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Abstract

This paper performs perturbation analysis for the exponential of an essentially nonnega-

tive matrix which is perturbed in the way that each entry has a small relative perturbation.

For a general essentially nonnegative matrix, we obtain an upper bound for the relative

error in 2-norm, which is sharper than the existing perturbation results. For a triangular

essentially nonnegative matrix, we obtain an upper bound for the relative error in entry-

wise sense. This bound indicates that, if the spectral radius of an essentially nonnegative

matrix is not large, then small entrywise relative perturbations cause small relative error

in each entry of its exponential. Finally, we apply our perturbation results to the sen-

sitivity analysis of RC networks and complementary distribution functions of phase-type

distributions.
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1. Introduction

The matrix exponential is an important matrix function and receives extensive attention in

the literatures. Matrix exponential eAt, which is defined as

eAt =

∞∑

k=0

(At)k/k!,

is the unique solution to the initial value problem

d

dt
X(t) = AX(t), X(0) = I.

Many methods have been developed to compute matrix exponentials, see [7, 9, 15, 16, 20, 22,

23, 26] and references therein. Also, much perturbation analysis has been performed, see [10,

12, 13, 24] and references therein, to assess the algorithms and estimate error bounds. However,

the existing error bounds are obtained for general matrices under general perturbations, with

no regard to the structures of the matrices and their perturbations. In this paper, we consider

the entrywise perturbation theory for essentially nonnegative matrices.

A matrix A = (aij)
n
i,j=1 is said to be an essentially nonnegative matrix if its off-diagonal

entries are non-negative, i.e., aij ≥ 0 for i 6= j, see [25]. The exponentials of essentially

nonnegative matrices frequently arise in many research areas, such as Markov chains, queuing

systems and RC networks. In this paper, for a general essentially nonnegative matrix A, we
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consider how the exponential eAt for t ≥ 0 is perturbed when each entry of A gets a small

relative perturbation. More specifically, let E = (eij)
n
i,j=1 be a small perturbation to A in

entrywise sense, i.e., for all i and j, and some ǫ > 0,

|eij | ≤ ǫ|aij |, (1.1)

we present an upper bound for φ(t), which is defined as

φ(t) =
‖e(A+E)t − eAt‖

‖eAt‖
. (1.2)

Here, ‖ · ‖ denotes 2-norm. Compared to the upper bounds obtained by applying the per-

turbation results of Van Loan [24] directly to the problem under consideration, our bound is

tighter.

In some applications, the entries of A and its exponential eAt have some physical meaning.

It is of great interest to study how the individual entries of eAt are perturbed when each entry

of A gets a small relative perturbation. The exponentials of triangular essentially nonnegative

matrices play an important role in representation of phase-type distributions. In this paper,

for a triangular essentially nonnegative matrix A, we present an upper bound for ψ(t), which

is defined as

ψ(t) = max
(eAt)ij 6=0

|(e(A+E)t)ij − (eAt)ij |

|(eAt)ij |
. (1.3)

The error bound indicates that if ρ(A)t, where ρ(A) is the spectral radius of A, is not large,

then small entrywise relative perturbation in A only causes small relative error in each entry

of eAt.

Finally we apply our perturbation results to the sensitivity analysis of RC networks and

complementary distribution functions of phase-type distributions with triangular representa-

tion.

Throughout this paper, ‖ · ‖ denotes 2-norm. For a matrix X = (xij), we denote by |X |

the matrix of entries |xij | and by X ≥ Y, where Y = (yij) is of identical dimension as X, if

xij ≥ yij for all i and j. Especially, X ≥ 0 means that every entry of X is nonnegative. These

symbols are also applicable to row and column vectors. In accordance with this convention,

Eq. (1.1) can be written as

|E| ≤ ǫ|A|. (1.4)

2. Perturbation Bound in 2-norm

In this section, we will obtain an upper bound for φ(t) in (1.2). To this end, we need the

following identity which appeared in [1]:

e(A+E)t = eAt +

∫ t

0

eA(t−s)Ee(A+E)sds. (2.1)

We first obtain the upper bound for the case that A is nonnegative.

Lemma 2.1. Let A be an n×n nonnegative matrix and E a perturbation matrix to A satisfying

|E| ≤ ǫA. Then

φ(t) ≤ ǫ‖A‖teǫ‖A‖t.
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Proof. Using (2.1) and |E| ≤ ǫA, we have

|e(A+E)t − eAt|

=

∣∣∣∣
∫ t

0

eA(t−s)Ee(A+E)sds

∣∣∣∣ ≤
∫ t

0

eA(t−s)|E|e(A+E)sds

≤

∫ t

0

eA(t−s)ǫAe(A+ǫA)sds = eAt(eǫAt − I).

Note that ‖X‖ ≥ ‖Y ‖ for X ≥ Y ≥ 0. Then

φ(t) ≤ ‖eǫAt − I‖ =

∥∥∥∥∥

∞∑

k=1

(ǫAt)k

k!

∥∥∥∥∥

≤

∞∑

k=1

(ǫt‖A‖)k

k!
= ǫ‖A‖t

∞∑

k=0

(ǫ‖A‖t)k

(k + 1)!

≤ ǫ‖A‖teǫ‖A‖t. �

With Lemma 2.1, we now get the error bound for essentially nonnegative matrices.

Theorem 2.1. Let A be an n× n essentially nonnegative matrix and E a perturbation matrix

to A satisfying |E| ≤ ǫ|A|. Then

φ(t) ≤ 3ǫ‖A‖te3ǫ‖A‖t. (2.2)

Proof. Let B = 2αI +A with α = ‖A‖. Clearly, B is a nonnegative matrix with

bii = 2α+ aii ≥ |aii| ≥ 0,

bij = aij ≥ 0, ∀ 0 ≤ i 6= j ≤ n.

It follows from |E| ≤ ǫ|A| that |E| ≤ ǫB. Applying Lemma 2.1, we have

φ(t) =
‖e(A+E)t − eAt‖

‖eAt‖
=

‖e(B+E)t − eBt‖

‖eBt‖
≤ ǫ‖B‖teǫ‖B‖t.

The theorem follows since ‖B‖ ≤ 3‖A‖. �

Remark 2.1. Write A = D + N, where D is a diagonal matrix consisting of diagonal entries

of A and N is obtained from A by setting the diagonal entries zero. If A is an essentially

nonnegative matrix and E satisfies |E| ≤ ǫ|A|, then

‖E‖ ≤ ǫ(‖D‖ + ‖N‖) ≤ ǫ(‖D‖ + ‖D +N‖ + ‖D‖) ≤ 3ǫ‖A‖.

Denote

λ(A) = {λ | det(A− λI) = 0},

α(A) = max{Re(λ) | λ ∈ λ(A)},

µ(A) = max {µ | µ ∈ λ((A∗ +A)/2)} ,

ρ(A) = max{|λ| | λ ∈ λ(A)}.

In [24], Van Loan obtained some bounds for φ(t) for general matrices under small perturbations

in normwise sense. If we don’t take into consideration the fact that A is essentially nonnegative

and E is a small perturbation to A in entrywise sense, from Van Loan’s perturbation results

we obtain the following error bounds:
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1. If A and E commute, then

φ(t) ≤ 3ǫ‖A‖te3ǫ‖A‖t. (2.3)

2. Power series bound

φ(t) ≤ 3ǫ‖A‖te3ǫ‖A‖te(‖A‖−α(A))t. (2.4)

3. Log norms bound

φ(t) ≤ 3ǫ‖A‖te3ǫ‖A‖te(µ(A)−α(A))t. (2.5)

4. Schur decomposition bound. Let Q∗AQ = D̂+ N̂ be the Schur decomposition form of A,

where Q ∈ Cn×n is a unitary matrix, D̂ = diag(λi), and N̂ is a strictly upper-triangular

matrix. Then

φ(t) ≤ 3ǫ‖A‖te3ǫMS(t)‖A‖tMS(t)2, where MS(t) =

n−1∑

k=0

‖N̂t‖k

k!
. (2.6)

Error bound (2.2) is the same as (2.3), but we obtain it without the assumption that A and E

commute. It holds that

‖A‖ ≥ α(A), µ(A) ≥ α(A), MS(t) ≥ 1,

and generally these inequalities strictly hold. Thus error bound (2.2) is tighter than (2.4)-(2.6).

The advantage of bound (2.2) is more pronouncing as t grows.

3. Entrywise Relative Error Bounds for Triangular Essentially

Nonnegative Matrices

In some applications the entries of an essentially nonnegative matrix A and its exponen-

tial have some physical meaning. For example, suppose A is a generator matrix of a finite

continuous-time Markov chain. Then A is an essentially nonnegative matrix with zero row

sums. The off-diagonal entries of A describe the transition rates among states and the entry

(eAt)ij is the transition probability from state i to state j during the time period [0, t]. In

such cases, it is of interest to estimate how the individual entries of eAt are perturbed when

each entry of A gets a small relative perturbation. More precisely, under the assumption that

|E| ≤ ǫ|A| we are interested in obtaining an upper bound for ψ(t) in (1.3). We note that

(eAt)ij = 0 if and only if (e(A+E)t)ij = 0.

From the relation,

|(e(A+E)t)ij − (eAt)ij |

|(eAt)ij |
≤

‖e(A+E)t − eAt‖

‖eAt‖

‖eAt‖

|(eAt)ij |
, where (eAt)ij 6= 0,

we can get an immediate upper bound for ψ(t) in terms of φ(t),

ψ(t) ≤ φ(t) min
(eAt)ij 6=0

‖eAt‖

|(eAt)ij |
. (3.1)

This bound implies that, even if φ(t) is not large, ψ(t) could be large if there exists some

nonzero entry of eAt that is tiny compared to ‖eAt‖. The exponentials of triangular essentially

nonnegative matrices play an important role in representation of phase-type distributions. For

the case that A is triangular, we present in this section an upper bound for ψ(t), which is far

better than what (3.1) implies. In the rest of this section, we only deal with upper-triangular

essentially nonnegative matrices. The result also holds for lower-triangular matrices.
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Theorem 3.1. Let A be an upper triangular essentially nonnegative matrix. Write A = D+N,

where D is an n×n diagonal matrix and N a nonnegative strictly upper-triangular matrix. Let

E be a perturbation matrix to A satisfying |E| ≤ ǫ|A|. Then, (e(A+E)t)ij = 0 if and only if

(eAt)ij = 0 and

ψ(t) ≤ max
{
(1 + ǫ)n−1eǫρ(A)t − 1, 1 − (1 − ǫ)n−1e−ǫρ(A)t

}
. (3.2)

Proof. Write A + E = D̃ + Ñ , where D̃ is a diagonal matrix and Ñ a nonnegative strictly

upper-triangular matrix. Obviously,

|D̃ −D| ≤ ǫ|D|, (1 − ǫ)N ≤ Ñ ≤ (1 + ǫ)N.

It is shown in [24] that

eAt = eDt +

n−1∑

k=1

∫ t

0

∫ t1

0

· · ·

∫ tk−1

0

eD(t−t1)NeD(t1−t2)N · · ·NeDtkdtk · · · dt1,

e(A+E)t = eD̃t +

n−1∑

k=1

∫ t

0

∫ t1

0

· · ·

∫ tk−1

0

eD̃(t−t1)ÑeD̃(t1−t2)Ñ · · · ÑeD̃tkdtk · · ·dt1.

Note e−ǫρ(A)seDs ≤ eD̃s ≤ eǫρ(A)eDs for s ≥ 0. Then

e(A+E)t ≤ eǫρ(A)teDt +

n−1∑

k=1

(1 + ǫ)keǫρ(A)t

∫ t

0

· · ·

∫ tk−1

0

eD(t−t1)N · · ·NeDtkdtk · · ·dt1

≤ (1 + ǫ)n−1eǫρ(A)teAt,

and, similarly,

e(A+E)t ≥ (1 − ǫ)n−1e−ǫρ(A)teAt. �

Theorem 3.1 gives an upper bound for the entrywise relative error between eAt and e(A+E)t.

With error bound (3.2), we can straightforwardly get a new bound for φ(t) for the case that A

is triangular.

Corollary 3.1. Let A and E be as in Theorem 3.1. Then,

φ(t) ≤ max
{
(1 + ǫ)n−1eǫρ(A)t − 1, 1 − (1 − ǫ)n−1e−ǫρ(A)t

}
. (3.3)

Proof. The result follows from

|e(A+E)t − eAt| ≤ max
{

(1 + ǫ)n−1eǫρ(A)t − 1, 1 − (1 − ǫ)n−1e−ǫρ(A)t
}
eAt

and the fact that eAt is nonnegative. �

Remark 3.1. 1. If ǫ is sufficiently small, writing out the first order terms in the bounds (3.2)

and (3.3), we have

ψ(t) ≤ (n− 1 + ρ(A)t)ǫ + O(ǫ2)

and

φ(t) ≤ (n− 1 + ρ(A)t)ǫ+ O(ǫ2).
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These bounds indicate that the sensitivity of eAt to small entrywise relative perturbation de-

pends on ρ(A)t, the spectral radius of At. If ρ(A)t is not large, no matter how tiny it is, any

entry of eAt gets a small relative error if A is perturbed in the way that each entry of it gets a

small relative perturbation.

2. It holds that ‖A‖ ≥ ρ(A) and generally this inequality strictly holds. Thus bound (3.3) is

tighter than (2.2) when t is sufficiently large. The advantage of bound (3.3) over (2.2) becomes

clear in the case that ‖A‖ ≫ ρ(A). The following example demonstrates the tightness of bounds

(3.2) and (3.3).

Example 3.1. Let

A =




−1.2132 0 0 0 0

0 −1.3194 0 105 0

0 0 0.9312 0 0

0 0 0 0.0112 0

0 0 0 0 −0.6451



,

E = 10−3 ×




0.0115 0 0 0 0

0 0.0060 0 −935.5000 0

0 0 −0.0086 0 0

0 0 0 −0.0000 0

0 0 0 0 0.0009



.

Note that |E| ≤ ǫ|A| with ǫ ≈ 10−5. Using MATLAB’s expm, we get

‖eA+E − eA‖

‖eA‖
= 7.0015× 10−6,

max
i,j

|(eA+E)ij − (eA)ij |

(eA)ij

= 1.1500 × 10−5.

Bounds (3.3) and (3.2) give upper bounds

‖eA+E − eA‖

‖eA‖
≤ 5.3195× 10−5,

max
i,j

|(eA+E)ij − (eA)ij |

(eA)ij

≤ 5.3195 × 10−5.

However, the upper bounds from (2.2) and (3.1) are

‖eA+E − eA‖

‖eA‖
≤ 60.2566,

max
i,j

|(eA+E)ij − (eA)ij |

(eA)ij

≤ 1.2604× 107,

which are not satisfactory.

4. Applications

In this section, we apply our entrywise perturbation results to sensitivity analysis of RC net-

works and the complementary distribution functions of phase-type distributions with triangular

representation.
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4.1. RC networks

Consider a digital network with n nodes, in which the ith node is capacitively grounded by

ci > 0 and resistively grounded by a conductance gi ≥ 0, and also connected by a conductance

gij ≥ 0 with the node j. If we denote by v(t) = [v1(t), v2(t), · · · , vn(t)]T the vector of node

voltages and by v∞ ∈ Rn the stationary voltage vector, the transient evolution of this circuit

is described by the equation [21]

C
dx

dt
= Gx,

where x(t) = v(t)− v∞, C = diag(c1, c2, · · · , cn) and G = (gij) with its diagonal entries defined

by the given physical parameters as follows

gii = −

(
gi +

∑

j 6=i

gij

)
.

Apparently, the matrix A = C−1G is an essentially nonnegative matrix and x(t) = eAtx0,

where x0 is the value of x(t) when t = 0.

Next, we perturb ci, gi, gij and x0 by small entrywise relative errors not exceeding ǫ

and correspondingly denote by c̃i, g̃i0 , g̃ij , x̃0 these perturbed parameters. Write C̃ =

diag(c̃1, c̃2, · · · , c̃n), G̃ = (g̃ij) and Ã = C̃−1G̃. Easily we can get

|Ã−A| ≤ ǫ̃|A|, where ǫ̃ =
2ǫ

1 − ǫ
.

Let x̃(t) denote the solution of the perturbed circuit. Since

‖x̃(t) − x(t)‖ ≤ ‖eÃt − eAt‖‖x̃0‖ + ‖eAt‖‖x̃0 − x0‖,

by Theorem 2.2 we have

‖x̃(t) − x(t)‖

‖x(t)‖
≤ [(1 + 3‖A‖t)ǫ̃+ O(ǫ̃2)]

‖eAt‖‖x0‖

‖eAtx0‖
,

which implies that if ‖eAt‖‖x0‖/‖e
Atx0‖ is not large, the solution x(t) is not sensitive to small

relative perturbations in the physical parameters of the circuit.

4.2. Phase-type distributions with triangular representation

We consider a Markov chain on the state-space {1, · · · , n, n + 1} for which {1, 2, · · · , n} is

a transient set of states, so that the generator matrix of the chain takes the form

Q =

[
T −T1

0 0

]
, (4.1)

where T is an n × n invertible matrix which has nonnegative off-diagonal entries and non-

positive row-totals, and 1 denotes the column vector of ones of the appropriate dimensions.

Let (α1, α2, · · · , αn+1) denote the initial distribution of the chain, and write α for the vec-

tor (α1, α2, · · · , αn). Then the distribution of time to absorption of the chain is said to be a

phase-type distribution with representation (α, T ), which is denoted by PH(α, T ). Matrix T is

essentially nonnegative and is called the PH-generator of PH(α, T ). Clearly, the distribution

of PH(α, T ) is given as 1 − αeTx1 for x ≥ 0. Phase-type distributions can approximate any
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probability distribution on [0,∞) and has been widely used in stochastic modeling. We refer

to [11, 17] for a detailed description and applications of phase-type distribution.

A phase-type distribution has many distinct representations. A lot of studies have been

carried out to find specially structured representations for phase-type distributions in order to

simplify computation and application [2–6, 8, 14, 19]. Among the structures triangular struc-

ture, where the PH-generator is triangular, is a very important orientation. The set of phase-

type distributions with triangular representation, which includes generalized Erlang distribution

and Coxian distribution as its special cases, is also dense in the set of probability distribu-

tion on [0,∞). We now perform sensitivity analysis for complementary distribution function of

PH(α, T ), which is given by αeTx1, for the case that T is triangular. Let α and T be perturbed

in a way that each entry has relative error no more than ǫ and denote by α̃, T̃ the perturbed

counterparts. From Theorem 3.1, the relative error between αeTx1 and α̃eT̃ x1 is bounded as

|αeTx1− α̃eT̃ x1|

αeTx1
≤ max{1 − (1 − ǫ)ne−ǫρ(T )x, (1 + ǫ)neǫρ(T )x − 1}

≤ (eǫρ(T )x − 1) + nǫ+ O(ǫ2).

As x → 0, the relative error between αeTx1 and α̃eT̃ x1 grows at most as fast as the error

between eǫρ(T )x and 1.
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