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Abstract

In this paper, we obtain optimal error estimates in both L2-norm and H(curl)-norm for

the Nédélec edge finite element approximation of the time-harmonic Maxwell’s equations

on a general Lipschitz domain discretized on quasi-uniform meshes. One key to our proof

is to transform the L2 error estimates into the L2 estimate of a discrete divergence-free

function which belongs to the edge finite element spaces, and then use the approximation

of the discrete divergence-free function by the continuous divergence-free function and a

duality argument for the continuous divergence-free function. For Nédélec’s second type

elements, we present an optimal convergence estimate which improves the best results

available in the literature.

Mathematics subject classification: 65N30, 35Q60.
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1. Introduction

Convergence analysis for edge element discretizations of the time-harmonic Maxwell’s equa-
tions have been much studied in the literatures, see [4, 5, 7, 10, 12, 13]. Monk [12] first proved
error estimates in both L2-norm and H(curl)-norm under the assumption that Ω is convex,
but both the exponent and the constant of convergence rate in L2 error estimate involve an
arbitrarily small constant ε > 0. Afterward, Hiptmair [10] and Monk [13] obtained asymptotic
quasi-optimality of error estimates in H(curl)-norm for a general Lipschitz polyhedron. Re-
cently, Buffa [5] presented an abstract convergence theory for a class of noncoercive problems
and then applied it to this model.

In this paper, we obtain optimal error estimates in both L2-norm and H(curl)-norm for
the Nédélec edge finite element approximation of the time-harmonic Maxwell’s equations on a
general Lipschitz domain and quasi-uniform meshes. First of all, we use the discrete Helmholtz
decomposition for the difference between the Nédélec finite element solution and a finite element
function, then obtain the discrete divergence-free function wh which belongs to the edge finite
element spaces. Secondly, we transform error estimate in both L2-norm and H(curl)-seminorm
into the L2 estimate of wh by proving that the error function is discrete divergence-free. Thirdly,
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we obtain the L2 estimates of wh by using its special approximation w which is a continuous
divergence-free function and a duality argument for w. Finally, we obtain optimal error esti-
mates in both L2-norm and H(curl)-norm. Compare with the results in [12], the exponent
and the constant of convergence rate in our error estimates are independent of the constant ε,
thereby we improve the L2 error estimate in [12].

Combining optimal L2 error estimates with the corresponding interpolation error estimates
for Nédélec’s second type elements, we obtain the convergence order of the error function, and
the order only depends on the Lipschitz domain and the smoothness of the solution. Especially,
for the convex domain, we obtain an optimal convergence order. It should be noted that the L2

error estimates are one order higher than the H(curl)-norm estimates for Nédélec’s second type
elements, however, it is not correct for Nédélec’s first type elements, because when restricted to
the elements of the triangulation they fails to provide a complete space of polynomial ( see [12]).

To avoid the repeated use of generic but unspecified constants, following [18], we use the
notation a . b means that there exists a positive constant C such that a ≤ Cb, the above
generic constants C are independent of the function under consideration, but they may depend
on Ω and the shape-regularity of the meshes.

The rest of the paper is organized as follows. In Section 2, we introduce the time-harmonic
Maxwell’s equations, then present its corresponding equivalent variational problem and the well-
posedness. In Section 3, we present the discrete variational problem and some preliminaries. In
Section 4, we obtain optimal error estimates in both L2-norm and H(curl)-norm, and present
an optimal convergence order for Nédélec’s second type elements.

2. Formulation of the Problem

For simplicity, we assume that Ω is a bounded Lipschitz polyhedron in R3 with connected
boundary Γ and unit outward normal ν. For any m ≥ 1 and p ≥ 1, we denote the standard
Sobolev space by Wm,p(Ω). Especially, when p = 2, we denote the space by Hm(Ω) = Wm,2(Ω),
and H1

0 (Ω) = {u ∈ H1(Ω) : u|Γ = 0}. Furthermore, we also need some other Sobolev functional
spaces ( see [9, 14]):

H0(curl; Ω) =
{
u ∈ (L2(Ω))3

∣∣ ∇× u ∈ (L2(Ω))3, ν × u = 0 on Γ
}

,

Hs(curl; Ω) =
{
u ∈ (Hs(Ω))3 | ∇ × u ∈ (Hs(Ω))3

}
,

where s > 0, and the above spaces are equipped with the norms, respectively,

‖v‖H(curl;Ω) =
(‖v‖20 + ‖∇ × v‖20

)1/2 ∀ u ∈ H0(curl; Ω),

‖v‖Hs(curl;Ω) =
(
‖v‖2Hs(Ω) + ‖∇ × v‖2Hs(Ω)

)1/2

∀ v ∈ Hs(curl; Ω).

Here, ‖ · ‖0 denotes the norm in (L2(Ω))3.
We consider the following classical time-harmonic Maxwell’s equations (c.f. [10, 12,14])

∇× (µ−1∇×E)− ω2ηE = F in Ω, (2.1)

ν ×E = 0 on Γ, (2.2)

where µ is called the magnetic permeability, ω > 0 is called the angular frequency, η = ε+iσ/ω,
where i =

√−1, ε and σ are called, respectively, the electric permittivity, and conductivity of
the homogeneous isotropic body occupying Ω, F = iωJ with the applied current density J .
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In general, µ and ε are positive definite functions, σ is positive definite in a conductor and
vanishes in an insulator. For simplicity, we assume that µ = 1, α := ω2ε ∈ R, β := ωσ ∈ R,

where both ε and σ are constants. We also suppose that F ∈ H0(curl; Ω)′ and H0(curl; Ω)′

is the dual space of H0(curl; Ω) with respect to the (L2(Ω))3 inner product.

Remark 2.1. 1. When ε = 0, Eqs. (2.1) and (2.2) describe the eddy current model (c.f. [1,17]):

∇× (∇×E)− iβE = F in Ω,

ν ×E = 0 on Γ.

2. When σ = 0, Eqs. (2.1) and (2.2) describe the lossless case of the time-harmonic Maxwell’s
equations

∇× (∇×E)− αE = F in Ω, (2.3)

ν ×E = 0 on Γ. (2.4)

In this case, α is real, and both E and F are also real.

The variational formulation of problems (2.1)-(2.2) is to find E ∈ H0(curl; Ω) such that

â(E, ψ) = (F , ψ) ∀ ψ ∈ H0(curl; Ω), (2.5)

where

â(E, ψ) = (∇×E,∇×ψ)− ((α + iβ)E, ψ). (2.6)

Here, (·, ·) denotes the inner product in (L2(Ω))3.
In order to ensure the well-posedness of variational problem (2.5), we will always make the

following two assumptions:
β > 0 in Ω, (2.7)

or
β = 0, and α is not an eigenvalue of Eqs. (2.3) and (2.4). (2.8)

The following lemma presents the well-posedness of variational problem (2.5) and its proof
can be found in [10,12].

Lemma 2.1. Assume that Ω is a bounded Lipschitz polyhedron with connected boundary, and
that (2.7) or (2.8) holds, then there exists a unique solution E ∈ H0(curl; Ω) of the variational
problem (2.5), and we have

‖E‖H(curl;Ω) . ‖F ‖0.

3. Edge Element Discretization

Assume that Ω is covered by a regular mesh of tetrahedron Th, where h is the maximum
diameter of the tetrahedron in Th. We introduce the following Nédélec’s first type elements
space V k,1

h and second type elements space V k,2
h (see [15,16])

V k,1
h =

{
vh ∈ H0(curl; Ω)

∣∣∣ vh|K ∈ Rk for all K ∈ Th

}
,

V k,2
h =

{
vh ∈ H0(curl; Ω)

∣∣∣ vh|K ∈ (Pk)3 for all K ∈ Th

}
,
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where
Rk = (Pk−1)3 ⊕

{
p ∈ (P̃k)3 | x · p = 0

}
,

Pk is the set of polynomials of total degree at most k and P̃k denotes the space of homogeneous
polynomials of order k.

Let V h denotes V k,1
h (or V k,2

h ). Now, we introduce the discrete variational problem of (2.5):
Find Eh ∈ V h such that

â(Eh, ψh) = (F ,ψh) ∀ ψh ∈ V h. (3.1)

In the following, we introduce some preliminaries which will be used in the error estimates.
Using the degrees of freedom of Nédélec edge element space V k,l

h (l = 1, 2), we can define the
corresponding edge interpolations Πcurl,l

h u ∈ V k,l
h , for any u ∈ H1/2+δ̄(curl; K) with constant

δ̄ > 0 and K ∈ Th (c.f. [15, 16]).
The next lemma states the interpolation error estimate, see Theorem 8.15 in [14], Lemma

3.2 and Lemma 3.3 in [6].

Lemma 3.1. Let V k,2
h and Πcurl,2

h be constructed as above. Then

1. If u ∈ (Hs+1(Ω))3 for 1 ≤ s ≤ k, we have

‖u−Πcurl,2
h u‖0 + h‖∇ × (u−Πcurl,2

h u)‖0 . hs+1‖u‖(Hs+1(Ω))3 . (3.2)

2. If u ∈ Hδ(curl; Ω) for 1/2 < δ ≤ 1, we have

‖u−Πcurl,2
h u‖H(curl;Ω) . hδ‖u‖Hδ(curl;Ω). (3.3)

The estimate of (3.3) also holds for the interpolation Πcurl,1
h .

Next, we define the following Lagrange finite element space corresponding to H1
0 (Ω):

Sk
h =

{
ph ∈ H1

0 (Ω) ∩ C(Ω̄)
∣∣ ph|K ∈ Pk, ∀ K ∈ Th

}
.

Definition 3.1. A function v ∈ (L2(Ω))3 is called discrete divergence-free for V k,l
h (l = 1, 2) if

there holds

(v,∇qh) = 0 ∀ qh ∈ Sk+l−1
h . (3.4)

In view of the above definition, we know that a discrete divergence-free function does not
possess normal continuity.

From the exact sequence property of discrete finite element space, we know that gradSk+l−1
h

is the kernel of operator curl in V k,l
h , l = 1, 2. Hence, we have the following discrete Helmholtz

decomposition for V k,l
h (see [10,11,14])

V k,l
h = V k,l

0,h + gradSk+l−1
h , (3.5)

where
V k,l

0,h := {uh ∈ V k,l
h | (uh,∇ph) = 0 for ∀ ph ∈ Sk+l−1

h }.
The following lemma shows that the discrete divergence-free function can be well approxi-

mated by a continuous divergence-free function. The construction for continuous divergence-free
function was used for example by Girault [8] and Monk [12]. However a clearer analysis is from
Amrouche et al. [2], Arnold , Falk and Winther [3], Hiptmair [10] or Monk [13,14].
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Lemma 3.2. For any given uh ∈ V k,l
0,h, there exists a u ∈ H0(curl; Ω) that satisfies

∇× u = ∇× uh, ∇ · u = 0, (3.6)

and

‖u− uh‖0 . hδ‖∇ × uh‖0 (3.7)

with a constant δ ∈ (0.5, 1] and δ = 1 for the case that Ω is smooth or convex.

4. Error Estimates

In this section, we will discuss the finite element error estimates in both L2-norm and
H(curl)-norm.

Let V 0,h denotes V k,1
0,h (or V k,2

0,h) and Sh denotes Sk
h ( or Sk+1

h ). For any vh ∈ V h, using
the discrete Helmholtz decompositions (3.5) for vh −Eh, we have

vh −Eh = wh +∇qh, (4.1)

where wh ∈ V 0,h and qh ∈ Sh. In view of (4.1), we obtain

∇×wh = ∇× (vh −Eh). (4.2)

At this stage we do not know that Eh exists, but if it does exist we define eh := E−Eh. In the
following, we present error estimates in both L2-norm and H(curl)-seminorm, respectively.

Lemma 4.1. The following estimate holds

‖eh‖0 ≤
√

2 (‖E − vh‖0 + ‖wh‖0) . (4.3)

Proof. Subtracting (3.1) from (2.5), we obtain the Galerkin orthogonality

â(eh, ψh) = 0 ∀ ψh ∈ V h, (4.4)

which leads to
((α + iβ)eh,∇ph) = 0 ∀ ph ∈ Sh. (4.5)

For arbitrary real-valued function rh ∈ Sh, taking ∇rh or i∇rh instead of ∇ph in (4.5), respec-
tively, and using the assumptions (2.7) and (2.8), we conclude that eh is discrete divergence-free,
namely

(eh,∇ph) = 0 ∀ ph ∈ Sh. (4.6)

Using (4.1) and (4.6), we have

‖eh‖20 = (eh, E − vh) + (eh, vh −Eh)

= (eh, E − vh) + (eh, wh +∇qh)

= (eh, E − vh) + (eh, wh). (4.7)

Combining (4.7) with Cauchy-Schwartz inequality yields

‖eh‖0 ≤
√

2 (‖E − vh‖0 + ‖wh‖0) ,

which completes the proof. ¤
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Lemma 4.2. The following estimate holds

‖∇ × eh‖0 . ‖E − vh‖H(curl;Ω) + ‖wh‖0, (4.8)

where the constant only depends on the parameters α and β.

Proof. By (2.6), (4.4), (4.1) and (4.5), we have

‖∇ × eh‖20 = â(eh,eh) + ((α + iβ)eh, eh)

= â(eh,E − vh) + ((α + iβ)eh, eh)

= (∇× eh,∇× (E − vh))− ((α + iβ)eh, E − vh − eh)

= (∇× eh,∇× (E − vh)) + ((α + iβ)eh, vh −Eh)

= (∇× eh,∇× (E − vh)) + ((α + iβ)eh, wh).

Then using the Cauchy-Schwartz inequality, we have

‖∇ × eh‖20 . ‖∇ × (E − vh)‖20 + ‖eh‖20 + ‖wh‖20,

where the constant only depends on the parameters α and β. Then we obtain

‖∇ × eh‖0 . ‖∇ × (E − vh)‖0 + ‖eh‖0 + ‖wh‖0. (4.9)

Substituting (4.3) into (4.9), we obtain

‖∇ × eh‖0 . ‖E − vh‖H(curl;Ω) + ‖wh‖0,

which completes the proof. ¤

It is clear that it suffices to estimate ‖wh‖0 for completing error estimates in both L2-norm
and H(curl)-seminorm. To this end, we use the approximation of the discrete divergence-free
function by the continuous divergence-free function and a duality argument for the continuous
divergence-free function.

Lemma 4.3. There exists a constant h0 > 0 independents of h, E and Eh, such that for all
h < h0, we have

‖wh‖0 . ‖E − vh‖0 + hδ‖∇ × (E − vh)‖0, (4.10)

where the constant δ is the exponent in Lemma 3.2.

Proof. For given wh ∈ V 0,h in (4.1), using Lemma 3.2, there exists a w ∈ H0(curl; Ω)
satisfies

∇×w = ∇×wh, ∇ ·w = 0, (4.11)

and

‖w −wh‖0 . hδ‖∇ ×wh‖0. (4.12)

Using (4.12), (4.2) and the triangle inequality, we have

‖w −wh‖0 . hδ‖∇ × (vh −Eh)‖0
≤ hδ (‖∇ × eh‖0 + ‖∇ × (E − vh)‖0) . (4.13)
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Using the triangle inequality, (4.13) and (4.8), we obtain

‖wh‖0 ≤ C1

(
hδ (‖∇ × eh‖0 + ‖∇ × (E − vh)‖0) + ‖w‖0

)

≤ C2

(
hδ‖E − vh‖H(curl;Ω) + hδ‖wh‖0 + ‖w‖0

)
.

where the constants Ci (i = 1, 2) independent of h, E and Eh. Choosing h1 > 0 satisfies
1− C2h

δ
1 > 0, then for all h < h1, we have

‖wh‖0 . hδ‖E − vh‖H(curl;Ω) + ‖w‖0. (4.14)

Next, we will use a duality argument to obtain the L2 estimate of w.
Let φ ∈ H0(curl; Ω) solves the following auxiliary problem

â(ψ,φ) = (w,ψ) ∀ ψ ∈ H0(curl; Ω). (4.15)

Taking ψ = ∇q with some q ∈ H1
0 (Ω) in (4.15), and using the Green formula with the fact

∇ ·w = 0, we have

((α + iβ)∇q, φ) = 0. (4.16)

Since ∇ ·w = 0, we have the following regularity result for auxiliary problem (4.15) (see [13])

‖φ‖Hδ(curl;Ω) . ‖w‖0. (4.17)

Combining (4.2) and (4.11), we have

∇× (w − (vh −Eh)) = 0. (4.18)

Noting that w − (vh −Eh) ∈ H0(curl; Ω) and (4.18), thus using the exact sequence property,
there exists a p ∈ H1

0 (Ω), such that

w − (vh −Eh) = ∇p. (4.19)

Using (4.18), (4.19) and (4.16), we have

â(w − (vh −Eh), φ)

= (∇× (w − (vh −Eh)),∇× φ)− ((α + iβ)(w − (vh −Eh)),φ)

= ((α + iβ)∇p, φ) = 0. (4.20)

Setting ψ = w in (4.15), and from (4.20), (4.16), (4.4), (4.15), (3.3) and (4.17), we have

‖w‖20 = â(w, φ) = â(w − (vh −Eh), φ) + â(vh −Eh,φ)

= â(eh,φ)− â(E − vh, φ)

= â(eh,φ−Πcurl
h φ)− (w, E − vh)

. ‖eh‖H(curl;Ω)‖φ−Πcurl
h φ‖H(curl;Ω) + ‖w‖0‖E − vh‖0

. ‖w‖0
(
hδ‖eh‖H(curl;Ω) + ‖E − vh‖0

)
,

where Πcurl
h denotes Πcurl,1

h (or Πcurl,2
h ). Hence we obtain

‖w‖0 . ‖E − vh‖0 + hδ‖eh‖H(curl;Ω). (4.21)
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At last, substituting (4.21) into (4.14) and using Lemmas 4.1 and 4.2, we obtain

‖wh‖0 ≤ C3

(‖E − vh‖0 + hδ‖∇ × (E − vh)‖0 + hδ‖eh‖H(curl;Ω)

)

≤ C4

(‖E − vh‖0 + hδ‖∇ × (E − vh)‖0 + hδ‖wh‖0
)
,

where the constants Ci (i = 3, 4) independent of h, E and Eh. Choosing h2 > 0 satisfies
1− C4h

δ
2 > 0, then for all h < h0 := min{h1, h2}, we obtain the estimate (4.10). ¤

Now, we present our main result as follows.

Theorem 4.1. Let Ω be a bounded Lipschitz polyhedron with connected boundary, E and Eh

satisfy (2.5) and (3.1), respectively, and (2.7) or (2.8) holds. Then there exists a constant
δ ∈ (0.5, 1] with δ = 1 for a convex domain, and a constant h0 > 0 independents of h, E and
Eh, such that for all h < h0, we have

‖E −Eh‖0 . inf
vh∈V h

(‖E − vh‖0 + hδ‖∇ × (E − vh)‖0
)
, (4.22)

‖E −Eh‖H(curl;Ω) . inf
vh∈V h

‖E − vh‖H(curl;Ω), (4.23)

where the constants only depend on Ω, the shape-regularity of the meshes, the parameters α and
β.

Remark 4.1. When Ω is convex, and (2.8) holds, the following error estimate can be found
in [12]

‖E −Eh‖0 ≤ C(ε)
(‖E −Πcurl

h E‖0 + h1−ε‖∇ × (E −Πcurl
h E)‖0

)
, (4.24)

where the constant C(ε) depends on the parameter ε > 0.

Proof. Substituting (4.10) into (4.3) and (4.8), respectively, we have

‖eh‖0 . ‖E − vh‖0 + hδ‖∇ × (E − vh)‖0, (4.25)

‖∇ × eh‖0 . ‖E − vh‖H(curl;Ω), (4.26)

which concludes the proof of the desired estimate (4.22). The estimate (4.23) is a direct conse-
quence of (4.25) and (4.26). ¤

Corollary 4.1. Under the hypotheses of Theorem 4.1, then for F ∈ H0(curl; Ω)′, there exists
a constant h0 such that for all h < h0, variational problem (3.1) has a unique solution.

Corollary 4.2. Assume that Ω is a bounded Lipschitz polyhedron with connected boundary,
(2.7) or (2.8) holds, for some s with 1 ≤ s ≤ k, E ∈ (Hs+1(Ω))3 and Eh ∈ V k,2

h satisfy
(2.5) and (3.1), respectively. Then there exists a constant δ ∈ (0.5, 1], and a constant h0 > 0
independent of h, E and Eh, such that for all h < h0, we have

‖E −Eh‖0 . hs+δ‖E‖(Hs+1(Ω))3 .

Especially for the convex domain, we obtain optimal convergence

‖E −Eh‖0 . hs+1‖E‖(Hs+1(Ω))3 .
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Proof. Replacing vh by Πcurl,2
h E in (4.22) and using (3.2), the desired estimates follow. ¤

Remark 4.2. The results in Corollary 4.2 can not hold for V k,1
h , since the estimate of (3.2)

does not hold for the interpolation Πcurl,1
h .
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