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Abstract

The main aim of this paper is to study the convergence properties of a low order mixed

finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic

convergence and superconvergence independent of the aspect ratio. Without the shape

regularity assumption and inverse assumption on the meshes, the optimal error estimates

and natural superconvergence at central points are obtained. The global superconvergence

for the gradient of the velocity and the pressure is derived with the aid of a suitable

postprocessing method. Furthermore, we develop a simple method to obtain the superclose

properties which improves the results of the previous works.
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1. Introduction

There have been many studies for the mixed finite elements approximation to the stationary

Stokes problem [10, 15, 16, 21, 25] which satisfy the Babus̆ka-Brezzi condition (see, e.g., [5, 11]).

The optimal error estimates were obtained under the shape regularity assumption [9, 14] on the

meshes. However, the solution of the Stokes problem may have anisotropic behavior in parts

of the domain, for instance, the presence of boundary layers and other localized features. This

means that the solution varies significantly in certain directions with less significant changes

along the other ones. It is an obvious idea to reflect this anisotropy in the discretization by

using anisotropic meshes with a small mesh size in the direction of the rapid variation of the

solution and a larger mesh size in the other direction, where elements are aligned to follow (in

some sense) the geometry of the solution. Compared with the standard isotropic techniques,

the number of degrees of freedom required for a given accuracy may be considerably reduced.

Recently, some efforts have been made to develop stable mixed methods for the meshes

that include elements of arbitrary high aspect ratio. For instance, Schötzau et al. [23, 24] for

Qk+1 −Qk−1 families, Becker and Rannacher [6, 7] for Q1 −Q0,Q1 −Q1, Apel and Nicaise [3]

for Q̃1 −Q0. By Q1 we denote, as usual, the space of bilinear functions, and by Q̃1 the rotated
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Q1 element. All the methods developed in the above works used high aspect ratio meshes,

although most of them placed some restrictions on the meshes. For the stability of the method

it is required that the discrete spaces satisfy the Babus̆ka-Brezzi condition with a constant (inf-

sup constant) independent of the aspect ratio of the elements. It has been reported by Russo

that the mini element becomes instable on anisotropic meshes (cf. [22]). As to the estimate

of the interpolation error under anisotropic meshes, Apel [1, 4, pp.35-38] presented a criterion

to judge the anisotropy of an interpolation; Chen et al. developed an anisotropic interpolation

theorem in [12, 13, 27, 28], which is much easier to use. In this work, we consider another

familiar scheme which can be regarded as a low order Bernardi-Raugel element (cf. [8]) under

anisotropic rectangular meshes. Recently, the stability of this scheme with the inf-sup constant

independent of the aspect ratio has been discussed by Apel and Nicaise in [2]. We check the

anisotropy of the interpolation of velocity, and then the optimal error estimates can be obtained

by using the anisotropic interpolation theorem.

On the other hand, the superconvergence for the mixed elements is very effective in practice.

Some superconvergence results for several mixed finite elements have been obtained when the

meshes are sufficiently good. Lin and Pan in [20] and [18] proved O(h2)-superconvergence for

the Q1 − Q0 element under square meshes and O(h3)-superconvergence for the biquadratic-

linear element over uniform rectangular meshes, respectively. On quasi-uniform rectangular

meshes, the O(h2)-superconvergence for the Bernardi-Raugel element was obtained by [18]. A

key concept in their derivation is the integral identity technique which has been proven to be

an efficient tool for the superconvergence analysis of rectangular finite elements (cf. [17, 19]).

In this paper, a simple method is developed to obtain the superclose results. The basic tool

employed by us is the well-known Bramble-Hilbert Lemma. Furthermore, compared with the

previous works, our results can be worked without the shape regularity assumption and inverse

assumption requirement on the meshes and can be applied to more general meshes.

The paper is organized as follows: we investigate the anisotropic interpolation properties of

the Bernardi-Raugel element in Section 2. In Section 3, based on the stability of this scheme

with the inf-sup constant independent of the aspect ratio, which has been obtained in [2], we get

the optimal anisotropic error estimates. Without the shape regularity assumption and inverse

assumption requirement on the meshes, the superclose result and globalO(h2)-superconvergence

of the Bernardi-Raugel element are obtained under rectangular meshes in Section 4 and Section

5, respectively. Finally, natural superconvergence at central points is derived in Section 6.

2. Some Notations and Basic Estimates

In this section, we introduce some notations and recall some estimates that are basic for our

subsequent arguments.

For the sake of convenience, let Ω ⊂ R2 be a convex polygon composed by a family of

rectangular meshes Jh which need not satisfy the shape regular conditions. ∀K ∈ Jh, we denote

the barycenter of the element K by (xK , yK), the length of edges parallel to x-axis and y-axis

by 2hK1, 2hK2 respectively, hK = max{hK1, hK2}, h = maxK∈Jh
hK , hα

K = hα1

K1h
α2

K2. Assume

that K̂ = [−1, 1] × [−1, 1] is the reference element, the four vertices are: â1 = (−1,−1), â2 =

(1,−1), â3 = (1, 1), â4 = (−1, 1), and its 4 sides are l̂1 = â1â2, l̂2 = â2â3, l̂3 = â3â4, l̂4 = â4â1.

Then there exists a unique mapping FK : K̂ → K defined as
{

x = xK + hK1ξ,

y = yK + hK2η.
(2.1)
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Throughout this paper, the positive constant C will be used as a generic constant, possibly

different from place to place, but is independent of hK and hK2/hK1 (assume hK2 ≥ hK1).

We will use the standard notations ‖ · ‖m,K , | · |m,K for the usual norms and seminorms on the

Sobolev space Hm(K) over K. For a function ŵ defined on K̂, we associate w defined on K in

the usual way: ŵ = w ◦ FK . Qi,j = Pi(x) × Pj(y), Pk(x) is a polynomial as to the variable x

with degree k.

For any ~̂v = (v̂[1], v̂[2]) ∈ [H2(K̂)]2 and q̂ ∈ L2(K̂), define the interpolations
~̂
Π = (Π̂[1], Π̂[2]) :

[H2(K̂)]2 → Q1,2(K̂) ×Q2,1(K̂) and Î : L2(K̂) → Q0(K̂) on the reference element as follows:






~̂
Π~̂v(ai) = ~̂v(ai), i = 1, 2, 3, 4,
∫

l̂i

Π̂[2]v̂[2]dξ =

∫

l̂i

v̂[2]dξ, i = 1, 3,

∫

l̂i

Π̂[1]v̂[1]dη =

∫

l̂i

v̂[1]dη, i = 2, 4,

Î q̂ =
1

|K̂|

∫

K̂

q̂dξdη.

(2.2)

The finite element space is defined as (cf. [8,16]):






~Vh = {~vh ∈ [C0(Ω)]2; ~vh|K ∈ [Q1,2(K̂) ×Q2,1(K̂)] ◦ F−1
K , K ∈ Jh, ~vh|∂Ω = 0},

Ph = {qh ∈ L2(Ω); qh|K ∈ Q0(K), K ∈ Jh,

∫

Ω

qhdxdy = 0}.
(2.3)

Then we can define the global interpolations ~Πh : [H2(Ω)]2 → ~Vh and Ih : L2(Ω) → Ph as

~Πh|K = ~ΠK =
~̂
Π ◦ FK , Ih|K = IK = Î ◦ FK . (2.4)

Now, we begin to concentrate on some properties of the interpolation
~̂
Π . We only consider

Π̂[1]v̂[1]|K̂ ∈ Q1,2(K̂), the other component of
~̂
Π can be treated similarly.

On the reference element K̂, by a direct calculation, we have

Π̂[1]v̂[1] =

4∑

i=1

v̂
[1]
i Pi +

3

8
(2v̂

[1]
5 + 2v̂

[1]
6 − v̂

[1]
1 − v̂

[1]
2 − v̂

[1]
3 − v̂

[1]
4 )(1 − η2)

+
3

8
(2v̂

[1]
5 − 2v̂

[1]
6 + v̂

[1]
1 − v̂

[1]
2 − v̂

[1]
3 + v̂

[1]
4 )ξ(1 − η2), (2.5)

where

v̂
[1]
i = v̂[1](ai), i = 1, 2, 3, 4, v̂

[1]
5 =

1

2

∫

l̂2

v̂[1]dη, v̂
[1]
6 =

1

2

∫

l̂4

v̂[1]dη,

P1 =
(1 − ξ)(1 − η)

4
, P2 =

(1 + ξ)(1 − η)

4
, P3 =

(1 + ξ)(1 + η)

4
, P4 =

(1 − ξ)(1 + η)

4
.

Define the multi index α = (α1, α2), D̂
αv̂ = ∂|α|v̂

∂ξα1∂ηα2
. We consider α = (1, 0),

D̂αΠ̂[1]v̂[1] =
∂Π̂[1]v̂[1]

∂ξ
=

1 − η

4
β1(v̂

[1]) +
1 + η

4
β2(v̂

[1]) +
3(1 − η2)

8
β3(v̂

[1]), (2.6)
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where

β1(v̂
[1]) = −v̂

[1]
1 + v̂

[1]
2 , β2(v̂

[1]) = v̂
[1]
3 − v̂

[1]
4 ,

β3(v̂
[1]) = v̂

[1]
1 − v̂

[1]
2 − v̂

[1]
3 + v̂

[1]
4 + 2v̂

[1]
5 − 2v̂

[1]
6 .

Obviously, { 1−η
4 , 1+η

4 , 3(1−η2)
8 } is a basis of D̂αQ1,2(K̂), and






β1(v̂
[1]) =

∫ 1

−1

∂v̂[1](ξ,−1)

∂ξ
dξ

△
= E1(D̂

αv̂[1]),

β2(v̂
[1]) =

∫ 1

−1

∂v̂[1](ξ, 1)

∂ξ
dξ

△
= E2(D̂

αv̂[1]),

β3(v̂
[1]) = −

∫ 1

−1

[
∂v̂[1](ξ,−1)

∂ξ
+

∂v̂[1](ξ, 1)

∂ξ
]dξ

+

∫ 1

−1

∫ 1

−1

∂v̂[1](ξ, η)

∂ξ
dξdη

△
= E3(D̂

αv̂[1]).

(2.7)

By employing Cauchy-Schwarz inequality and the trace theorem, we can show that

|Ei(ŵ)| ≤ C‖ŵ‖1,K̂ , i = 1, 2, 3,

i.e., Ei, i = 1, 2, 3, are bounded linear functionals on H1(K̂).

Then by employing the basic anisotropic interpolation theorem (cf. [12, 13]), we have

‖D̂α(v̂[1] − Π̂[1]v̂[1])‖0,K̂ ≤ C|D̂αv̂[1]|1,K̂ . (2.8)

If α = (0, 1), then

D̂αΠ̂[1]v̂[1] =
∂Π̂[1]v̂[1]

∂η
=

1 − ξ

4
β4(v̂

[1]) +
1 + ξ

4
β5(v̂

[1]) −
3η

4
β6(v̂

[1]) −
3ξη

4
β7(v̂

[1]),

where

β4(v̂
[1]) = −v̂

[1]
1 + v̂

[1]
4 , β5(v̂

[1]) = −v̂
[1]
2 + v̂

[1]
3 ,

β6(v̂
[1]) = −v̂

[1]
1 − v̂

[1]
2 − v̂

[1]
3 − v̂

[1]
4 + 2v̂

[1]
5 + 2v̂

[1]
6 ,

β7(v̂
[1]) = v̂

[1]
1 − v̂

[1]
2 − v̂

[1]
3 + v̂

[1]
4 + 2v̂

[1]
5 − 2v̂

[1]
6 .

It is easy to see that { 1−ξ
4 , 1+ξ

4 ,− 3η
4 ,− 3ξη

4 } is a basis of D̂αQ1,2(K̂), and

β4(v̂
[1]) =

∫ 1

−1

∂v̂[1](−1, η)

∂η
dη

△
= E4(D̂

αv̂[1]),

β5(v̂
[1]) =

∫ 1

−1

∂v̂[1](1, η)

∂η
dη

△
= E5(D̂

αv̂[1]),
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β6(v̂
[1]) =

∫ 1

−1

[v̂[1](1, η) −
1

2
v̂[1](1,−1) −

1

2
v̂[1](1, 1)]dη

+

∫ 1

−1

[v̂[1](−1, η) −
1

2
v̂[1](−1,−1)−

1

2
v̂[1](−1, 1)]dη

=
1

2

∫ 1

−1

[

∫ η

−1

∂v̂[1](1, t)

∂t
dt +

∫ η

1

∂v̂[1](1, t)

∂t
dt]dη

+
1

2

∫ 1

−1

[

∫ η

−1

∂v̂[1](−1, t)

∂t
dt +

∫ η

1

∂v̂[1](−1, t)

∂t
dt]dη

△
= E6(D̂

αv̂[1]),

β7(v̂
[1]) =

1

2

∫ 1

−1

[

∫ η

−1

∂v̂[1](1, t)

∂t
dt +

∫ η

1

∂v̂[1](1, t)

∂t
dt]dη

−
1

2

∫ 1

−1

[

∫ η

−1

∂v̂[1](−1, t)

∂t
dt +

∫ η

1

∂v̂[1](−1, t)

∂t
dt]dη

△
= E7(D̂

αv̂[1]).

Employing the same argument yields

|Ei(ŵ)| ≤ C‖ŵ‖1,K̂ , i = 4, 5, 6, 7,

i.e., Ei, i = 4, 5, 6, 7, are bounded linear functionals on H1(K̂). Therefore, (2.8) still holds for

α = (0, 1).

Summarizing the above analysis we have the following result.

Lemma 2.1. The interpolation of the famous Bernardi-Raugel element has the anisotropic

properties, which can be expressed as follows:

‖D̂α(~̂v −
~̂
Π~̂v)‖0,K̂ ≤ C|D̂α~̂v|1,K̂ , ∀ |α| = 1, ~̂v ∈ [H2(K̂)]2. (2.9)

3. Error Estimates on Anisotropic Meshes

The Stokes problem reads as [10,16]: Find (~u, p), such that





−µ∆~u + ∇p = ~f, in Ω,

div~u = 0, in Ω,

~u = ~0, on ∂Ω,

(3.1)

where ~u = (u[1], u[2]) is the velocity of fluids, p is the pressure, ~f = (f [1], f [2]) denotes a given

external force.

The equivalent variational formulation to the problem (3.1) is





Find (~u, p) ∈ [H1
0 (Ω)]2 × L2

0(Ω), such that

a(~u,~v) + b(~v, p) = f(~v), ∀~v ∈ [H1
0 (Ω)]2,

b(~u, q) = 0, ∀q ∈ L2
0(Ω),

(3.2)

where

a(~u,~v) =

∫

Ω

µ∇~u · ∇~vdxdy, b(~v, p) = −

∫

Ω

pdiv~vdxdy, f(~v) =

∫

Ω

~f · ~vdxdy.

Then the finite element solution of (3.2) is to find ~uh ∈ ~Vh, ph ∈ Ph, such that
{

a(~uh, ~vh) + b(~vh, ph) = f(~vh), ∀~vh ∈ ~Vh,

b(~uh, qh) = 0, ∀qh ∈ Ph.
(3.3)
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We define the inf-sup constant by

γh
△
= inf

06=ph∈Ph

sup
06=~vh∈~Vh

b(~vh, ph)

|~vh|1,Ω‖ph‖0,Ω
. (3.4)

Then the finite element errors can be estimated as (refer to [10])

|~u − ~uh|1,Ω ≤ Cµ−1
(

inf
~vh∈~Zh

|~u − ~vh|1,Ω + inf
qh∈Ph

‖p− qh‖0,Ω

)
, (3.5)

‖p− ph‖0,Ω ≤ C
(
γ−2

h µ inf
~vh∈~Vh

|~u − ~vh|1,Ω + γ−1
h inf

qh∈Ph

‖p − qh‖0,Ω

)
, (3.6)

where
~Zh = {~vh ∈ ~Vh : b(~vh, qh) = 0, ∀qh ∈ Ph}.

Fig. 3.1. Mesh Jh (left) and mesh TH (right).

Fig. 3.2. Anisotropic mesh around corners.

For the sake of simplicity, we assume that the anisotropic rectangular meshes Jh are con-

structed in the following way: first divide Ω by a union of macro rectangular elements TH ,

i.e., Ω =
⋃

M∈TH
M, and further assume that TH is a shape regular partition of Ω. Then

the anisotropic meshes Jh are obtained by dividing a macroelement M into micro rectangular

elements K along two opposite edges of M , i.e., M =
∑

K⊂M K, refer to the illustration in

Fig. 3.1. Note that the micro triangulation Jh may not satisfy the shape regular assumption.

Such meshes can also be designed around corners, see Fig. 3.2.

Based on Theorem 1 of [2], we have the following stability theorem.
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Theorem 3.1. There exists a constant γ∗ > 0 independent of both hK and the aspect ratio,

such that

inf
06=qh∈Ph

sup
~0 6=~vh∈~Vh

b(~vh, qh)

|~vh|1,Ω‖qh‖0,Ω
≥ γ∗, (3.7)

i.e., b(·, ·) satisfies the Babus̆ka-Brezzi condition over ~Vh × Ph under anisotropic meshes.

Then we can carry out the error analysis for the anisotropic Bernardi-Raugel element ap-

proximation to the Stokes problem.

Theorem 3.2. Under the above hypothesis, let (~u, p) and (~uh, ph) be the exact solution of the

Stokes problem (3.2) and the finite element solution of (3.3) respectively, (~u, p) ∈ [H2(Ω) ∩

H1
0 (Ω)]2 × H1(Ω). Then there hold the following estimates

|~u − ~uh|1,Ω ≤ C




∑

K∈Jh

∑

|α|=1

∑

|β|=1

h2β
K ‖Dα+β~u‖2

0,K





1

2

+ C




∑

K∈Jh

∑

|β|=1

h2β
K ‖Dβp‖2

1,K





1

2

,

(3.8)

‖p− ph‖0,Ω ≤ C




∑

K∈Jh

∑

|α|=1

∑

|β|=1

h2β
K ‖Dα+β~u‖2

0,K





1

2

+ C




∑

K∈Jh

∑

|β|=1

h2β
K ‖Dβp‖2

1,K





1

2

.

(3.9)

Proof. By (3.5) and (3.6), we only need to prove that

inf
~vh∈~Zh

|~u − ~vh|1,Ω ≤ C




∑

K∈Jh

∑

|α|=1

∑

|β|=1

h2β
K ‖Dα+β~u‖2

0,K





1

2

, (3.10)

and

inf
qh∈Ph

‖p − qh‖0,Ω ≤ C




∑

K∈Jh

∑

|β|=1

h2β
K ‖Dβp‖2

1,K





1

2

. (3.11)

We will first prove (3.10). It is easy to see that ~Πh~u ∈ ~Zh. Then by Lemma 2.1, we have

‖~u − ~Πh~u‖h =

(
∑

K∈Jh

|~u − ~ΠK~u|21,K

) 1

2

=




∑

K∈Jh

∑

|α|=1

‖Dα(~u − ~ΠK~u)‖2
0,K





1

2

=




∑

K∈Jh

∑

|α|=1

h−2α
K (hK1hK2)‖D̂

α(~̂u −
~̂
Π~̂u)‖2

0,K̂





1

2

≤ C




∑

K∈Jh

∑

|α|=1

h−2α
K (hK1hK2)|D̂

α~̂u|2
1,K̂





1

2

≤ C




∑

K∈Jh

∑

|α|=1

∑

|β|=1

h2β
K ‖Dα+β~u‖2

0,K





1

2

, (3.12)
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which gives (3.10). For any p ∈ L2(Ω), observe that

inf
qh∈Mh

‖p − qh‖0,Ω ≤ ‖p − Ihp‖0,Ω, (3.13)

and

‖p − Ihp‖2
0,Ω =

∑

K∈Jh

‖p− IKp‖2
0,K =

∑

K∈Jh

‖p̂ − Î p̂‖2
0,K̂

hK1hK2

≤ C
∑

K∈Jh

|p̂|2
1,K̂

hK1hK2 = C
∑

K∈Jh

∑

|β|=1

‖D̂β p̂‖2
0,K̂

hK1hK2

≤ C
∑

K∈Jh

∑

|β|=1

h2β
K ‖Dβp‖2

1,K .

Then (3.11) follows. The proof of Theorem 3.2 is completed. �

4. Anisotropic Superclose Analysis

In this section, we will discuss the superconvergence for a stable Bernardi-Raugel scheme

on anisotropic meshes. Unlike [17-20], the basic tool we employed here is the Bramble-Hilbert

Lemma [9, 14] instead of the integral identity. Compared with [17-20], our analysis is simpler;

and most importantly, we avoid the requirement of the shape regularity and inverse assumptions.

Lemma 4.1. If ~u ∈ [H3(Ω)]2, then

a(~u − ~Πh~u,~vh) ≤ Ch2|~u|3,Ω|~vh|1,Ω, ∀~vh ∈ ~Vh. (4.1)

Proof. Let ~u = (u[1], u[2]), ~vh = (v
[1]
h , v

[2]
h ). By the scaling argument and following the

notations appeared in Section 2, we have

∫

Ω

(
u[1] − Π

[1]
h u[1]

)

x
v
[1]
hxdxdy =

∑

K∈Jh

h−1
K1hK2

∫

K̂

(
û

[1]
ξ −

3∑

i=1

Ei(û
[1]
ξ )αi(η)

)
v̂
[1]
hξdξdη, (4.2)

where α1(η) = (1 − η)/4, α2(η) = (1 + η)/4 and α3(η) = 3(1 − η2)/8. Setting ŵ = û
[1]
ξ , for

any fixed v̂
[1]
hξ , we define the linear functional

B1(ŵ) =

∫

K̂

(
ŵ −

3∑

i=1

Ei(ŵ)αi(η)
)
v̂
[1]
hξdξdη. (4.3)

Obviously,

|B1(ŵ)| ≤ C‖v̂
[1]
hξ‖0,K̂‖ŵ‖2,K̂ . (4.4)

Hence B1 ∈ (H2(K̂))′ and ‖B1‖ ≤ C‖v̂
[1]
hξ‖0,K̂ .

From (2.7), it can be seen easily that

∀ŵ ∈ P1(K̂), B1(ŵ) = 0. (4.5)

Then an application of the Bramble-Hilbert Lemma yields

|B1(ŵ)| ≤ C|ŵ|2,K̂‖v̂
[1]
hξ‖0,K̂ . (4.6)
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The homogeneity argument and Cauchy-Schwarz inequality yield

∫

Ω

(
u[1] − Π

[1]
h u[1]

)

x
v
[1]
hxdxdy ≤ Ch2|u[1]|3,Ω|v

[1]
h |1,Ω. (4.7)

By the similar argument, we have

∫

Ω

(
u[1] − Π

[1]
h u[1]

)

y
v
[1]
hydxdy ≤ Ch2|u[1]|3,Ω|v

[1]
h |1,Ω, (4.8)

∫

Ω

(
u[2] − Π

[2]
h u[2]

)

x
v
[2]
hxdxdy ≤ Ch2|u[2]|3,Ω|v

[2]
h |1,Ω, (4.9)

∫

Ω

(
u[2] − Π

[2]
h u[2]

)

y
v
[2]
hydxdy ≤ Ch2|u[2]|3,Ω|v

[2]
h |1,Ω. (4.10)

Then a combination of the above four inequalities completes the proof. �

Lemma 4.2. If p ∈ H2(Ω), then

b(~vh, p − Ihp) ≤ Ch2|p|2,Ω|~vh|1,Ω, ∀~vh ∈ ~Vh. (4.11)

Proof. We will concentrate on the linear functional B2 defined as

B2(p̂) =

∫

K̂

(p̂ − Î p̂)v̂
[1]
hξdξdη −

1

3

∫

K̂

p̂η v̂
[1]
hξηdξdη. (4.12)

Following the same lines of bounding B1(·), one can check that

∀ p̂ ∈ P1(K̂), B2(p̂) = 0, (4.13)

which gives

|B2(p̂)| ≤ C|p̂|2,K̂‖v̂
[1]
hξ‖0,K̂ . (4.14)

Hence ∫

K

(p − Ip)v
[1]
hxdxdy ≤ Ch2|p|2,K‖v

[1]
hx‖0,K +

4h2
K2

3

∫

K

pyv
[1]
hxydxdy

≤ Ch2|p|2,K |v
[1]
h |1,K +

4h2
K2

3

(∫

l2

−

∫

l4

)
pyv

[1]
hydy.

The above line integrals will be canceled through the summation of K ∈ Jh since pyv
[1]
hy is

continuous across li (i = 2, 4) of each element of Jh, and v
[1]
hy vanishes on the boundaries of ∂Ω

which are parallel to the y-direction. As a result, we obtain

∫

Ω

(p − Ip)v
[1]
hxdxdy ≤ Ch2|p|2,Ω|v

[1]
h |1,Ω. (4.15)

In a similar way, ∫

Ω

(p − Ip)v
[2]
hydxdy ≤ Ch2|p|2,Ω|v

[2]
h |1,Ω. (4.16)

Then the proof is completed by (4.15) and (4.16). �

Lemma 4.3. There holds

b(~u − ~Πh~u, qh) = 0, ∀qh ∈ Ph. (4.17)
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Proof. Because qh|K is a constant, by the definition of the interpolation, we have

∫

K

∇ · (~u − ~ΠK~u)dxdy =

∫

∂K

(~u − ~Π~u) · ~nds = 0.

Then (4.17) follows. �

From Lemmas 4.1-4.3, we can prove the following main result of this section.

Theorem 4.1. Let (~u, p) be the solution of (3.1) with (~u, p) ∈ [H3(Ω)∩H1
0 (Ω)]2×H2(Ω) under

anisotropic meshes. Then there holds

|~uh − ~Πh~u|1,Ω + ‖ph − Ihp‖0,Ω ≤ Ch2(|~u|3,Ω + |p|2,Ω). (4.18)

Proof. Since

a(~u − ~uh, ~vh) + b(~vh, p − ph) = b(~u − ~uh, qh) = 0,

by [5, 26], ∀ (~vh, qh) ∈ ~Vh × Ph, there exists a constant C dependent of γ∗, such that

C(|~uh − ~Πh~u|1,Ω + ‖ph − Ihp‖0,Ω)

≤ sup
(~0,0) 6=(~vh,qh)∈~Vh×Ph

a(~uh − ~Πh~u,~vh) + b(~vh, ph − Ihp) − b(~uh − ~Πh~u, qh)

|~vh|1,Ω + ‖qh‖0,Ω

= sup
(~0,0) 6=(~vh,qh)∈~Vh×Ph

a(~u − ~Πh~u,~vh) + b(~vh, p − Ihp) − b(~u − ~Πh~u, qh)

|~vh|1,Ω + ‖qh‖0,Ω
. (4.19)

Then the proof follows from Lemmas 4.1-4.3. �

5. Anisotropic Global Superconvergence

In this section, we will use proper postprocessing methods to get anisotropic global super-

convergence. For this purpose, we further assume that Jh is obtained from J2h (where J2h is an

anisotropic partition of Ω which satisfies the hypothesis in Section 3) by dividing each element

K of J2h into four congruent rectangles K1, K2, K3, K4. Here we take the same notations as

defined in previous sections.

We firstly define two postprocessing operators as follows,

{
~Π2

2h~u ∈ Q2(K)\{x2y2} × Q2(K)\{x2y2},

~Π2
2h~u(ai) = ~u(ai), i = 1, 2, · · · , 8,

(5.1)






I1
2hp ∈ Q1(K),
∫

Ki

I1
2hpdxdy =

∫

Ki

pdxdy, i = 1, 2, 3, 4,
(5.2)

where ai, i = 1, 2, 3, 4, a5 = (xK , yK − hK2), a6 = (xK + hK1, yK), a7 = (xK , yK + hK2), a8 =

(xK − hK1, yK) are vertices of K1, K2, K3, K4.

Then the following properties can be easily verified:

~Π2
2h

~Πh = ~Π2
2h, I1

2hIh = I1
2h. (5.3)

The following lemma shows that the postprocessing operator ~Π2
2h satisfies the anisotropic

interpolation properties.
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Lemma 5.1. Denote
~̂
Π2 = ~Π2

2h ◦ FK . ∀v̂ ∈ H3(K̂), |α| = 1, there holds

‖D̂α(~̂v −
~̂
Π2

~̂v)‖0,K̂ ≤ C|D̂α~̂v|2,K̂ . (5.4)

Proof. By (5.1), the interpolation of function v̂ on K̂ can be written as

~̂
Π2

~̂v =

8∑

i=1

pi
~̂v(ai), (5.5)

where v̂i = v̂(âi), i = 1, 2, · · · , 8,

pi = −
1

4
(1 + ξiξ)(1 + ηiη)(1 − ξiξ − ηiη), i = 1, 2, 3, 4,

pi+4 =
1

2
(1 − ξ2)(1 + ηiη), i = 1, 3, pi+4 =

1

2
(1 − η2)(1 + ξiξ), i = 2, 4,

(ξ1, ξ2, ξ3, ξ4) = (−1, 1, 1,−1), (η1, η2, η3, η4) = (−1, 1, 1,−1).

Consider α = (1, 0), we have

D̂α ~̂
Π2

~̂v =
(1 − η)η

4
β11 +

(1 + η)η

4
β12 +

1 − η2

2
β13 + (1 − η)ξβ14 + (1 + η)ξβ15,

where

β11 = ~̂v(a1) − ~̂v(a2), β12 = ~̂v(a3) − ~̂v(a4), β13 = ~̂v(a8) − ~̂v(a6),

β14 = −~̂v(a5) +
~̂v(a1) + ~̂v(a2)

2
, β15 = −~̂v(a7) +

~̂v(a3) + ~̂v(a4)

2
.

Obviously, { (1−η)η
4 , (1+η)η

4 , 1−η2

2 , (1 − η)ξ, (1 + η)ξ}2 is a basis of D̂α([Q2(K̂)\{ξ2η2}]2), and

β11 = −

∫ 1

−1

∂~̂v(ξ,−1)

∂ξ
dξ

△
= E11(D̂

α~̂v),

β12 =

∫ 1

−1

∂~̂v(ξ, 1)

∂ξ
dξ

△
= E12(D̂

α~̂v),

β13 = −

∫ 1

−1

∂~̂v(ξ, 0)

∂ξ
dξ

△
= E13(D̂

α~̂v),

β14 =
1

2
(

∫ 1

0

∂~̂v(ξ,−1)

∂ξ
dξ −

∫ 0

−1

∂~̂v(ξ,−1)

∂ξ
dξ)

△
= E14(D̂

α~̂v),

β15 =
1

2
(

∫ 1

0

∂~̂v(ξ, 1)

∂ξ
dξ −

∫ 0

−1

∂~̂v(ξ, 1)

∂ξ
dξ)

△
= E15(D̂

α~̂v).

By virtue of Cauchy-Schwarz inequality and the trace theorem, we can show that

|E1i( ~̂w)| ≤ C‖ ~̂w‖1,K̂ ≤ C‖ ~̂w‖2,K̂ , i = 1, 2, 3, 4, 5,

i.e., E1i, i = 1, 2, 3, 4, 5, are bounded linear functionals on [H2(K̂)]2.

Then we can employ the basic anisotropic interpolation theorem ([12,13]) and get that

‖D̂α(~̂v −
~̂
Π2

~̂v)‖0,K̂ ≤ C|D̂α~̂v|2,K̂ .

Similarly, (5.4) holds for α = (0, 1). The proof is complete. �

Below we will show the stability of the two operators ~Π2
2h and I1

2h.
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Lemma 5.2. ∀~vh = (v
[1]
h , v

[2]
h ) ∈ ~Vh, qh ∈ Ph, there hold

|~Π2
2h~vh|1,Ω ≤ C|~vh|1,Ω, ‖I1

2hqh‖0,Ω ≤ C‖qh‖0,Ω. (5.6)

Proof. Define an operator T3 : [H1(K̂)]2 → D̂(1,0)([Q2(K̂)\{ξ2η2}]2) as follows:

T3(~w) =
(1 − η)η

4
F11(~w) +

(1 + η)η

4
F12(~w)

+
1 − η2

2
F13(~w) + (1 − η)ξF14(~w) + (1 + η)ξF15(~w). (5.7)

Thanks to the equivalent norms over the finite dimensional space, we have

‖
∂
~̂
Π2

~̂vh

∂ξ
‖0,K̂ = ‖T3(

∂~̂vh

∂ξ
)‖0,K̂ ≤ C‖

∂~̂vh

∂ξ
‖1,K̂ ≤ C‖

∂~̂vh

∂ξ
‖0,K̂ , (5.8)

so by the scaling argument,

‖
∂~Π2

2h~vh

∂x
‖0,K ≤ C‖

∂~vh

∂x
‖0,K . (5.9)

Similarly, one can show that

‖
∂~Π2

2h~vh

∂y
‖0,K ≤ C‖

∂~vh

∂y
‖0,K . (5.10)

Then the first term of (5.6) follows from (5.9) and (5.10).

Now we come to prove the second term of (5.6). Denote Î1 = I1
2h◦FK . Noting the equivalent

norms over the finite dimensional space, we have

‖I1
2hqh‖

2
0,Ω =

∑

K

‖I1
2hqh‖

2
0,K =

∑

K

(hK1hK2)‖Î1q̂h‖
2
0,K̂

≤
∑

K

C(hK1hK2)‖q̂h‖
2
0,∞,K̂

≤
∑

K

C(hK1hK2)‖q̂h‖
2
0,K̂

= C‖qh‖
2
0,Ω.

This completes the proof of the lemma. �

Lemma 5.3. For the two postprocessing operators ~Π2
2h and I1

2h, there hold the following inter-

polation estimates,

|~u − ~Π2
2h~u|1,Ω ≤ Ch2|~u|3,Ω, ‖p − I1

2hp‖0,Ω ≤ Ch2|p|2,Ω. (5.11)

Proof. By Lemma 5.2, we have

|~u − ~Π2
2h~u|21,Ω =

∑

K

∑

|α|=1

‖Dα(~u − ~Π2
2h~u)‖2

0,K

=
∑

K

∑

|α|=1

(hK1hK2)h
−2α
K ‖D̂α(~̂u −

~̂
Π2

~̂u)‖2
0,K̂

≤
∑

K

∑

|α|=1

C(hK1hK2)h
−2α
K |D̂α~̂u|2

2,K̂

=
∑

K

∑

|α|=1

∑

|β|=2

C(hK1hK2)h
−2α
K ‖D̂α+β ~̂u‖2

0,K̂

=
∑

K

∑

|α|=1

∑

|β|=2

Ch2β
K ‖Dα+β~u‖2

0,K ≤ Ch4|~u|23,Ω.
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This proves the first estimate of (5.11). By employing the Bramble-Hilbert lemma, we have

‖p − I1
2hp‖2

0,Ω =
∑

K

‖p − I1
2hp‖2

0,K =
∑

K

(hK1hK2)‖p̂ − Î1p̂‖
2
0,K̂

≤ C
∑

K

(hK1hK2)|p̂|
2
2,K̂

= C
∑

K

∑

|β|=2

(hK1hK2)‖D̂
β p̂‖2

0,K̂

= C
∑

K

∑

|β|=2

h2β
K ‖Dβp‖2

0,K ≤ Ch4|p|22,Ω.

Thus we complete the proof of Lemma 5.3. �

The following theorem is the main result of this section.

Theorem 5.1. Under the assumption of Theorem 4.1, we have the following global supercon-

vergence for the gradient of the velocity and the pressure:

|~u − ~Π2
2h~uh|1,Ω + ‖p − I1

2hph‖0,Ω ≤ Ch2(|~u|3,Ω + |p|2,Ω). (5.12)

Proof. By (5.3), Theorem 4.1, Lemmas 5.2 and 5.3, we have

|~u − ~Π2
2h~uh|1,Ω + ‖p− I1

2hph‖0,Ω

≤ |~u − ~Π2
2h~u|1,Ω + |~Π2

2h(~Πh~u − ~uh)|1,Ω + ‖p − I1
2hp‖0,Ω + ‖I1

2h(Ihp − ph)‖0,Ω

≤ |~u − ~Π2
2h~u|1,Ω + ‖p − I1

2hp‖0,Ω + C(|~uh − ~Πh~u|1,Ω + ‖ph − Ihp‖0,Ω)

≤ Ch2(|~u|3,Ω + |p|2,Ω).

Then the anisotropic global superconvergence is obtained. �

Remark 5.1. Compared with [18, 19], our postprocessing method will save more computa-

tional cost as we only use three quarters of the nodes of all the elements in Jh while those in

[18, 19] use all the nodes. Most importantly, the meshes in this paper need not satisfy the

conventional shape regularity assumption and inverse assumption.

6. Natural Superconvergence at Central Points

As one can see from the previous section, the meshes to obtain the global superconvergence

is somehow heuristic (or in an adhoc manner). In fact, there exists some potential natural

superconvergence with less restrictions on the meshes than those in Section 5. We assume that

the meshes considered in this section are the same as those in Section 3. We will show that the

gradient of the velocity and the pressure are superconvergent at the central points of all the

rectangular elements.

Theorem 6.1. Let (~u, p) be the solution of (3.1) with (~u, p) ∈ [H3(Ω)∩H1
0 (Ω)]2×H2(Ω). Then

we have the following superconvergence results at the central points,

(∑

K

∑

|α|=1

|Dα(~u − ~uh)(xK , yK)|2hK1hK2

) 1

2

≤ Ch2(|~u|3,Ω + |p|2,Ω), (6.1)

(∑

K

|(p − ph)(xK , yK)|2hK1hK2

) 1

2

≤ Ch2(|~u|3,Ω + |p|2,Ω). (6.2)
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Proof. The triangle inequality gives

|Dα(~u − ~uh)(xK , yK)|2

≤ 2(|Dα(~u − ~Πh~u)(xK , yK)|2 + |Dα(~Πh~u − ~uh)(xK , yK)|2). (6.3)

Thanks to the equivalent norm over the finite dimensional space, we have

|Dα(~Πh~u − ~uh)(xK , yK)|

=h−α
K |D̂α(

~̂
Π~̂u − ~̂uh)(0, 0)| ≤ Chα

K‖D̂α(
~̂
Π~̂u − ~̂uh)‖0,∞,K̂

≤Chα
K‖D̂α(

~̂
Π~̂u − ~̂uh)‖0,K̂≤C(hK1hK2)

− 1

2 |~Πh~u − ~uh|1,K . (6.4)

Now, let us consider the first term at the right hand of (6.3). Firstly, we focus on α = (1, 0).

By the scaling technique,

|D(1,0)(u[1] − Π
[1]
h u[1])(xK , yK)|

=h−1
K1|D̂

(1,0)(û[1] − Π̂[1]û[1])(0, 0)|=h−1
K1|l(D̂

(1,0)û[1])|, (6.5)

where in the last step we have used (2.6) and (2.7). Here l(ŵ) = ŵ(0, 0)− 1
4E1(ŵ)− 1

4E2(ŵ)−
3
8E3(ŵ).

From (2.6) and (2.7) it can be easily checked that for all ŵ ∈ P1(K̂),

l(ŵ) = 0. (6.6)

Since H2(K̂) →֒ L∞(K̂), by the Bramble-Hilbert lemma we have

|l(ŵ)| ≤ C|ŵ|2,K̂ , ∀ŵ ∈ H2(K̂). (6.7)

Consequently,

|D(1,0)(u[1] − Π
[1]
h u[1])(xK , yK)| = h−1

K1|l(D̂
(1,0)û[1])|

≤ Ch−1
K1|D̂

(1,0)û[1]|2,K̂≤C(hK1hK2)
− 1

2 h2
K |u[1]|3,K . (6.8)

By the same arguments, we can prove that

|D(1,0)(u[2] − Π
[2]
h u[2])(xK , yK)| ≤ C(hK1hK2)

− 1

2 h2
K |u[2]|3,K , (6.9)

|D(0,1)(u[1] − Π
[1]
h u[1])(xK , yK)| ≤ C(hK1hK2)

− 1

2 h2
K |u[1]|3,K , (6.10)

|D(0,1)(u[2] − Π
[2]
h u[2])(xK , yK)| ≤ C(hK1hK2)

− 1

2 h2
K |u[2]|3,K . (6.11)

Therefore, a combination of (6.8)-(6.11), (6.4) and Theorem 4.1 yields (6.1).

Following the lines of the above arguments, we can prove (6.2), which completes the proof

of the theorem. �

It is useful that both the gradient of the velocity and the pressure are superconvergent at the

central points of all the rectangular elements. From the viewpoint of practical computations,

we are more interested in the accuracy of the solution at the refined meshes. In fact, the central

points of elements are very dense in these domains, so the accuracy of the finite element solution

may be improved considerably. In our future work, we will do some numerical experiments to

demonstrate our competing scheme for these problems.

We close this section by noting that the results in this section also hold for any quasi-uniform

rectangular meshes.
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