on the Shishkin

and improved grade meshes.
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Table 5.5: The discrete L∞ error under uniform mesh, ε = 0.1, 2-D.

p = 1 p = 2 p = 3

i ‖u − ûh‖L∞
order ‖u − ûh‖L∞

order ‖u − ûh‖L∞
order

3 1.33e-02 2.23 2.71e-04 4.14 2.90e-06 6.06

4 1.65e-03 3.01 8.35e-06 5.02 2.37e-08 6.93

5 2.12e-04 2.96 2.64e-07 4.98 2.18e-10 —

6 2.71e-05 2.97 8.35e-09 4.98 2.86e-12 —

7 3.43e-06 2.98 2.63e-10 4.99 —– —

Table 5.6: The discrete L∞ error under uniform mesh, ε = 0.05, 2-D.

p = 1 p = 2 p = 3

i ‖u − ûh‖L∞
order ‖u − ûh‖L∞

order ‖u − ûh‖L∞
order

3 6.65e-02 1.05 4.67e-03 2.72 1.70e-04 4.58

4 1.23e-02 2.43 2.28e-04 4.35 2.18e-06 6.29

5 1.59e-03 2.95 7.26e-06 4.97 1.69e-08 7.01

6 2.09e-04 2.93 2.33e-07 4.96 1.33e-10 6.98

7 2.70e-05 2.95 7.44e-09 4.97 —– —
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Fig. 5.5. Convergence curve of ûh for p = 1 (left) and p = 2 (right) under uniform mesh for 2-D, p = 1.
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Fig. 5.6. Convergence curve of ûh for p = 1 (left) and p = 2 (right) for 2-D, with layer adapted mesh.

Listed in Tables 5.7-5.8 are the errors in the discrete L∞ norm for uh and the corresponding

convergence rates with ε = 10−2, ε = 10−4 and ε = 10−6 for the Shishkin and improved grade

meshes, respectively. The corresponding convergence rates are plotted in Fig. 5.6. From Tables
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Table 5.7: The numerical results for 2-D under Shishkin mesh.

ε = 10−2 ε = 10−4 ε = 10−6

p i ‖u − ûh‖L∞
order ‖u − ûh‖L∞

order ‖u − ûh‖L∞
order

1 3 2.60e-02 1.31 2.58e-02 1.33 2.58e-02 1.33

4 6.79e-03 1.94 6.73e-03 1.94 6.73e-03 1.94

5 1.77e-03 1.94 1.76e-03 1.94 1.76e-03 1.94

6 3.94e-04 2.17 3.93e-04 2.16 3.93e-04 2.16

7 8.12e-05 2.28 8.06e-05 2.29 8.05e-05 2.29

2 3 6.37e-03 1.73 6.32e-03 1.76 6.32e-03 1.76

4 1.06e-03 2.58 1.03e-03 2.61 1.03e-03 2.61

5 9.67e-05 3.46 9.26e-05 3.48 9.26e-05 3.48

6 7.97e-06 3.60 7.71e-06 3.59 7.71e-06 3.59

7 5.51e-07 3.85 5.37e-07 3.84 5.37e-07 3.84

3 3 1.43e-03 2.26 1.42e-03 2.30 1.42e-03 2.30

4 1.44e-04 3.31 1.39e-04 3.35 1.39e-04 3.35

5 6.82e-06 4.40 6.42e-06 4.44 6.42e-06 4.44

6 1.77e-07 5.27 1.70e-07 5.24 1.69e-07 5.24

Table 5.8: The numerical results for 2-D under improved grade mesh.

ε = 10−2 ε = 10−4 ε = 10−6

p i ‖u − ûh‖L∞
order ‖u − ûh‖L∞

order ‖u − ûh‖L∞
order

1 3 1.92e-02 2.58 1.92e-02 2.65 1.92e-02 2.65

4 5.77e-03 1.73 5.86e-03 1.71 5.86e-03 1.71

5 1.05e-03 2.45 1.09e-03 2.43 1.09e-03 2.43

6 1.65e-03 2.67 1.70e-04 2.67 1.70e-04 2.67

7 2.45e-05 2.76 2.51e-05 2.76 2.51e-05 2.76

2 3 3.45e-03 3.62 3.48e-03 3.72 3.48e-03 3.72

4 4.17e-04 3.05 4.30e-04 3.02 4.30e-04 3.02

5 2.03e-05 4.36 2.14e-05 4.33 2.14e-05 4.33

6 9.50e-07 4.42 9.85e-07 4.44 9.85e-07 4.44

7 3.80e-08 4.64 3.94e-08 4.64 3.94e-08 4.64

3 3 5.81e-04 4.89 5.89e-04 5.03 5.89e-04 5.04

4 2.99e-05 4.28 3.13e-05 4.24 3.13e-05 4.24

5 4.58e-07 6.03 4.72e-07 6.05 4.73e-07 6.05

6 5.89e-09 6.28 6.21e-09 6.25 6.21e-09 6.25

5.7-5.8 and Fig. 5.6, we see that the error bound is independent of ε. This fact seems to indicate

that

‖êu‖∞ < C
( lnN

N

)2p+1

.

Once again C is independent of ε.

Remark 5.1. When taking τ = (2p + 1)ǫ| ln ǫ|, we also obtained the corresponding numerical

results under both the Shishkin and improved grade meshes. The unform superconvergence

rate O(N−(2p+1)) is also obtained for these two layer adapted meshes. For simplicity, we only

list the corresponding results for 2-D case based on the improved graded mesh in Table 5.9.

Remark 5.2. 2-D problems require smaller h to get into the asymptotic range. We believe

that the data in Tables 5.7 and 5.8 are still in pre-asymptotic phase.
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Table 5.9: The numerical results for 2-D under improved grade mesh, τ = (2p + 1)ε| ln ε|.

ε = 10−2 ε = 10−4 ε = 10−6

p i ‖u − ûh‖L∞
order ‖u − ûh‖L∞

order ‖u − ûh‖L∞
order

1 3 4.95e-02 0.35 3.22e-02 0.14 5.64e-02 0.40

4 7.56e-03 2.71 1.33e-02 1.27 1.55e-02 1.86

5 1.27e-03 2.57 2.02e-03 2.72 2.58e-03 2.59

6 1.77e-04 2.85 3.00e-04 2.75 4.02e-04 2.68

7 2.35e-05 2.91 4.01e-05 2.90 5.41e-05 2.89

2 3 1.13e-02 0.94 6.72e-03 0.15 1.67e-02 0.63

4 5.47e-04 4.36 1.36e-03 2.31 2.18e-03 2.94

5 2.96e-05 4.21 7.05e-05 4.27 1.10e-04 4.31

6 1.05e-06 4.81 2.57e-06 4.78 4.12e-06 4.74

7 3.57e-08 4.88 8.68e-08 4.89 1.43e-07 4.85

3 3 2.65e-03 1.59 1.23e-03 0.52 4.88e-03 0.87

4 4.68e-05 5.82 1.38e-04 3.15 2.95e-04 4.05

5 7.11e-07 6.04 2.50e-06 5.79 4.75e-06 5.96

6 7.05e-09 6.66 2.41e-08 6.70 4.79e-08 6.63

6. Conclusion

In this paper, the LDG method was implemented to solve the singularly perturbed convection-

diffusion equations. The existence and uniqueness of the LDG solution is verified first. Then,

under the uniform and two-type layer-adapted meshes in one and two dimensional settings, nu-

merically we demonstrate that the combination of DG methods and the layer-adapted meshes is

a robust approach for solving singularly perturbed problems. Our numerical results show that

the LDG method does not produce any oscillation even under the uniform mesh for 1-D and

2-D models. More significantly, under Shishkin and improved grade meshes, the 2p + 1-order

uniform superconvergence of numerical fluxes are observed for both 1-D and 2-D cases. This

uniform superconvergence result, especially for 2-D case, is a remarkable observation which is

reported for the first time in the literature to our knowledge. The theoretical verification of

uniform convergence and superconvergence in the one dimensional setting is our on-going work.
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discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal., 38 (2000), 1676-

1706.

[10] F. Celiker and B. Cockburn, Superconvergence of the numerical traces of discontinuous Galerkin

and hybridized methods for convection-diffusion problems in one space dimension, Math. Comput.,

76 (2007), 67-96.

[11] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent

convection-diffusion systems, SIAM. J. Numer. Anal., 35 (1998), 2440-2463.

[12] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin methods

for scalar conservation laws II: General framework, Math. Comput., 52 (1989), 411-435.

[13] B. Cockburn, S.Y. Lin, and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin

methods for scalar conservation laws III: One dimensional systems, J. Comput. Phys., 84 (1989),

90-113.

[14] B. Cockburn, S. Hou, and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin

methods for scalar conservation laws IV: The multidimensional case, Math. Comput., 54 (1990),

545-581.

[15] B. Cockborn, G.E. Karniadakis, and C.-W. Shu, The development of discontinuous Galerkin

methods, Discontinuous Galerkin Methods: Theory, Computation and Applications, (Berlin) (B.

Cockborn, G. E. karniadakis and C.-W.Shu, eds.), Lecture Notes in Comput. Sci. Engrg., Vol 11,

Springer-Verlag, Feb (2000), 3-50.

[16] B. Cockburn, G. Kanschat, I. Perugia, and D. Schtzau, Superconvergence of the local discontinuous

Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39 (2001), 264-

285.

[17] R.G. Duran and L. Lomhardi, Finite element approximation of convection diffusion problems

using grade meshes, Appl. Numer. Math., 56 (2006), 1314-1325.

[18] K. Ericksson and C. Johnson, Adaptive finite element methods for parabolic problems I: A linear

model problem, SIAM J. Numer. Anal., 28 (1991), 12-23.

[19] K. Ericksson and C. Johnson, Adaptive finite element methods for parabolic problems II: Optimal

error estimates in l∞l2 and l∞l∞, SIAM J. Numer. Anal., 32 (1995), 706-740.

[20] P. Lesaint and P.A. Ravirt, On a finite element method for solving the neutron transport equation.

In C. De Boor, editor, Mathematical Aspects of Finite Elements in Partial Differential Equations,

pages 89-145, Academic Press, 1974.

[21] J.C. Li and Y.T. Chen, Uniform convergence analysis for singularly perturbed elliptic problems

with parabolic layers, Numer. Math. Theor. Meth. Appl., 1 (2008), 138-149.

[22] T. Linß and H.-G. Roos, Sufficient conditions for uniform convergence on layer-adapted grids,

Computing, 63 (1999), 27-45.

[23] T. Linß and M. Stynes, Numerical methods on Shishkin meshes for linear convection-diffusion

problems, Comput. Meth. Appl. Mech. Eng., 190 (2001), 3527-3542.

[24] E. O’Riordan, J. Stynes and M. Stynes, A parameter-uniform finite difference method for a coupled

system of convection-diffusion two-point boundary value problems, Numer. Math. Theor. Meth.

Appl., 1 (2008), 176-197.



298 Z.Q XIE, Z.Z. ZHANG AND Z.M. ZHANG

[25] W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation. Technical

Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, 1973.

[26] H.-G. Roos and T. Skalicky, A comparison of the finite element method on Shishkin and Gartland-

type meshes for convection diffusion problems, CWI Quarterly, 10 (1997), 277-300.

[27] H.-G. Roos, M. Stynes, and L. Tobiska, Numerical Methods for Singularly Perturbed Differential

Equations, Springer, Berlin, 1996.

[28] A.H. Schatz and L.B. Wahlbin, On the finite element method for singularly perturbed reaction-

diffusion problems in two and one dimensions, Math. Comput., 40 (1983), 47-89.

[29] C. Schwab and M. Suri, The p and hp versions of the finite element method for problems with

boundary layers, Math. Comput., 65 (1996), 1403-1429.

[30] G.I. Shishkin, A finite difference scheme on a priori adapted meshes for a singularly perturbed

parabolic convection-diffusion equation, Numer. Math. Theor. Meth. Appl., 1 (2008), 214-234.

[31] L.B. Wahlbin, Local behavior in finite element methods, in Handbook of Numerical Analysis,

Vol. II, P.G.Ciarlet and J.L.Lion eds., North-Holland Publishing Company, Amsterdam, (1991),

353-522.

[32] T.P. Wihler and C. Schwab, Robust exponential convergence of the hp discontinuous Galerkin

FEM for convection-diffusion problems in one space dimension, East-West J. Numer. Math., 8

(2000), No.1, 57-70.

[33] C. Xenophontos, The hp finite element method for singularly perturbed problems, Ph.D. Disser-

tation, Univ. of Maryland, Baltimore, County, 1996.

[34] Z.Q. Xie and Z. Zhang, Superconvergence of DG method for one-dimensilonal singularly perturbed

problems, J. Comput. Math., 25 (2007), 185-200.

[35] Z. Zhang, Superconvergent approximation of singularly perturbed problems, Numer. Meth. PDEs,

18 (2002), 374-395.

[36] Z. Zhang, Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion prob-

lems, Math. Comput., 72 (2003), 1147-1177.

[37] Z.Z. Zhang, Z.Q. Xie, and Z. Zhang, Superconvegence of discontinuous Galerkin methods for

convection-diffusion problems, summited to J. Sci. Comp..


