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Abstract

It is interesting to compare the efficiency of two methods when their computational

loads in each iteration are equal. In this paper, two classes of contraction methods for

monotone variational inequalities are studied in a unified framework. The methods of

both classes can be viewed as prediction-correction methods, which generate the same test

vector in the prediction step and adopt the same step-size rule in the correction step.

The only difference is that they use different search directions. The computational loads of

each iteration of the different classes are equal. Our analysis explains theoretically why one

class of the contraction methods usually outperforms the other class. It is demonstrated

that many known methods belong to these two classes of methods. Finally, the presented

numerical results demonstrate the validity of our analysis.
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1. Introduction

Let Ω be a nonempty closed convex subset of Rn and F be a continuous mapping from Rn

into itself. A variational inequality problem, denoted by VI(Ω, F ), is to determine a vector
u∗ ∈ Ω such that

(u− u∗)T F (u∗) ≥ 0, ∀ u ∈ Ω. (1.1)

VI(Ω, F ) problem includes nonlinear complementarity problem (when Ω = Rn
+) and system of

nonlinear equations (when Ω = Rn) as its special cases and thus it has many applications [3,5].
The mapping F is said to be uniformly strong monotone (resp. monotone) on Ω if

(u− v)T (F (u)− F (v)) ≥ µ‖u− v‖2, ∀u, v ∈ Ω,

where µ > 0 (resp. µ = 0) is a constant, F is Lipschitz continuous on Ω in the sense that there
is a constant L > 0 such that

‖F (u)− F (v)‖ ≤ L‖u− v‖, ∀u, v ∈ Ω.

Throughout this paper we assume that the operator F is monotone and Lipschitz continuous
on Ω, and the solution set of VI(Ω, F ), denoted by Ω∗, is nonempty.

In the literature, there are different types of methods for monotone VI(Ω, F ) such as
projection-contraction methods, continuous methods and cutting plane methods. Among these
methods, the projection-contraction type of methods have attracted much attention for their
simplicity. Let PΩ(v) denote the projection of v onto Ω and uk be the given current iterate. The
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simplest projection method is the Goldstein-Levitin-Polyak approach [4, 11] which iteratively
updates uk+1 according to the formula

uk+1 = PΩ[uk − βkF (uk)]. (1.2)

This method produces a convergent sequence for uniformly strong monotone VI(Ω, F ) when
0 < βL ≤ βk ≤ βU < 2µ/L2. The basic projection method (1.2) is called an explicit method
because all the terms in its right hand side are known. There are also implicit approaches
(whose right hand side includes the unknown vector) such as the Douglas-Rachford operator
splitting method [2, 12] which determines uk+1 by the recursion form

uk+1 = PΩ[uk − βkF (uk)] + (F (uk)− F (uk+1)) (1.3)

and the proximal point algorithm [13] which generates uk+1 by

uk+1 = PΩ[uk − βkF (uk+1)]. (1.4)

These implicit methods produce convergent sequences for monotone VI(Ω, F ) when 0 < βL ≤
βk ≤ βU < +∞. The sequence {uk} generated by (1.4) satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − ‖uk − uk+1‖2, ∀u∗ ∈ Ω∗.

The above inequality means that the new iterate uk+1 is closer to the solution set than the
current point uk. According to [1], the proximal point algorithm belongs to the class of Fejér
contraction methods under Euclidean norm, or simply, contraction methods.

The main disadvantage of the implicit methods is that a subproblem should be solved in
each iteration. Setting the uk+1 in (1.3) and (1.4) by uk, we get the form (1.2), and the explicit
method is convergent only for uniformly strong monotone (or co-coercive) VI(Ω, F ) when the
parameter βk is rigorously chosen. Instead of directly taking the left hand side of (1.2) as the
new iterate, we set

ũk = PΩ[uk − βkF (uk)] (1.5)

as a predictor, the new iterate uk+1 (or called as corrector) will be generated by moving uk in
directions designed based on uk and ũk. Such methods can be viewed as prediction-correction
methods [9].

There are a number of contraction methods in the literature which belong to the prediction-
correction methods. The purpose of this paper is to analyze the efficiency of the different
methods whose computational loads in each iteration are equal. The paper is organized as
follows. In section 2, we summarize preliminaries and define some basic concepts which will
be used in this paper. Section 3 presents two criterions of the framework of the projection-
contraction methods. In section 4, we analyze these two classes of methods theoretically and
show that the iterates generated by the second class methods usually get more progress than
those in the first class. Then, in section 5 we give linear and nonlinear applications with
numerical experiments. As predicted by the analysis, the numerical results show the superiority
of a class of methods clearly. Finally we give some conclusion remarks in section 6.

2. Preliminaries

Let G be an n × n positive definite matrix. The projection under G-norm is denoted by
PΩ,G(·), i.e.,

PΩ,G(v) = argmin{‖v − u‖G | u ∈ Ω}.
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Fig. 1. Geometric interpretation of Inequality (2.3) with respect to Euclidean-norm

Especially, when G = I, PΩ,G(v) is the projection to Ω with respect to the Euclidean-norm.
From the above definition, it follows that

(v − PΩ,G(v))T G(u− PΩ,G(v)) ≤ 0, ∀ v ∈ Rn,∀ u ∈ Ω. (2.1)

Consequently, we have

‖PΩ,G(u)− PΩ,G(v)‖G ≤ ‖u− v‖G, ∀ u, v ∈ Rn, (2.2)

‖u− PΩ,G(v)‖2G ≤ ‖v − u‖2G − ‖v − PΩ,G(v)‖2G, ∀ v ∈ Rn, ∀ u ∈ Ω. (2.3)

Notice that variational inequality problem (1.1) is equivalent to finding u∗ ∈ Ω such that

(Gu−Gu∗)T G−1F (u∗) ≥ 0, ∀u ∈ Ω,

where G is a positive definite matrix. Thus VI(Ω, F ) is equivalent to the following projection
equation

u = PΩ,G[u−G−1F (u)]. (2.4)

Therefore, solving VI(Ω, F ) is equivalent to finding a zero point of the residue function

e(u, β) := u− PΩ,G[u−G−1F (u)]. (2.5)

To analyze the efficiency of the different methods, we give the following definitions.

Definition 2.1 (Test Vector) For a given u ∈ Ω (or ∈ Rn), ũ ∈ Ω is said to be a test vector
of u if ũ is generated from u by some well-defined rule and

u = ũ iff u ∈ Ω∗. (2.6)

For given u, there are many different ways to get ũ which satisfies Definition 2.1. For
example, ũ = PΩ[u−F (u)] can be viewed as a test vector of u. In proximal point algorithm [13],
for given u, the subproblem produces a ũ which satisfies

ũ ∈ Ω, (u′ − ũ)T [F (ũ) + (ũ− u)] ≥ 0, ∀u′ ∈ Ω. (2.7)

It is easy to check that ũ generated by (2.7) also satisfies (2.6) and thus is a test vector of u.

Definition 2.2 (Error Measure Function) For the given current point u, let ũ ∈ Ω be a
test vector of u. A continuous function ϕ(u, ũ) : R2n → R is said to be an error measure
function of VI(Ω, F ) if there is a constant c0 > 0, such that

ϕ(u, ũ) ≥ c0‖u− ũ‖2. (2.8)
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Remark 2.1. From the definition of the test vector, it is natural to see that ϕ(u, ũ) = 0 implies
u ∈ Ω∗. In addition, the error measure function ϕ(u, ũ) usually has the following property

ϕ(u, ũ) = 0 iff u ∈ Ω∗.

Therefore, the error measure function ϕ(u, ũ) can be viewed as a measure since it measures the
distance between u and Ω∗, just as its name implies.

3. Two Classes of Contraction Methods

The different contraction methods considered in this paper can be divided into two classes.
Both of the methods use the same test vector ũ as predictor and the difference is that they
use different search directions to make correction. In order to derive our methods, we give two
criterions for the search directions.

Criterion 3.1. For the given u and its test point ũ ∈ Ω, there exist an error measure function
ϕ(u, ũ), a direction d1(u, ũ) and a constant τ > 0, satisfying

(u− u∗)T d1(u, ũ) ≥ ϕ(u, ũ), ∀u∗ ∈ Ω∗, (3.1)

and
ϕ(u, ũ)

‖d1(u, ũ)‖2 ≥ τ. (3.2)

Criterion 3.2. For u, ũ ∈ Ω, ϕ(u, ũ) and d1(u, ũ) defined in Criterion 3.1, there is a direction
d2(u, ũ) which satisfies

ũ = PΩ{ũ− [d2(u, ũ)− d1(u, ũ)]} (3.3)

and
(ũ− u∗)T d2(u, ũ) ≥ ϕ(u, ũ)− (u− ũ)T d1(u, ũ), ∀u ∈ Ω, u∗ ∈ Ω∗. (3.4)

Remark 3.1. Consider the equivalence between variational inequality problems and the pro-
jection equation (2.4), Condition 3.3 can also be written down as following if general G-norm
is under consideration:

ũ = PΩ,G{ũ−G−1[d2(u, ũ)− d1(u, ũ)]}.

Remark 3.2. In the algorithms, Conditions (3.1), (3.3) and (3.4) guarantee convergence while
Condition (3.2) guarantees to avoid the slow convergence rate. It ought to be mentioned that
condition (3.2) is very important for the design of algorithms. Although algorithms without
(3.2) can also converge, the convergence rate is much slower than algorithms with this condition.

Lemma 3.1. Criterion 3.2 implies Eq. (3.1) in Criterion 3.1.

Proof. First, it follows from (3.3) that

(u′ − ũ)T {d2(u, ũ)− d1(u, ũ)} ≥ 0, ∀u′ ∈ Ω (3.5)

and thus (because u∗ ∈ Ω)

(ũ− u∗)T {d1(u, ũ)− d2(u, ũ)} ≥ 0. (3.6)
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Adding (3.4) and (3.6) we obtain

(ũ− u∗)T d1(u, ũ) ≥ ϕ(u, ũ)− (u− ũ)T d1(u, ũ)

and thus
(u− u∗)T d1(u, ũ) ≥ ϕ(u, ũ).

The lemma is then proved. ¤
Based on Criterion 3.1, we now give the framework of the first class of methods.

Algorithm 3.1 (General Form)

Let d1(u, ũ) satisfy Criterion 3.1. G is a positive definite matrix. The new iterate (u1(α))
is generated by:

u1(α) = PΩ,G[u− αG−1d1(u, ũ)], (3.7)

where

α = γα∗, α∗ =
ϕ(u, ũ)

‖G−1d1(u, ũ)‖2G
, γ ∈ (0, 2). (3.8)

By a simple manipulation, it can be proven that

‖u(α)− u∗‖2G ≤ ‖u− u∗‖2G − γ(2− γ)α∗ϕ(u, ũ), ∀u∗ ∈ Ω∗. (3.9)

Therefore, the new iterate u1(α) is closer to the solution set Ω∗ than u and the method belongs
to the contraction methods [1] under G-norm. By considering the definitions of the test vector
ũ, the error measure function ϕ(u, ũ) and (3.2), the convergence of Algorithm 3.1 follows from
(3.9) and the results in [10].

If Criterions 3.1 and 3.2 are both satisfied, we can use the second class of methods.

Algorithm 3.2 (General Form)

Let d1(u, ũ) and d2(u, ũ) satisfy both Criterion 3.1 and Criterion 3.2. The new iterate (u2(α))
is generated by

u2(α) = PΩ,G[u− αG−1d2(u, ũ)], (3.10)

where α is just defined in (3.8).

Note that from (3.2) and (3.8) we have

α∗ ≥ τ/‖G−1‖ > 0, (3.11)

which means the step size is bounded below. Thus both algorithms ensure to avoid the extreme
slow convergence, see Remark 3.2.

4. The Main Results

To explain theoretically why the second class of methods usually outperform the first class,
we define two profit functions. For any solution point u∗ ∈ Ω∗, let

θ1(α) := ‖u− u∗‖2G − ‖u1(α)− u∗‖2G (4.1)
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and
θ2(α) := ‖u− u∗‖2G − ‖u2(α)− u∗‖2G (4.2)

be profit functions in the two classes of algorithms respectively. By setting

u(α) = u− αG−1d1(u, ũ), (4.3)

we will prove two suitably introduced amounts

θ1(α) ≥ q1(α) = q(α) + ‖u(α)− u1(α)‖2G, (4.4)

θ2(α) ≥ q2(α) = q(α) + ‖u(α)− u2(α)‖2G, (4.5)

where
q(α) = 2αϕ(u)− α2‖G−1d1(u, ũ)‖2G. (4.6)

Finally, we show that
q2(α) ≥ q1(α) + ‖u2(α)− u1(α)‖2. (4.7)

This inequality together with (4.4) and (4.5) indicate the possible superiority of the second
class of methods to the first class.
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Fig. 2. Geometric interpretation of Inequality (4.11) under Euclidean-norm.

Theorem 4.1. For any u∗ ∈ Ω∗ and α ≥ 0, we have

θ1(α) ≥ q1(α), ∀ α ≥ 0, (4.8)

where
q1(α) = q(α) + ‖u(α)− u1(α)‖2G (4.9)

and q(α) is defined by (4.6).

Proof. Note that (see the notations (4.3) and (3.7))

u1(α) = PΩ,G[u(α)]. (4.10)

Since u1(α) ∈ Ω and u∗ ∈ Ω, it follows from (2.3) that

‖u1(α)− u∗‖2G ≤ ‖u(α)− u∗‖2G − ‖u(α)− u1(α)‖2G. (4.11)

Substituting (4.11) in (4.1), we have

θ1(α) ≥ ‖u− u∗‖2G − ‖u(α)− u∗‖2G + ‖u(α)− u1(α)‖2G. (4.12)
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From (4.3), (3.1) and (4.6) we have

‖u− u∗‖2G − ‖u(α)− u∗‖2G
= ‖u− u∗‖2G − ‖u− u∗ − αG−1d1(u, ũ)‖2G
= 2α(u− u∗)T d1(u, ũ)− α2‖G−1d1(u, ũ)‖2G
≥ 2αϕ(u, ũ)− α2‖G−1d1(u, ũ)‖2G = q(α). (4.13)

Since q1(α) = q(α) + ‖u(α)− u1(α)‖2G, it follows from (4.12) and (4.13) that

θ1(α) ≥ q1(α), ∀ α ≥ 0

and the theorem is proved. ¤
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Fig. 3. Geometric interpretation of Inequality (4.15) under Euclidean-norm.

Theorem 4.2. For any u∗ ∈ Ω∗ and α ≥ 0, we have

θ2(α) ≥ q2(α), ∀ α ≥ 0

where
q2(α) = q(α) + ‖u(α)− u2(α)‖2G (4.14)

and q(α) is defined by (4.6).

Proof. Since u2(α) = PΩ,G[u− αG−1d2(u, ũ)] and u∗ ∈ Ω, it follows from (2.3) that

‖u2(α)− u∗‖2G ≤ ‖u− αG−1d2(u, ũ)− u∗‖2G − ‖u− αG−1d2(u, ũ)− u2(α)‖2G. (4.15)

Consequently, using the definition of θ2(α) (see (4.2)), we get

θ2(α) ≥ ‖u− u∗‖2G − ‖u− αG−1d2(u, ũ)− u∗‖2G + ‖u− αG−1d2(u, ũ)− u2(α)‖2G
= ‖u− u2(α)‖2G + 2α(u− u∗)T d2(u, ũ) + 2α(u2(α)− u)T d2(u, ũ)

= ‖u− u2(α)‖2G + 2α(ũ− u∗)T d2(u, ũ) + 2α(u2(α)− ũ)T d2(u, ũ). (4.16)

Since u2(α) ∈ Ω, it follows from (3.5) that

(u2(α)− ũ)T d2(u, ũ) ≥ (u2(α)− ũ)T d1(u, ũ). (4.17)

Substituting (3.4) and (4.17) in the right hand side of (4.16), we get

θ2(α) ≥ ‖u− u2(α)‖2G + 2αϕ(u)− 2α(u− ũ)T d1(u, ũ) + 2α(u2(α)− ũ)T d1(u, ũ)

= ‖u− u2(α)‖2G + 2αϕ(u) + 2α(u2(α)− u)T d1(u, ũ)

= ‖u− u2(α)− αG−1d1(u, ũ)‖2G + 2αϕ(u)− α2‖G−1d1(u, ũ)‖2G
= ‖u(α)− u2(α)‖2G + q(α). (4.18)
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The last equality of (4.18) follows from the definitions of u(α) and q(α). According to (4.14),
the right hand side of (4.18) is q2(α) and the assertion of the theorem is proved. ¤
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Fig. 4. Geometric interpretation of Inequality (4.21) under Euclidean-norm.

The assertion of this theorem follows directly from (4.20) and (4.21). ¤

Theorem 4.3. Let q1(α) and q2(α) be defined by (4.9) and (4.14), respectively. Then we have

q2(α)− q1(α) ≥ ‖u2(α)− u1(α)‖2G, ∀ α ≥ 0. (4.19)

Proof. It follows from (4.9) and (4.14) that

q2(α)− q1(α) = ‖u(α)− u2(α)‖2G − ‖u(α)− u1(α)‖2G. (4.20)

Note that u1(α) = PΩ,G[u(α)] (see the notations (4.3) and (3.1)) and u2(α) ∈ Ω. By using
(2.3), we obtain

‖u2(α)− u1(α)‖2G ≤ ‖u(α)− u2(α)‖2G − ‖u(α)− u1(α)‖2G. (4.21)

The assertion of this theorem follows directly from (4.20) and (4.21). ¤

5. Applications to Some Existing Methods

5.1. Methods for monotone linear variational inequalities

We consider the monotone linear variational inequality LVI(Ω,M, q):

u∗ ∈ Ω, (u′ − u∗)T (Mu∗ + q) ≥ 0, ∀u′ ∈ Ω.

The method based on Criterion 3.1. It was proved that (see He [7] and Solodov and
Tseng [14])

(u− u∗)T (MT + I)e(u) ≥ ‖e(u)‖2, ∀ u∗ ∈ Ω∗, (5.1)

where
e(u) = u− PΩ[u− (Mu + q)].

For the current point u ∈ Ω \ Ω∗, by letting

ũ = PΩ[u− (Mu + q)] 6= u, (5.2)

ϕ(u, ũ) = ‖u− ũ‖2, (5.3)

d1(u, ũ) = (MT + I)(u− ũ), (5.4)
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it is clear that ũ is a test vector of u and ϕ(u, ũ) is an error measure function of LVI(Ω,M, q).
Note that d1(u, ũ) 6= 0, by observing that

(u− ũ)T d1(u, ũ) = (u− ũ)MT (u− ũ) + ‖u− ũ‖2 > 0.

In this way Inequality (5.1) can be written as

(u− u∗)T d1(u, ũ) ≥ ϕ(u, ũ), ∀ u∗ ∈ Ω∗

and thus the first condition (3.1) in Criterion 3.1 is satisfied. In this case, since

ϕ(u, ũ)
‖d1(u, ũ)‖2 =

‖u− ũ‖2
‖(MT + I)(u− ũ)‖2 ≥

1
‖MT + I‖2 ,

the second condition (3.2) in Criterion 3.1 holds.
Based on Inequality (5.1), some Fejér monotone methods were established by He [7] (in Eu-

clidean norm) and Solodov and Tseng [14] (in general G-norm). Of course, if the method under
the Euclidean-norm is clear, the extension to the general G-norm is trivial. From the above
analysis we get the algorithm based on Criterion 3.1 for solving linear variational inequality:

Algorithm 5.1 (LVI Form)

Given initial point u0, ε > 0, a positive definite matrix G and γ ∈ (0, 2). Repeat the following
process until ‖u− ũ‖2 < ε:





ũ := PΩ[u− (Mu + q)]

α :=
‖u− ũ‖22

‖G−1(MT + I)(u− ũ)‖2G
u := PΩ,G{u− γαG−1[(MT + I)(u− ũ)]}

The method based on Criterion 3.2. For monotone LVI(Ω,M, q) and the notations given
by (5.2)-(5.4), we let

d2(u, ũ) = MT (u− ũ) + (Mu + q), (5.5)

and will prove that the conditions in Criterion 3.2 are satisfied. It is easy to check that

ũ = PΩ[u− (Mu + q)] = PΩ[ũ− (d2(u, ũ)− d1(u, ũ))]

and thus the first condition in Criterion 3.2 is satisfied. In [6], it was proved that

(u− u∗)T [MT e(u) + (Mu + q)] ≥ e(u)T (Mu + q), ∀u ∈ Ω, u∗ ∈ Ω∗.

By using notations of ũ and d2(u, ũ), the above inequality can be rewritten as

(u− u∗)T d2(u, ũ) ≥ (u− ũ)T (Mu + q), ∀u ∈ Ω, u∗ ∈ Ω∗.

Consequently,

(ũ− u∗)T d2(u, ũ) ≥ (u− ũ)T [(Mu + q)− d2(u, ũ)], ∀u ∈ Ω, u∗ ∈ Ω∗. (5.6)
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By using

(Mu + q)− d2(u, ũ) = (u− ũ)− d1(u, ũ),

‖u− ũ‖2 = ϕ(u, ũ),

it follows from (5.6) that

(ũ− u∗)T d2(u, ũ) ≥ (u− ũ)T {(u− ũ)− d1(u, ũ)}
= ϕ(u, ũ)− (u− ũ)T d1(u, ũ)

and thus the second condition in Criterion 3.2 is satisfied.

Now we give the algorithm based on Criterion 3.2 for solving linear variational inequality
as follows (note that the step size is the same as in Algorithm 5.1):

Algorithm 5.2 (LVI Form)

Given initial point u0, ε > 0, a positive definite matrix G and γ ∈ (0, 2). Repeat the following
process until ‖u− ũ‖2 ≤ ε





ũ := PΩ[u− (Mu + q)]

α :=
‖u− ũ‖22

‖G−1(MT + I)(u− ũ)‖2G
u := PΩ,G{u− γαG−1[MT (u− ũ) + (Mu + q)]}

Numerical experiments. We implement Algorithms 5.1 and 5.2 to Example 1 in [15] for
finding the shortest network in a given full Steiner topology. Based on

‖d‖2 = max
ξ∈B2

ξT d, where B2 = {ξ | ‖ξ‖2 ≤ 1},

the l2-norm problem was translated to a min-max problem and its equivalent form is a monotone
linear variational inequality [9]. For l1-norm and l∞-norm distance problems, we translate the
problems to a linear variational inequality by using

‖d‖1 = max
ξ∈B∞

ξT d, where B∞ = {ξ | ‖ξ‖∞ ≤ 1}

‖d‖∞ = max
ξ∈B1

ξT d, where B1 = {ξ | ‖ξ‖1 ≤ 1},

respectively. The example is tested with G = I and starting point u0 = 0 under l1, l2 and l∞
norms. The numerical results are given in Tables 1–3. From the numerical results we can see
that with the same accuracy ε = 10−10 both Algorithm 5.1 and Algorithm 5.2 get the same
total distance. However, as the theoretical analysis indicated, Algorithm 5.2 performs better.
It only use about 54% iterations of Algorithm 5.1 and save nearly 50% CPU-time. All tests are
run on a Lenovo Pentium 4 CPU 2.66GHz 256M PC.
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Table 1. Shortest network under l1 norm

Algorithm 5.1 Algorithm 5.2

Iteration ‖e(u)‖∞ Total Distance Iteration ‖e(u)‖∞ Total Distance

20 1.2e+000 29.0823040485 20 1.4e-001 28.8805008662

40 3.7e-002 28.6777786413 40 1.1e-004 28.6660178525

60 9.7e-004 28.6661448683 60 1.3e-007 28.6658582049

80 2.5e-005 28.6658649129 80 1.4e-010 28.6658580002

100 6.7e-007 28.6658581765 81 1.0e-010 28.6658580000

120 1.8e-008 28.6658580046

140 4.8e-010 28.6658580001

149 9.4e-011 28.6658580000

CPU-time 0.031 Sec. CPU-time 0.016 Sec.

Table 2. Shortest network under l2 norm

Algorithm 5.1 Algorithm 5.2

Iteration ‖e(u)‖∞ Total Distance Iteration ‖e(u)‖∞ Total Distance

20 1.2e+000 25.7823694981 20 1.3e-001 25.4681520030

40 7.1e-002 25.3776304969 40 5.0e-004 25.3563526162

60 3.3e-003 25.3568683223 60 4.4e-006 25.3560698260

80 1.8e-004 25.3561050662 80 4.0e-008 25.3560677986

100 1.1e-005 25.3560698181 100 3.7e-010 25.3560677795

120 6.4e-007 25.3560678958 106 9.2e-011 25.3560677793

140 3.9e-008 25.3560677857

160 2.4e-009 25.3560677797

180 1.5e-010 25.3560677793

183 9.5e-011 25.3560677793

CPU-time 0.234 Sec. CPU-time 0.125 Sec.

Table 3. Shortest network under l∞ norm

Algorithm 5.1 Algorithm 5.2

Iteration ‖e(u)‖∞ Total Distance Iteration ‖e(u)‖∞ Total Distance

20 1.5e+000 22.1882071270 20 6.8e-001 21.8459714979

40 9.0e-002 21.1322990353 40 2.1e-003 21.1145131146

60 2.0e-003 21.1133865209 60 9.0e-007 21.1129140170

80 4.4e-005 21.1129244226 80 4.1e-010 21.1129135002

100 1.0e-006 21.1129137566 84 7.4e-011 21.1129135000

120 2.4e-008 21.1129135060

140 5.9e-010 21.1129135001

150 9.2e-011 21.1129135000

CPU-time 0.187 Sec. CPU-time 0.094 Sec.

5.2. Methods for monotone nonlinear variational inequalities

We consider monotone nonlinear variational inequality

u∗ ∈ Ω, (u′ − u∗)T F (u∗) ≥ 0, ∀u′ ∈ Ω.

The method based on Criterion 3.1. For u ∈ Ω \ Ω∗, let

ũ = PΩ[u− βF (u)] 6= u, (5.7)
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where β > 0 is chosen to satisfy

β‖F (u)− F (ũ)‖ ≤ ν‖u− ũ‖, ν ∈ (0, 1). (5.8)

It was proved (see [8], Inequality (22) and [14]) that

(u− u∗)T d1(u, ũ) ≥ (u− ũ)T d1(u, ũ), ∀ u∗ ∈ Ω∗, (5.9)

where
d1(u, ũ) = (u− ũ)− β(F (u)− F (ũ)). (5.10)

Note that d1(u, ũ) 6= 0, by observing that

(u− ũ)T d1(u, ũ) ≥ (1− ν)‖u− ũ‖2 > 0.

It is clear that ũ generated by (5.7) is a test vector of u. Let

ϕ(u, ũ) = (u− ũ)T d1(u, ũ). (5.11)

Using Cauchy-Schwarz inequality, it follows from (5.8) and (5.10) that

ϕ(u, ũ) = (u− ũ)T d1(u, ũ)

= ‖u− ũ‖2 − (u− ũ)T β
(
F (u)− F (ũ)

)

≥ (1− ν)‖u− ũ‖2,

which implies that ϕ(u, ũ) is an error measure function of VI(Ω, F ). Using the notation of
ϕ(u, ũ) and d1(u, ũ), (5.9) can be written as

(u− u∗)T d1(u, ũ) ≥ ϕ(u, ũ), ∀ u∗ ∈ Ω∗ (5.12)

and thus Condition (3.1) holds. In addition, we have

2ϕ(u, ũ) = 2(u− ũ)T d1(u, ũ)

= 2‖u− ũ‖2 − 2β(u− ũ)T
(
F (u)− F (ũ)

)

≥ ‖u− ũ‖2 − 2β(u− ũ)T
(
F (u)− F (ũ)

)
+ β2‖F (u)− F (ũ)‖2

= ‖d1(u, ũ)‖2.

Consequently,
ϕ(u, ũ)

‖d1(u, ũ)‖2 ≥
1
2

(5.13)

and (3.2) is satisfied. From the above analysis, we now give the algorithm based on Criterion
3.1 to solve nonlinear monotone variational inequality, see Algorithm 5.3.

Remark 5.1. Since the theme of this paper is to compare two types of projection-contraction
methods and the differences is mainly derived by two different search directions, we omit the
technique of adjusting β to satisfy (5.8) both in Algorithm 5.3 and the next one, namely
Algorithm 5.4. Readers can get some references in [9].
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Algorithm 5.3 (NVI Form)

Given initial point u0, ε > 0, ν ∈ (0, 1), a positive definite matrix G and γ ∈ (0, 2). Repeat
the following iteration until ‖u− ũ‖2 < ε:





{
ũ := PΩ[u− βF (u)]

Ajust β till (5.8) is satisfied

e := u− ũ

d1 := e− β(F (u)− F (ũ))

α :=
eT d1

‖G−1d1‖2G
u := PΩ,G[u− γαG−1d1]

The method based on Criterion 3.2. For the monotone nonlinear VI(Ω, F ), ũ, ϕ(u, ũ) and
d1(u, ũ) defined in this subsection, we let

d2(u, ũ) = βF (ũ), (5.14)

and will prove that the conditions in Criterion 3.2 are satisfied. It follows from (5.7) and (5.10)
that

ũ = PΩ{ũ− [d2(u, ũ)− d1(u, ũ)]} (5.15)

and thus the first condition in Criterion 3.2 holds. Since F is monotone, we have

(ũ− u∗)T βF (ũ) ≥ (ũ− u∗)T βF (u∗) ≥ 0.

Using (5.11) and (5.14), it follows from above inequality that

(ũ− u∗)T d2(u, ũ) ≥ ϕ(u, ũ)− (u− ũ)T d1(u, ũ) (5.16)

and the second condition in Criterion 3.2 is satisfied.
From the above analysis, we get the algorithm based on Criterion 3.2 to solve nonlinear

monotone variational inequality (note that the step size is the same as in Algorithm 5.3):

Algorithm 5.4 (NVI Form)

Given initial point u0, ε > 0, ν ∈ (0, 1), a positive definite matrix G and γ ∈ (0, 2). Repeat
the following process until ‖u− ũ‖2 < ε:





{
ũ := PΩ[u− βF (u)]

Ajust β till (5.8) is satisfied

e := u− ũ

d1 := e− β(F (u)− F (ũ))

d2 := βF (ũ)

α :=
eT d1

‖G−1d1‖2G
u := PΩ,G[u− γαG−1d2]
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Numerical experiments. In this experiment, we implement Algorithms 5.3 and 5.4 to the
first example in [9]. We take G = I and the origin as the initial point, γ = 1.8, ν = 0.9, the
initial β = 0 and the stop criterion ε = 10−7. The numerical results are shown in Table 4.
From the results, we can see that the second class of methods also performs better than the
first class. Algorithm 5.4 only uses 67% ∼ 87% iterations and save about 30% CPU-time. All
tests are run on a Lenovo Pentium 4 CPU 2.66GHz 256M PC.

Table 4. Numerical results of nonlinear variational inequality

Algorithm 5.3 Algorithm 5.4

Problem Size Iteration CPU-time (Sec.) Iteration CPU-time (Sec.)

100 488 0.067 383 0.043

200 636 0.203 460 0.140

500 671 2.828 467 1.969

800 539 6.047 365 4.109

1000 587 8.891 510 7.688

6. Conclusions

In this paper, we compare the efficiency of two classes of contraction methods for solving
monotone variational inequalities in a unified framework. Under this framework, convergence
analysis of many existing methods becomes much easier, and it indicates the possible superiority
of the second class of methods. Numerical results verify the validity of our theoretical analysis.
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