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Abstract

We consider an inverse quadratic programming (IQP) problem in which the parameters

in the objective function of a given quadratic programming (QP) problem are adjusted as

little as possible so that a known feasible solution becomes the optimal one. This problem

can be formulated as a minimization problem with a positive semidefinite cone constraint

and its dual (denoted IQD(A, b)) is a semismoothly differentiable (SC1) convex program-

ming problem with fewer variables than the original one. In this paper a smoothing New-

ton method is used for getting a Karush-Kuhn-Tucker point of IQD(A, b). The proposed

method needs to solve only one linear system per iteration and achieves quadratic conver-

gence. Numerical experiments are reported to show that the smoothing Newton method

is effective for solving this class of inverse quadratic programming problems.
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1. Introduction

For solving an optimization problem, we usually assume that the parameters, associated with
decision variables in the objective function or in the constraint set, are known and we need to
find an optimal solution to the problem. However, in the practice there are many instances
in which we only know some estimates for parameter values, but we may have certain optimal
solutions from experience, observations or experiments. An inverse optimization problem is to
find values of parameters which make the known solutions optimal and which differ from the
given estimates as little as possible.

Burton and Toint (1992) [3] first investigated an inverse shortest paths problem, since then
there are many important contributions to inverse optimization and a large number of inverse
combinatorial optimization problems have been studied, see the survey paper by Heuberger [6]
and the references [1,2,4], etc. For continuous optimization, Zhang and Liu [14,15] first studied
inverse linear programming, Iyengar and Kang [7] discussed inverse conic programming models
and their applications in portfolio optimization. And recently, Zhang and Zhang [16] studied
the rate of convergence of the augmented Lagrangian method for a type of inverse quadratic
programming (IQP) problems. The quadratic programming problem, considered in [16], is of
the form

QP(G, c, A, b) min f(x) :=
1
2
xT Gx + cT x (1.1)

s.t. x ∈ ΩP := {x′ ∈ Rn |Ax′ ≥ b},
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where G ∈ Rn×n is a symmetric matrix, c ∈ Rn, A ∈ Rm×n and b ∈ Rm. Let

A := (a1, . . . , am)T , ai ∈ Rn, i = 1, . . . ,m,

Sn denote the space of n× n symmetric matrices, and SOL(P) be the set of optimal solutions
to a problem (P).

Given a feasible point x0 ∈ ΩP , which should be the optimal solution to Problem (1.1) and
a pair (G0, c0) ∈ Sn × Rn which is an estimate of (G, c). The inverse quadratic programming
considered in this paper is to find a pair (G, c) ∈ Sn × Rn to solve

IQP(A, b) min
1
2
‖(G, c)− (G0, c0)‖2 (1.2)

s.t. x0 ∈ SOL(QP(G, c,A, b)),

(G, c) ∈ Sn
+ × Rn,

where Sn
+ is the cone of positively semi-definite symmetric matrices in Sn and ‖ · ‖ is defined by

‖(G′, c′)‖ :=
√

Tr(G′T G′) + c′T c′ for (G′, c′) ∈ Rn×n × Rn.

Problem (1.2) is a cone-constrained optimization problem with a quadratic objective func-
tion. The scale of this problem will be quite large when n is a large number as the number of
its decision variables is n + n(n + 1)/2.

Without loss of generality, we assume that the first p constraints in ΩP are active at x0, or
equivalently

I(x0) := {j : aT
j x0 = bj , j = 1, . . . , m} = {1, . . . , p}.

If G ∈ Sn
+, then x0 ∈ SOL(QP(G, c, A, b)) if and only if there exists u ∈ Rp such that

c + Gx0 −
p∑

i=1

uiai = 0, ui ≥ 0, i = 1, . . . , p.

Let A0 := (a1, . . . , ap)T ∈ Rp×n and the j−th column of A0 be Aj ∈ Rp. Then A0 :=
(A1, . . . , An) and the problem (1.2) can be equivalently expressed as follows

min
1
2
‖(G, c)− (G0, c0)‖2

s.t. c + Gx0 −AT
0 u = 0,

(G, c, u) ∈ Sn
+ × Rn × Rp

+.

(1.3)

As the dimension of the above problem is n(n+1)/2+n+p, quite big when n is large, it would
be helpful to consider its dual. It follows from [16] that the dual problem can be written as

IQD(A, b) max υ0(z)
s.t. A0z ≤ 0,

(1.4)

where
υ0(z) = −1

2
‖z‖2 + c0T z − 1

2
‖ΠSn

+
(Ḡ(z))‖2F +

1
2
‖G0‖2F , (1.5)

and

Ḡ(z) = G0 − Bz, Bz :=
zx0T + x0zT

2
.
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Obviously, B : Rn → Sn is a linear operator and its adjoint B∗ : Sn → Rn is given by B∗G =
Gx0. Problem (1.4) has a dimension n, much smaller than that of problem (1.3) when n is
large. Based on [16, Lemma 3.3], if z∗ is the unique solution to IQD(A, b), then (G∗, c∗) =
(ΠSn

+
(Ḡ(z∗)), c0 − z∗) solves the original problem (1.2).

In this paper, we consider the smoothing Newton method, developed by [13], for getting a
Karush-Kuhn-Tucker point of IQD(A, b).

Throughout this paper the following notations will be used. We write X Â 0 and X º 0
if X is positive definite and positive semidefinite, respectively, we denote the symmetric square
root of X by X

1
2 and its trace by Tr(X). Let |X| := (X2)

1
2 and ΠSn

+
(X) := (X + |X|)/2 for

any X ∈ Sn. For matrices X,Y ∈ Sn, the Frobenius inner product is defined as

X • Y := Tr(XTY),

and the Frobenius norm of X ∈ Sn is

‖X‖F := (X •X)1/2.

The Hadamard product of X and Y is denoted by X ◦ Y , namely (X ◦ Y )ij := XijYij . Let I

be the identity matrix of appropriate dimension.
This paper is organized as follows. In Section 2, we give some results from nonsmooth

analysis which shall be used in our convergence analysis. In Section 3, we describe the smoothing
Newton method for IQD(A, b) and prove the global convergence and the quadratic convergence
rate. Numerical results implemented by the smoothing Newton method are given in Section 4.

2. Preliminary

In this section, we recall some results on semi-smooth mappings and properties of some
smoothing functions, which will be used in the sequel. Let X and Y be two finite dimensional
real vector spaces. Let O be an open set in X and Ψ : O ⊆ X → Y be a locally Lipschitz contin-
uous function on the open set O. By Rademacher’s theorem, Ψ is almost everywhere Fréchet-
differentiable in O. We denote by DΨ the set of the point where Ψ is Fréchet-differentiable in
O. Then, the Bouligand-subdifferential of Ψ at x ∈ O, denoted by ∂BΨ(x), is

∂BΨ(x) :=
{

lim
k→∞

JΨ(xk) |xk ∈ DΨ, xk → x

}
,

where JΨ(xk) denotes the Jacobian of Ψ at xk. Clarke’s generalized Jacobian of Ψ at x is the
convex hull of ∂BΨ(x), i.e.,

∂Ψ(x) = conv {∂BΨ(x)} .

The following concept of semismoothness was first introduced by Mifflin [8] for functionals and
was extended by Qi and Sun [10] to vector valued functions.

Definition 2.1. Let Ψ : O ⊆ X → Y be a locally Lipschitz continuous function on the open
set O. We say that Ψ is semismooth at a point x ∈ O if

(i) Ψ is directionally differentiable at x; and

(ii) for any ∆x ∈ X and V ∈ ∂Ψ(x + ∆x) with ∆x → 0,

Ψ(x + ∆x)−Ψ(x)− V (∆x) = o(‖∆x‖) . (2.1)
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Furthermore, Ψ is said to be strongly semismooth at x ∈ O if Ψ is semismooth at x and for any
∆x ∈ X and V ∈ ∂Ψ(x + ∆x) with ∆x → 0,

Ψ(x + ∆x)−Ψ(x)− V (∆x) = O(‖∆x‖2). (2.2)

The following lemma on the Bouligand-subdifferential of composite functions is proved in [12,
Lemma 2.1] .

Lemma 2.1. Let F : X → Y be a continuously differentiable function on an open neighborhood
O of x̄ ∈ X and Ψ : OY ⊆ Y → X ′ be a locally Lipschitz continuous function on an open set
OY containing ȳ := F (x̄), where X ′ is a finite-dimensional real vector space. Suppose Ψ is
directionally differentiable at every point in OY , then

∂B(Ψ ◦ F )(x̄) ⊆ ∂BΨ(ȳ)JF (x̄) . (2.3)

Moreover, if the Jacobian mapping JF (x̄) : X → Y is onto, then the above inclusion becomes
an equality, namely

∂B(Ψ ◦ F )(x̄) = ∂BΨ(ȳ)JF (x̄) . (2.4)

For ε ∈ R and X ∈ Sn, the square smoothing function Φ : R× Sn → Sn, see [13], is defined
by

Φ(ε, X) := (ε2I + X2)1/2, ∀ (ε, X) ∈ R× Sn.

Then, Φ is continuously differentiable at (ε,X) unless ε = 0 and for any Y ∈ Sn,

Φ(ε,X) → |Y |, as (ε, X) → (0, Y).

For any X ∈ Sn, let LX be the Lyapunov operator:

LX(Y ) := XY + Y X, ∀ Y ∈ Sn,

with L−1
X being its inverse (if it exists at all), i.e., for any Y ∈ Sn, L−1

X (Y ) is the unique Z ∈ Sn

satisfying XZ + ZX = Y . The following result is proved in [13, Lemma 2.3, Theorem 2.5 and
Proposition 3.1].

Lemma 2.2. For (ε,X) ∈ R × Sn, assume there exist an orthogonal matrix P and a matrix
Λ = diag(µ1, · · · , µn) of eigenvalues of X such that X = PΛPT , the following statements hold.

(1) If ε2I +X2 is nonsingular, then Φ is continuously differentiable at (ε,X), where JΦ(ε,X)
satisfies the following equations

JΦ(ε,X)(τ, H) = L−1
Φ(ε,X)(LX(H) + 2ετI), ∀ (τ, H) ∈ R× Sn,

and for i, j = 1, · · · , n,

(PTJΦ(ε, X)(τ,H)P )ij =





(PT HP )ij(µi + µj)
(ε2 + µ2

i )1/2 + (ε2 + µ2
j )1/2

, if i 6= j,

µi(PT HP )ii + ετ

(ε2 + µ2
i )1/2

, otherwise.

(2.5)

(2) Φ is strongly semismooth at (0, X).



Solving a Class of Inverse QP Problems by a Smoothing Newton Method 791

(3) For (0,H) ∈ R× Sn and V ∈ ∂BΦ(0, X), it holds that

V (0,H) = P (Ω ◦ PT HP )PT ,

where Ω ∈ Sn has entries

Ωij =





t ∈ [−1, 1], if µi = µj = 0,

µi + µj

|µi|+ |µj | , otherwise.

3. Smoothing Newton Method

This section focuses on the convergence analysis of the smoothing Newton method for getting
a Karush-Kuhn-Tucker point of IQD(A, b). It is easy to see that v0 is continuously differentiable
with

∇v0(z) = z − c0 − B∗ΠSn
+
(Ḡ(z)).

The Lagrangian of the problem IQD(A, b) is

L(z, λ) := v0(z) + λT A0z

and its gradient is
∇zL(z, λ) = z − c0 − B∗ΠSn

+
(Ḡ(z)) + AT

0 λ.

The Karush-Kuhn-Tucker optimality conditions for the problem IQD(A, b) are

∇zL(z, λ) = z − c0 − B∗ΠSn
+
(Ḡ(z)) + AT

0 λ = 0,

λi ≥ 0, λia
T
i z = 0, aT

i z ≤ 0, i = 1, · · · , p,

which can be equivalently reformulated as

∇zL(z, λ) = z − c0 − B∗(Ḡ(z) + |Ḡ(z)|)/2 + AT
0 λ = 0, (3.1a)√

λ2
i + (aT

i z)2 − λi + aT
i z = 0, i = 1, · · · , (3.1b)

Inspired by [13], we define F : R× Rn × Rp → Rn+p as follows

F (ε, z, λ) =




z − c0 − B∗Ḡ(z)/2− B∗(Ḡ(z)2 + ε2I)1/2/2 + AT
0 λ√

λ2
1 + (aT

1 z)2 + 4ε2 − λ1 + aT
1 z√

λ2
2 + (aT

2 z)2 + 4ε2 − λ2 + aT
2 z

...√
λ2

p + (aT
p z)2 + 4ε2 − λp + aT

p z




. (3.2)

Then F (ε, z, λ) is continuously differentiable at (ε, z, λ) with ε 6= 0 and strongly semismooth
everywhere. Noting that v0(z) is strongly convex, we have that any solution to

E(ε, z, λ) =
[

ε

F (ε, z, λ)

]
= 0 (3.3)
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is the optimal solution to the problem IQD(A, b). From [16, Lemma 3.3], there exists a unique
solution to the problem IQD(A, b). Hence, (3.3) has a unique solution which is the solution to
the problem IQD(A, b).

The smoothing Newton method is based on solving E(ε, z, λ) = 0 and uses the merit function
φ(Z) := ‖E(ε, z, λ)‖2 for the line search, where Z = (ε, z, λ). Let ε̄ > 0 and η ∈ (0, 1)
be such that ηε̄ < 1. Define an auxiliary point Z̄ by Z̄ := (ε̄, 0, 0) ∈ R × Rn × Rp and
θ : R × Rn × Rp → R+ by θ(Z) := η min{1, φ(Z)}. The smoothing Newton method, proposed
by [9, 13], can be described as follows:

Algorithm 3.1.

Step 1 Select constants δ ∈ (0, 1) and σ ∈ (0, 1/2). Let ε0 := ε̄, (z0, λ0) ∈ Rn × Rp be an
arbitrary point. Then let the initial point Z0 = (ε0, z0, λ0) and k := 0.

Step 2 If E(Zk) = 0, then stop; otherwise, let θk := θ(Zk).

Step 3 Compute ∆Zk := (∆εk,∆zk, ∆λk) ∈ R× Rn × Rp by

E(Zk) + JE(Zk)(∆Zk) = θkZ̄. (3.4)

Step 4 Let lk be the smallest nonnegative integer l satisfying

φ(Zk + δl∆Zk) ≤ (1− 2σ(1− ηε̄)δl)φ(Zk). (3.5)

Define Zk+1 = Zk + δlk∆Zk,

Step 5 k := k + 1, go to Step 2.

Below we give the global convergence results on the above algorithm. The following propositions
will be used in the proof of the forthcoming theorem.

Proposition 3.1. For any (ε, z, λ) ∈ R× Rn × Rp with ε 6= 0, JE(ε, z, λ) is nonsingular.

Proof. By Lemma 2.2, we know that JE(ε, z, λ) exists. Suppose there exists (ε̄, z̄, λ̄) ∈
R× Rn × Rp such that

JE(ε, z, λ)(ε̄, z̄, λ̄) = 0,

i.e., 


ε̄

z̄ +
1
2
B∗Bz̄ − 1

2
B∗JΦ(ε, Ḡ(z))(ε̄,−Bz̄) + AT

0 λ̄

λ1λ̄1 + (aT
1 z)(aT

1 z̄) + 4εε̄√
λ2

1 + (aT
1 z)2 + 4ε2

− λ̄1 + aT
1 z̄

...
λpλ̄p + (aT

p z)(aT
p z̄) + 4εε̄√

λ2
p + (aT

p z)2 + 4ε2
− λ̄p + aT

p z̄




= 0, (3.6)
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which implies that ε̄ = 0 and

λiλ̄i + (aT
i z)(aT

i z̄)√
λ2

i + (aT
i z)2 + 4ε2

− λ̄i + aT
i z̄ = 0, i = 1, · · · , p,

i.e.,
(

aT
i z√

λ2
i + (aT

i z)2 + 4ε2
+ 1

)
aT

i z̄ =

(
1− λi√

λ2
i + (aT

i z)2 + 4ε2

)
λ̄i, i = 1, · · · , p.

By denoting

ri :=
aT

i z√
λ2

i + (aT
i z)2 + 4ε2

+ 1, qi := 1− λi√
λ2

i + (aT
i z)2 + 4ε2

, i = 1, · · · , p,

we have
ria

T
i z̄ = qiλ̄i, i = 1, · · · , p.

Since ε 6= 0 implies ri > 0, qi > 0, i = 1, · · · , p, we have

λ̄i =
ri

qi
aT

i z̄, i = 1, · · · , p.

Denote C := diag (r1/q1, r2/q2, · · · , rp/qp). Then C ∈ Sp
+ and λ̄ = CA0z̄. From (3.6), we know

that
z̄ +

1
2
B∗Bz̄ − 1

2
B∗JΦ(ε, Ḡ(z))(0,−Bz̄) + AT

0 λ̄ = 0,

i.e.,
1
2
B∗JΦ(ε, Ḡ(z))(0,−Bz̄)− 1

2
B∗Bz̄ = (I + AT

0 CA0)z̄,

which implies

1
2
z̄TB∗JΦ(ε, Ḡ(z))(0,−Bz̄)− 1

2
z̄TB∗Bz̄ = z̄T (I + AT

0 CA0)z̄. (3.7)

Suppose z̄ 6= 0, then together with the fact that (I + AT
0 CA0) Â 0, we have

z̄T (I + AT
0 CA0)z̄ > 0.

Since Ḡ(z) ∈ Sn, there exist an orthogonal matrix P and a diagonal matrix

Λ = diag(µ1, · · · , µn)

of eigenvalues of Ḡ(z) such that Ḡ(z) = PΛPT . Hence

PTJΦ(ε, Ḡ(z))(0,−Bz̄)P = L−1
Φ(ε,Λ)(LΛ(−PTBz̄P )).

By a direct calculation, for i, j = 1, · · · , n,

(PTJΦ(ε, Ḡ(z))(0,−Bz̄)P )ij =
(−PTBz̄P )ij(µi + µj)

(ε2 + µ2
i )1/2 + (ε2 + µ2

j )1/2
.

Let α := max{(µi + µj)((ε2 + µ2
i )

1/2 + (ε2 + µ2
j )

1/2)−1, i, j = 1 · · · , n}. Obviously α ≤ 1.
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From (3.7), we have

0 <
1
2
z̄TB∗JΦ(ε, Ḡ(z))(0,−Bz̄)− 1

2
z̄TB∗Bz̄

=
1
2
(Bz̄) • JΦ(ε, Ḡ(z))(0,−Bz̄)− 1

2
(Bz̄) • (Bz̄)

=
1
2
Tr(Bz̄JΦ(ε, Ḡ(z))(0,−Bz̄))− 1

2
Tr(Bz̄Bz̄)

=
1
2
Tr(PPTBz̄PPTJΦ(ε, Ḡ(z))(0,−Bz̄)PPT )− 1

2
Tr(Bz̄Bz̄)

≤ 1
2
(α− 1)Tr(Bz̄Bz̄) ≤ 0.

This shows z̄ = 0, then λ̄ = CA0z̄ = 0. Thus JE(ε, z, λ) is nonsingular. ¤

Proposition 3.1 shows that Algorithm 3.1 is well defined. We state it formally in the following
theorem.

Theorem 3.1. The sequence {Zk} generated by Algorithm 3.1 converges to the solution of
E(Z) = 0.

Proof. From (3.5), we know that

∞ >

∞∑

k=0

(φ(Zk)− φ(Zk+1)) ≥
∞∑

k=0

2σ(1− ηε̄)δl)φ(Zk)

and φ(Zk) is strict monotone decreasing, then we have {φ(Zk)} converges to 0, which, together
with the fact that E(Z) = 0 has a unique solution, implies {Zk} converges to the solution of
E(Z) = 0. The proof is complete. ¤

The next proposition is about the nonsingularity of the B-differential of E at (0, z, λ) ∈
R× Rn × Rp.

Proposition 3.2. Suppose A0 is of full row rank. Then any element U ∈ ∂BE(0, z, λ) is
nonsingular.

Proof. Let U be an element of ∂BE(0, z, λ). Assume that there exists (ε̄, z̄, λ̄) ∈ R×Rn×Rp

such that U(ε̄, z̄, λ̄) = 0. We have ε̄ = 0 and



z̄ + 1
2B∗Bz̄ − 1

2B∗V (0,−Bz̄) + AT
0 λ̄

W1(z̄, λ̄)− λ̄1 + aT
1 z̄

...
Wp(z̄, λ̄)− λ̄p + aT

p z̄




= 0, (3.8)

where V ∈ ∂BΦ(0, Ḡ(z)) and Wi ∈ ∂
√

(aT
i z)2 + (λi)2, i = 1, · · · , p.

Since Ḡ(z) ∈ Sn, there exist an orthogonal matrix P and a diagonal matrix

Λ = diag(µ1, · · · , µn)

of eigenvalues of Ḡ(z) such that Ḡ(z) = PΛPT . From Lemma 2.2, for i, j = 1, · · · , n,

(PT V (0,−Bz̄)P )ij = Ωij ∗ (PT (−Bz̄)P )ij ,
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where the matrix Ω ∈ Sn has entries

Ωij =





t ∈ [−1, 1], if µi = µj = 0,

µi + µj

|µi|+ |µj | , otherwise.

Obviously Ωij ≤ 1, for i, j = 1, · · · , n.
Noting the fact that the Euclidean norm f(x) =

√
xT x is subdifferentiable at every x ∈ Rn

and the set ∂f(0) is the Euclidean unit ball, we have that for i = 1, · · · , p

Wi(z̄, λ̄)− λ̄i + aT
i z̄ =





wi1a
T
i z̄ + wi2λ̄i − λ̄i + aT

i z̄ if λi = aT
i z = 0,

λiλ̄i + (aT
i z)(aT

i z̄)√
(λi)2 + (aT

i z)2
− λ̄i + aT

i z̄ otherwise,
(3.9)

where (wi1, wi2) ∈ {(ζ1, ζ2) ∈ R2| ζ2
1 + ζ2

2 ≤ 1}. Hence, from (3.8), for i = 1, · · · , p

λ̄i =
{

0 if λi = aT
i z = 0 and (wi1, wi2) = (−1, 0),

tia
T
i z̄ otherwise,

(3.10)

where ti ≥ 0. Then we obtain

z̄T AT
0 λ̄ =

p∑

i=1

(aT
i z̄)λ̄i ≥ 0.

From the first equation of (3.8), we have

z̄ +
1
2
B∗Bz̄ − 1

2
B∗V (0,−Bz̄) + AT

0 λ̄ = 0,

z̄T z̄ +
1
2
z̄TB∗Bz̄ − 1

2
z̄TB∗V (0,−Bz̄) + z̄T AT

0 λ̄ = 0.

By applying the proof of Proposition 3.1, we have z̄ = 0. Thus, AT
0 λ̄ = 0. As A0 is of full row

rank , we have λ̄ = 0. Hence, U is nonsingular. ¤

We now state the quadratic convergence of Algorithm 3.1 in the following theorem. Based
on Proposition 3.1 and Proposition 3.2, its proof is a direct application of [13, theorem 4.2].

Theorem 3.2. Suppose A0 is of full row rank. Then the whole sequence {Zk} generated by
Algorithm 3.1 converges to the solution Z∗ of E(Z) = 0 with

‖Zk+1 − Z∗‖ = O(‖Zk − Z∗‖2)

and
εk+1 = O((εk)2).

Proof. From Proposition 3.1 and Proposition 3.2, as A0 is of full row rank, then for all Zk

sufficiently close to Z∗, U ∈ ∂BE(Zk) is nonsingular. Then compute ∆Zk by (3.4), we have
∆Zk = U−1[−E(Zk) + θkZ̄]. Hence, as E is strongly semismooth at Z∗, from the definition of
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strongly semismooth, for all Zk sufficiently close to Z∗, we have

‖Zk + ∆Zk − Z∗‖ = ‖Zk + U−1[−E(Zk) + θkZ̄]− Z∗‖
= O(‖E(Zk)− E(Z∗)− U(Zk − Z∗)‖+ θk‖ε̄‖)
= O(‖Zk − Z∗‖2) +O(φ(Zk))

= O(‖Zk − Z∗‖2) +O((E(Zk)− E(Z∗))2)

= O(‖Zk − Z∗‖2).

Noting that for all Zk sufficiently close to Z∗,

φ(Zk + ∆Zk) = O(‖Zk + ∆Zk − Z∗‖2)
= O(‖Zk − Z∗‖4) = O(φ(Zk)2),

we have Zk+1 = Zk + ∆Zk. Then we can easily get

‖Zk+1 − Z∗‖ = O(‖Zk − Z∗‖2).

Next, from the definition of θk and the fact that Zk → Z∗ as k →∞, for all k sufficiently large,
we have

θk = ηφ(Zk).

Also, for all k sufficiently large, because Zk+1 = Zk + ∆Zk, we have

εk+1 = εk + ∆εk = θkε̄ = ηε̄φ(Zk).

Hence, for all k sufficiently large,

lim
k→∞

εk+1

(εk)2
= lim

k→∞
φ(Zk)

ηε̄φ(Zk−1)2
= O(1).

This proves εk+1 = O((εk)2). The proof is complete. ¤

4. Numerical Experiments

In this section, we report our numerical experiments of Algorithm 3.1 carried out in Matlab
7.1 running on a PC Intel Pentium IV of 2.80 GHz CPU. After a few preliminary tests, the
following choices were made and used in all the test examples.

• In Step 3 of Algorithm 3.1, as JE(Zk) is nonsymmetric and its explicit form is com-
plicate, we use CGS method (conjugate gradient square method) [11] to solve (3.4).

• In Step 2 of Algorithm 3.1, instead of E(Zk) = 0, the stopping criterion in the exper-
iments we adopted is Tol. := φ(Zk) < 10−5.

• We set other parameters in the algorithm as η = 0.5, σ = 0.3, δ = 0.5.

We test the following class of examples:
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Example 4.1. Consider the following simple quadratic program,

min f(x) :=
1
2
xT Gx + cT x

s.t. Ax ≥ b, x ≥ 0,
(4.1a)

where

G =
[

2 −2
−2 4

]
, c =

[ −2
−6

]
, A =

[ −0.5 −0.5
1 −2

]
, b =

[ −1
−2

]
. (4.1b)

The optimal solution of (4.1a) is x∗ = (0.8, 1.2). Let x0 = (0, 0) and (G0, c0) be an estimate
of (G,c), we consider the following inverse quadratic programming problem,

min
1
2
‖(G, c)− (G0, c0)‖2

s.t. x0 ∈ SOL(4.1a),
(G, c) ∈ S2

+ × R2.

(4.2)

As described in the Section Introduction, A0 (the 2×2 identity matrix) can be simply derived
and problem (4.2) can be equivalently expressed as

min
1
2
‖(G, c)− (G0, c0)‖2

s.t. c + Gx0 −AT
0 u = 0,

(G, c, u) ∈ S2
+ × R2 × R2

+.

(4.3)

Since x0 is an zero vector and A0 is an identity matrix, we can easily know that the solution
(G∗, c∗) to problem (4.2) is always (ΠS2+(G0), ΠR2

+
(c0)) and u∗ = c∗. Table 1 presents the

results of our experiments on Example 4.1, in which z∗ denotes the optimal solution to the dual
problem of (4.2), (G∗, c∗) denotes the optimal solution to problem (4.2).

From Table 1, it can be verified that every pair of (G∗, c∗) actually equals to

(ΠS2+(G0),ΠR2
+
(c0)),

which means that the smoothing Newton method indeed gives the correct solutions. Noticing
that u∗ is made up of the Lagrangian multipliers with respect to the active constraints and
u∗ = c∗, from Table 1 we can see that the strict complementary condition is not required in
this method.

Table 1: Numerical results of Example 4.1

G0 c0 z∗ G∗ c∗[
2.5 −2.8

−2.8 4.5

] [
−2.5

−6.5

] [
−2.50

−6.50

] [
2.50 −2.80

−2.80 4.50

] [
0

0

]

[
1 −2

−2 2

] [
0.5

−5.5

] [
0

−5.50

] [
1.35 −1.73

−1.73 2.21

] [
0.50

0

]

[
0 −1

−1 2

] [
0.5

0.5

] [
0

0

] [
0.35 −0.85

−0.85 2.06

] [
0.50

0.50

]
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Example 4.2. We still consider problem (4.1a), let

x0 =
[

2
3
4
3

]
, G0 =

[
3 −1

−1 5

]
, c0 =

[ −1
−5

]
.

Then the inverse problem of (4.1a) is formed as

min
1
2
‖(G, c)− (G0, c0)‖2

s.t. c + Gx0 −AT
0 u = 0,

(G, c, u) ∈ S2
+ × R2 × R2

+,

(4.4)

where A0 is of the form A given in (4.1b).

Example 4.3. The following problem named HS76 comes from CUTEr set of problems [5]:

min f(x) :=
1
2
xT Gx + cT x

s.t. Ax ≥ b,
(4.5)

where

G =




2 0 −1 0
0 1 0 0

−1 0 2 1
0 0 1 1


 , c =




−1
−3

1
−1


 , A =



−1 −2 −1 −1
−3 −1 −2 1

0 1 4 0


 , b =



−5
−4
1.5


 .

Let

x0 =




0
1.5

0
2


 , G0 =




3 0 −1 0
0 2 0 0

−1 0 3 1
0 0 1 2


 , c0 =




0
−2

2
0


 .

Then we consider the inverse problem of (4.3) as follows

min
1
2
‖(G, c)− (G0, c0)‖2

s.t. c + Gx0 −AT
0 u = 0,

(G, c, u) ∈ S4
+ × R4 × R2

+,

(4.6)

where A0 =
[ −1 −2 −1 −1

0 1 4 0

]
.

Example 4.4. The following problem named S268 comes from CUTEr set of problems [5]:

min f(x) :=
1
2
xT Gx + cT x

s.t. Ax ≥ b,
(4.7)

where

G =




20394 −24908 −2026 3896 658
−24908 41818 −3466 −9828 −372
−2026 −3466 3510 2178 −348

3896 −9828 2178 3030 −44
658 −372 −348 −44 54




, c =




18340
−34198

4542
8672

86




,
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A =




−1 −1 −1 −1 −1
10 10 −3 5 4
−8 1 −2 −5 3

8 −1 2 5 −3
−4 −2 3 −5 1




, b =




−5
20

−40
11

−30




.

Let x0 = (1, 1, 1, 1, 1)T and

G0 =




20000 −20000 −2000 3000 600
−20000 4000 −3000 −10000 −300
−2000 −3000 3000 2000 −300

3000 −10000 2000 3000 −40
600 −300 −300 −40 50




, c0 =




10000
−30000

4000
8000

80




.

Then we consider the inverse problem of (4.3) as follows

min
1
2
‖(G, c)− (G0, c0)‖2

s.t. c + Gx0 −AT
0 u = 0,

(G, c, u) ∈ S5
+ × R5 × R2

+,

(4.8)

where A0 =
[ −1 −1 −1 −1 −1

8 −1 2 5 −3

]
.

Table 2: Numerical results of Examples 4.2, 4.3 and 4.4

Example 4.2 Example 4.3 Example 4.4

k φ(Zk) k φ(Zk) k φ(Zk)

0 5.85× 101 0 3.75× 102 0 7.26× 108

1 6.22 ×10−1 1 1.73 ×101 2 9.93× 106

2 6.35 ×10−2 2 3.93 ×10−1 4 1.40× 101

3 1.81 ×10−2 3 1.71 ×10−2 6 6.25× 10−2

4 3.70 ×10−4 4 2.05 ×10−3 7 2.44× 10−4

5 3.69 ×10−6 5 2.89 ×10−6 8 3.73× 10−9

Table 2 demonstrates the asymptotic convergence rate of Algorithm 3.1 on Examples 4.2,
4.3 and 4.4, where k denotes the kth iteration (k = 0 stands for the initial iteration) and φ(Zk)
denotes the value of the merit function φ(Zk). As shown in Table 2, the convergence is stable
and the quadratic rate is observable.

Example 4.5. Let G0 and c0 be a random n×n symmetric matrix and a random n×1 vector,
respectively. A0 is a random p × n matrix. For convenience, we set the elements of x0 all 1.
We report our numerical results for n = 100, 200, 500, 1000 and p = n/10.

When solving Example 4.5, the initial point (z0, λ0) is chosen to be the vector whose entries
are all ones. Our numerical results are reported in Table 3, where Iter., Func., Res0. and Res∗.
stand for, respectively, the number of iterations, the number of function evaluations and the
residuals Φ(·) at the starting point and the final iterate of implementation.
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Table 3: Numerical results of Example 4.5

n p cputime Iter. Func. Res0. Res∗.
20 2 0.4s 6 7 2.01×104 3.48 ×10−7

50 5 3.1s 8 9 2.92×105 1.29 ×10−7

100 10 24.7s 10 11 2.29×106 1.06 ×10−7

200 20 2m48.5s 12 13 1.82×107 3.83×10−9

500 50 55m41.4s 16 17 2.82×108 9.80×10−8

1000 100 5h26m25.0s 13 16 2.26×109 3.97×10−6

Based on Table 3, the largest numerical example we tested in this paper is n = 1000, p = 100.
In this case there are roughly 500,000 unknowns in the primal problem. In consideration of the
scale of problem solved,the smoothing Newton method is very effective. Since the vast majority
of our computer cputime is spent on the preconditioner conjugate gradient square method for
solving the linear system (3.4), it would save much computing time if a better preconditioner
for (3.4) is found.
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