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Abstract

The inverse problem considered in this paper is to determine the shape and the impedance

of an obstacle from a knowledge of the time-harmonic incident field and the phase and

amplitude of the far field pattern of the scattered wave in two-dimension. Single-layer

potential is used to approach the scattered waves. An approximation method is presented

and the convergence of the proposed method is established. Numerical examples are given

to show that this method is both accurate and easy to use.
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1. Introduction

The inverse scattering problem for time-harmonic acoustic waves in two-dimension has been

considered for various boundary conditions in a series of papers [1–7]. Among these problems,

we are interested in numerical methods for determining the shape and the impedance of an

obstacle from the knowledge of the incident field and the scattered field of the far field pattern.

Let D be a bounded, connected domain in the plane with boundary ∂D ∈ C2 and let the

incident field ui be given by ui(x) = exp[ikx ·d] where k > 0 is the wave number and d is a fixed

unit vector. If we denote the scattered field by us and define the total field u by u = ui+us, then

the direct scattering problem is to find a solution u ∈ C2(R2\D̄) ∩ C(R2\D) of the Helmholtz

equation

∆2u+ k2u = 0 in R
2\D̄, (1.1)

which satisfies the boundary condition

∂u

∂ν
+ ikλ(x)u = 0 on ∂D; (1.2)

and us satisfies the Sommerfeld radiation condition

lim
r→∞

√
r

{

∂us

∂r
− ikus

}

= 0, r = |x| , (1.3)

uniformly in all directions x/|x|.
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Under the above conditions, it is easily shown [8] that us has the asymptotic behavior

us(x) =
eik|x|
√

|x|
{u∞(x̂) + O(|x|−1

)}, |x| → ∞, (1.4)

where u∞ is known as the far field pattern of the scattered wave us. From Green’s formula and

the asymptotic behavior of the Hankel function H
(1)
0 , we can easily show [8] that

u∞(x̂) =
eiπ/4

√
8πk

∫

∂D

{

us(y)
∂e−ikx̂·y

∂ν(y)
− ∂us

∂ν
(y)e−ikx̂·y

}

ds(y), (1.5)

for x̂ = x/|x|.
For the problem (1.1)-(1.3), there exists the following theorem.

Theorem 1.1. ([9]) The exterior impedance boundary-value problem has at most one solution

provided Im(λ) ≥ 0 on ∂D. The solution us in R2\D and each differentiation of us in R2\D̄
depend continuously on the boundary data.

Let Γ ∈ C2 be a closed curve contained in D and assume that k2 is not a Dirichlet eigenvalue

of Laplacian in Γ. Let the single-layer potential

v(x) =

∫

Γ

ϕ(y)Φ(x, y)ds(y), ϕ ∈ L2(Γ) (1.6)

approach the scattered field us, where Φ(x, y) = i
4H

(1)
0 (k |x− y|) denotes the fundamental

solution to the Helmholtz equation in two-dimension. From the asymptotic for u(x):

u(x) =
eik|x|
√

|x|
{u∞(x̂) + O(|x|−1

)}, |x| → ∞,

uniformly in all directions x̂ = x/ |x|, and the asymptotic for the Hankel function:

H
(1)
0 (r) =

√

1

πr
ei(r−π/4)

(

1 + o(
1

r
)
)

,

we see that the far-field pattern of the potential (1.6) is given by

u∞(x̂) =
e−iπ/4

√
8πk

∫

Γ

ie−ikx̂·yϕ(y)ds(y). (1.7)

To solve inverse obstacle scattering problems, we consider a numerical method to solve the

inverse scattering problem for shape and impedance. Hence, for the given far-field pattern, we

solve the integral equation

(Fϕ)(x̂) = u∞(x̂), (1.8)

where F : L2(Γ) → L2(Ω) is defined by

(Fϕ)(x̂) :=
e−iπ/4

√
8πk

∫

Γ

ie−ikx̂·yϕ(y)ds(y), x̂ ∈ Ω. (1.9)

Then we need to find the boundary Γ as the location where the boundary condition (1.2) is

satisfied in a least square sense.

In comparison with [10], our reconstructions do not require the solution of the function u

and its normal derivative ∂u/∂ν at each iteration step. We only require the nonzero initials of

ϕ, ρ, λ. Furthermore, this method does not contain the hyper-singular operator, which makes

the computation easy.
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2. Mathematical Analysis of the Inverse Scattering Problem

For the sake of simplicity, we confine our presentation to the case of star shaped domains,

that is, we assume that the boundary Γ can be in the form

Γ : {x(θ) = (x1(θ), x2(θ))},

where x1(θ) = ρ(θ) cos θ, x2(θ) = ρ(θ) sin θ, 0 ≤ θ ≤ 2π and ρ is 2π periodic positive C2

function.

Now we need the following theorem:

Theorem 2.1. ([10]) The far-field patterns corresponding to an infinite number of plane waves

with distinct directions uniquely determine the shape and location of the scatterer D and the

impedance function λ.

We are now in a position to present the method. Eq. (1.8) is ill-posed, so we use the

Tikhonov regularization method to solve this problem. More precisely, for the regularization

parameter α > 0, find the solution ϕα ∈ L2(Γ) satisfying

‖Fϕα − u∞‖2
L2(Ω) + α ‖ϕα‖2

L2(Γ)

= inf
ϕ∈L2(Γ)

{

‖Fϕ− u∞‖2
L2(Ω) + α ‖ϕ‖2

L2(Γ)

}

. (2.1)

Define

U := {λ : 0 6 λ 6 M1, |x(θ) − y(θ)| 6 M2, x, y ∈ ∂D},

where M1 and M2 are positive constants. From the Arzela-Ascoli Theorem, U is compact in

C(∂D). The approach of the scattered wave is the single-layer potential

us
α =

∫

Γ

ϕα(y)Φ(x, y)ds(y).

We should find ρ(θ) and λ(θ), which minimizes the impedance boundary condition

inf
(ρ×λ)∈(C2[0,2π]×U)

∥

∥

∥

∥

∂

∂ν
(ui(ρ(θ)) + us

α(ρ(θ))) + ikλ(θ)(ui(ρ(θ)) + us
α(ρ(θ)))

∥

∥

∥

∥

. (2.2)

Define operator S : L2(Γ) → L2(∂D)

(Sϕ)(x) :=

∫

Γ

ϕ(y)Φ(x, y)ds(y), x ∈ ∂D.

Then for the boundary ρ(θ) and impedance λ(θ), we can define the minimization problem

µ(ρ, λ, ϕ;α)

= min
(ρ×λ×ϕ)∈(C2[0,2π]×U×L2(Γ))

{

‖Fϕ− u∞‖2
L2(Γ) + α ‖ϕ‖2

L2(Γ)

+

∥

∥

∥

∥

∂

∂ν
(ui(ρ(θ)) + (S(ρ(θ)))ϕ) + ikλ(θ)(ui(ρ(θ)) + (S(ρ(θ)))ϕ)

∥

∥

∥

∥

2

L2(∂D)

}

. (2.3)
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3. Convergence Analysis

Definition 3.1. Given the incident field ui, a far field pattern u∞ and a regularization param-

eter α > 0, a pair (ρ0, λ0) ∈ C2[0, 2π] × U is called admissible if there exists ϕ0 ∈ L2(Γ) such

that (ϕ0, ρ0, λ0) minimizes the expression in (2.3) over all ϕ ∈ L2(Γ), ρ ∈ C2[0, 2π] and λ ∈ U .

Namely, we have

µ(ρ0, λ0, ϕ0;α) = m(α)

where

m(α) := inf
(ρ,λ,ϕ)∈C2[0,2π]×U×L2(Γ)

µ(ρ, λ, ϕ;α).

Theorem 3.1. For each α > 0 there exists an optimal pair (ρ0, λ0) ∈ C2[0, 2π] × U .

Proof. Let (ϕn, ρn, λn) be a minimizing sequence in L2(Γ) × C2[0, 2π] × U , i.e.,

lim
n→∞

µ(ϕn, ρn, λn;α) = m(α).

The sequence {ρn, λn} lies in a compact set C2[0, 2π] × U , and hence there exists convergent

subsequences. We can then assume that ρn → ρ0, λn → λ0 as n→ ∞. From

α ‖ϕn‖ ≤ µ(ϕn, ρn, λn;α) → m(α), n→ ∞,

and α > 0, we conclude that the sequence {ϕn} is bounded, i.e., ‖ϕn‖L2(Γ) ≤ c for all n and

some constant c. Hence, we can assume that it converges weakly ϕn → ϕ0 ∈ L2(Γ) as n→ ∞.

Since F : L2(Γ) → L2(∂D) and S : L2(Γ) → L2(∂D) represent compact operators, it follows

that

Fϕn → Fϕ0, Sϕn → Sϕ0, n→ ∞.

This now implies

α ‖ϕn‖2
L2(Γ) = µ(ϕn, ρn, λn;α) − ‖Fϕn − u∞‖2

L2(Γ)

−
∥

∥

∥

∥

∂

∂ν
(ui + Sϕn) + ikλn(ui + Sϕn)

∥

∥

∥

∥

2

L2(∂D)

→ m(α) − ‖Fϕ0 − u∞‖2
L2(Γ)

−
∥

∥

∥

∥

∂

∂ν
(ui + Sϕ0) + ikλ0(u

i + Sϕ0)

∥

∥

∥

∥

2

L2(∂D)

≤ α ‖ϕ0‖2
L2(Γ) for n→ ∞.

Since we already have weak convergence ϕn → ϕ0 as n→ ∞, it follows that

lim
n→∞

‖ϕn − ϕ0‖2
L2(Γ) = lim

n→∞
(‖ϕn‖2

L2(Γ) − ‖ϕ0‖2
L2(Γ)) ≤ 0,

i.e., we also have convergence ϕn → ϕ0 as n → ∞ in norm. Finally, from the continuity, we

have

µ(ϕ0, ρ0, λ0;α) = lim
n→∞

µ(ϕn, ρn, λn;α) = m(α),

which completes the proof of the theorem. �
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Theorem 3.2. Let u∞be the far field pattern corresponding to the incident field ui, (ρ(θ), λ(θ)) ∈
C2[0, 2π]× U . Then we have convergence of the cost functional

lim
α→0

m(α) = 0. (3.1)

Proof. See [10, Thm. 7].

Theorem 3.3. If the condition of Theorem 3.2 is satisfied, αn > 0, n = 1, 2, · · · is a se-

quence converging to zero, {ρn, λn} is the admissible solutions corresponding to it, then ρn(θ) →
ρ(θ), λn(θ) → λ(θ) as n→ ∞.

Proof. The sequence {ρn, λn} lies in a compact set C2[0, 2π] × U and hence there exists a

convergent subsequence, which we again denote by {ρn, λn}, and ρn → ρ∗ ∈ C2[0, 2π], λn →
λ∗ ∈ U . We want to show that ρ∗(θ) = ρ(θ) and λ∗(θ) = λ(θ) .

Let u∗ be the scattering waves corresponding to the boundary ρ∗ and the impedance λ∗.

That is, it satisfies the boundary condition

∂

∂ν
(u∗(ρ∗) + ui(ρ∗)) + ikλ∗(u∗(ρ∗) + ui(ρ∗)) = 0, on ∂D. (3.2)

(ρn, λn) is the admissible solution corresponding to αn, and by Definition 3.1, there exists

ϕn ∈ L2(Γ) such that

µ(ϕn, ρn, λn;α) = m(αn).

By Theorem 3.2, these boundary data satisfy

lim
n→∞

∥

∥

∥

∥

∂

∂ν
(S(ρn)ϕn + ui(ρn)) + ikλn(S(ρn)ϕn + ui(ρn))

∥

∥

∥

∥

L2(∂D)

= 0.

Now we have

lim
n→∞

∥

∥

∥

∥

(
∂

∂ν
S(ρn)ϕn + ikλnS(ρn)ϕn) − (

∂

∂ν
u∗(ρ∗) + ikλ∗u∗(ρ∗))

∥

∥

∥

∥

L2(∂D)

= lim
n→∞

∥

∥

∥

∥

(
∂

∂ν
S(ρn)ϕn + ikλnS(ρn)ϕn) + (

∂

∂ν
ui(ρ∗) + ikλ∗ui(ρ∗))

∥

∥

∥

∥

L2(∂D)

= 0.

From Theorem 1.1 and the far field pattern (1.7), the far field pattern Fϕn of the acoustic

single-layer potential

(Sϕ)(x) =

∫

Γ

ϕ(y)Φ(x, y)ds(y)

converges to the far field pattern u∗∞ of u∗.

On the other hand, from Theorem 3.2 and

‖Fϕn − u∞‖L2(Ω) → 0,

∥

∥

∥

∥

(
∂us

n

∂ν
+ ikλnu

s
n) + (

∂ui

∂ν
+ ikλui)

∥

∥

∥

∥

L2(Ω)

→ 0,

both as n → ∞, we have u∞ = u∗∞, which implies that us = u∗. Notice that ui(ρ) =

eikρ cos(θ−φ), where φ denotes the incoming angle. So we have

ρ(θ) = ρ∗(θ), λ(θ) = λ∗(θ), θ ∈ [0, 2π].

This completes the proof of the theorem. �
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4. Numerical Examples

In this section, we shall discuss the numerical implementation of the algorithm presented

in the previous section. The data for the inverse problem is the far field pattern for a variety

of incoming waves and choices of the wave number k. To obtain better results, the incoming

waves are written as

ui
N(x) =

N
∑

p=1

eikx·dp

and uN
∞(x̂) is the far field pattern corresponding to it. For our examples, this data is generated

by approximately solving the direct scattering problem (given the obstacle D). In order to

generate the data, we refer to [8, 12].

The Newton’s iteration is used to solve the optimization problem. To discretize the inverse

problem (2.3), the integrals are approximated using the trapezoidal rule with θj = jπ/n, j =

0, 1, · · · , 2n− 1 and ψ(θ) = ϕ(y). By

∂

∂ν
(Sϕ) = (K ′ − I)ϕ,

where

(K ′ϕ)(x) = 2

∫

Γ

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y), x ∈ ∂D,

the representation (2.3) can be written as

µ(ψ, ρ, λ;α)

=

L−1
∑

q=0

∥

∥

∥

∥

∥

∥

e−iπ/4

√
8πk

π

n

2n−1
∑

j=0

i |x′(θj)| e−ik(x̂q)·(x1(θj),x2(θj))ψ(θj) − u∞(x̂q)

∥

∥

∥

∥

∥

∥

2

+α

2n−1
∑

j=0

‖ψ(θj)‖2
+

∥

∥

∥

∥

∥

∥

2n−1
∑

j=0

(

N−1
∑

p=0

∂eikx(θj)·dp

∂ν
+ (K ′(ρ(θj)) − I)ψ(θj)

+ ikλ(θj)(

N−1
∑

p=0

eikx(θj)·dp + S(ρ(θj))ψ(θj)))

∥

∥

∥

∥

∥

2

. (4.1)

For the numerical method of the operators S,K ′, we will use the following interpolators

quadrature rules
∫ 2π

0

ln(4 sin2 θ − τ

2
)f(τ)dτ ≈

2n−1
∑

j=0

R
(n)
j (θ)f(θ

(n)
j ),

where

R
(n)
j (θ) = −2π

n

n−1
∑

m=1

1

m
cosm(θ − θ

(n)
j ) − π

n2
cosn(θ − θ

(n)
j ).

In order to discretize the inverse problem (4.1), we approximate the functions ψ, ρ and λ by
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finite trigonometric series

ψα(θ) =

n1
∑

j=−n1

gje
ijθ, gj ∈ C,

ρα(θ) = a
(n2)
0 +

n2
∑

j=1

(a
(n2)
j cos jθ + b

(n2)
j sin jθ), a

(n2)
j , b

(n2)
j ∈ R,

λα(θ) = a
(n3)
0 +

n3
∑

j=1

(a
(n3)
j cos jθ + b

(n3)
j sin jθ), a

(n3)
j , b

(n3)
j ∈ R.

We now report on the examples we have computed. The approximate minimum occurs at

k = 1.0 and the fixed unit vector

dp =

(

cos(2πp/3)

sin(2πp/3)

)

, (p = 0, 1, 2).

In our examples, the full line denotes graph of ρ or λ, and the broken line denotes graph of ρα

or λα.

Example 4.1. The pinched ellipse.

The exact figure is the pinched ellipse ρ(θ) = 1+ 1
2 cos 2θ and the impedance is λ(θ) = 1+sin3(θ).

The parameters used for the problem: n0 = 6,m0 = 64. The number of incoming waves is 3.

For the inverse problem: n1 = 8, n2 = 4, n3 = 4, L = 30, α = 10−10. The numerical results of

ρα and λα are shown in Fig. 4.1.

Example 4.2. The garlic.

The exact figure is the garlic ρ(θ) = 1 − sin θ cos2 θ and the impedance is λ = 2 + cos3(θ) +

sin3(θ). The parameters used for the direct problem are n0 = 6, m0 = 64. The number of

incoming waves is 3. For the inverse problem, n1 = 8, n2 = 4, n3 = 4, L = 30, α = 10−10. The

numerical results of ρα and λα are shown in Fig. 4.3.

About the data involving noise we refer to [10]. In terms of the total field u = S + ui we

introduce the operator G defined by

G : (ρ, λ)| → (ν · gradu+ ikλu)|Γ

or in a slight abuse of notation

G : (ρ, λ)| → ν · (gradu) ◦ ρ+ ik(λu) ◦ ρ in [0, 2π].

The perturbations h(θ) to the boundary is also starlike. The perturbations to the λ is µ. Then

for the boundary condition we need to solve the minimization problem

inf
(ρ(θ)×λ(θ))∈(C2[0,2π]×C[0,2π])

∥

∥

∥

∥

G(ρ, λ) +
∂G

∂ρ
(ρ, λ)h +

∂G

∂λ
(ρ, λ)µ

∥

∥

∥

∥

L2(∂D)

,

where

∂G

∂ρ
(ρ, λ)h = − k2hνu ◦ ρ− ∂

∂τ
(hνu(

∂u

∂τ
) ◦ ρ)

+(ikλ− x′′ · ν
|x′|2 )hνu

∂u

∂ν
◦ ρ+ ikhνu(

∂λ

∂ν
u) ◦ ρ
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Fig. 4.1. Example 4.1: Reconstruction for the pinched ellipse and the impedance.
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Fig. 4.2. Example 4.1: Reconstruction with 1% noise.
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Fig. 4.3. Example 4.2: Reconstruction for the garlic and the impedance.
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Fig. 4.4. Example 4.2: Reconstruction with 1% noise.

and
∂G

∂λ
(ρ, λ)µ = ik(µu) ◦ ρ,

both in [0, 2π]. For the above two examples, the numerical results of data involving noise are

shown in Figs. 4.2 and 4.4.
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Our reconstructions do not require the solution of the direct scattering problem at each

iteration step. In compared with [11], on boundary ρ the 2-norm (2.2) is minimized and we

express the unknown impedance function and boundary ρ by the trigonometric polynomials. So

the reconstruction is insensitive to the initial guess. For both examples we used as initial guess

a circle of radius 1.0 and a constant impedance λ = 1.0. The results are found very accurate.
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