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Abstract

In this paper, the multisymplectic Fourier pseudospectral scheme for initial-boundary
value problems of nonlinear Schrödinger equations with wave operator is considered. We in-
vestigate the local and global conservation properties of the multisymplectic discretization
based on Fourier pseudospectral approximations. The local and global spatial conservation
of energy is proved. The error estimates of local energy conservation law are also derived.
Numerical experiments are presented to verify the theoretical predications.
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1. Introduction

The nonlinear Schrödinger equations with wave operator (NSEW)

∂2ψ

∂t2
− ∂2ψ

∂x2
+ i

∂ψ

∂t
+ g(|ψ|2)ψ = 0, (1.1)

is one of the most important models of mathematical physics, with applications in different
fields such as plasma physics, nonlinear optics, water waves and biomolecular dynamics. In this
work, we will concentrate on equation (1.1) subject to initial-boundary conditions

ψ(0, t) = ψ(L, t),
ψ(x, 0) = ψ0, ψt(x, 0) = ψ1.

(1.2)

The important feature of problem (1.1)-(1.2) is the following energy conservation law

‖ψt‖2 + ‖ψx‖2 +
∫ L

0

Q(|ψ|2)dx = const., (1.3)

where Q is a primitive function of g, defined by

Q(s) =
∫ s

0

g(x)dx.

Several numerical methods have been investigated for solving equation (1.1), such as finite
difference methods with conservative type [1, 2].

Bridge and Reich presented a multisymplectic integrator based on a multisymplectic struc-
ture of some Hamiltonian PDEs, such as Schrödinger equations and Klein-Gordon equations
[3, 4]. The theoretical results indicated that significant features of the multisymplectic inte-
grator are excellent for local invariant properties. Many numerical experiments demonstrated
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that the multisymplectic-preserving methods can preserve local and global conservation prop-
erties for long time computations [3, 4, 6, 9, 10, 11, 12, 13]. Moreover, when the Hamiltonian
function is quadratic, the multisymplectic integrators preserve discrete local energy and local
momentum exactly. However, error estimates of energy and momentum conservation laws for
the multisymplectic integrator in the literature remain very limited. Recently, Hong and Li
[10] used Runge-Kutta methods to construct multisymplectic schemes for the nonlinear Dirac
equations and presented the error estimates of local and global conservation laws of energy and
momentum.

Fourier pseudospectral methods have been proven very powerful for periodic initial value
problems with constant coefficients. The well known results include spectral accuracy for
smooth solutions and dispersion free. These properties are important in the numerical sim-
ulation of some physical phenomena.

The NSEW admits a multisymplectic Hamiltonian formulation. It is our objective in this
paper to apply the multisymplectic Fourier pseudospectral method [9] to the equation and
discuss properties of energy conservation law.

This paper is structured as follows. In Section 2, the multisymplectic Hamiltonian formu-
lation for NSEW is established and some conservation properties are obtained. Section 3 is
concerned with multisymplectic Fourier pseudospectral discretizations and spatial conservation
laws of energy. Section 4 involves the construction of fully discretizations scheme and error
estimates of energy conservation law. Numerical experiments are given in Section 5. Finally,
Section 6 contains concluding remarks.

2. Multisymplecticity and Local Conservation Law

A Hamiltonian differential equation is said to be multisymplectic if it can be written as

M∂tz + K∂xz = ∇zS(z), (2.1)

where ∂t and ∂x are the operators of total differentiation with respect to t and x, respectively;
M, K ∈ Rd×d are skew-symmetric; z(x, t) is the vector of state variables and S : Rd → R1 is a
smooth function; ∇zS(z) denotes the gradient of the function S = S(z) with respect to variable
z.

According to [3, 4], an important consequence of multisymplecticity is that the system (2.1)
has a multisymplectic conservation law (MSCL):

∂tω + ∂xκ = 0, (2.2)

where ω and κ are pre-symplectic forms

ω = dz ∧ M+dz, κ = dz ∧ K+dz, (2.3)

which define a symplectic space-time structure. Here ∧ is the exterior multiplication of the two
vectors, and M+ and K+ satisfy

M = M+ + M− and K = K+ + K−,

with
MT

+ = −M− and KT
+ = −K−.

For example, M+ and K+ can be taken as the upper triangular part of matrix M and K,
respectively [8].

The MSCL (2.2) is a local property which indicates that symplecticity for Hamiltonian
PDEs can be vary locally over the spatial domain.

The system (2.1) has local energy conservation law (LECL)

∂tE + ∂xF = 0, (2.4)
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with energy density
E = S(z) + zTxK+z,

and energy flux
F = −zTt K+z.

The system (2.1) also has momentum conservation law (LMCL)

∂tI + ∂xG = 0, (2.5)

with momentum density
I = −zTxM+z,

and momentum flux
G = S(z) + zTt M+z.

For periodic boundary conditions, the local conservation laws can be integrated in x to obtain
global conservation of energy and momentum [6].

In order to multisymplectify the system (1.1), let ψ = a+ ib, ψt = u+ iv, ψx = p+ iq, where
a, b, u, v, p, q are real functions. In terms of these functions, the system (1.1) can be rewritten
as the following first-order system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut − bt − px = −g(a2 + b2)a,
−at = −u,
ax = p,
at + vt − qx = −g(a2 + b2)b,
−bt = −v,
bx = q,

(2.6)

which can be formulated as multisymplectic Hamiltonian system (2.1) with state variable z =
(a, u, p, b, v, q)T and two skew-symmetric matrices

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 −1 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, K =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The Hamiltonian function S : R6 → R, is given by

S =
1
2
(p2 + q2 − u2 − v2) − 1

2
Q(a2 + b2)

=
1
2
(|ψx|2 − |ψt|2) − 1

2
Q(|ψ|2).

By direct calculations, we can prove that with above two skew-symmetric matrices the system
(2.6) satisfies the multisymplectic conservation law

ω = dz ∧ M+dz = da ∧ du+ db ∧ da+ db ∧ dv,
κ = dz ∧K+dz = dp ∧ du+ dq ∧ dv.

The system (2.6) has a local energy conservation law (2.4) with energy density

E = −1
2
Q(a2 + b2) − 1

2
(p2 + q2 + u2 + v2) (2.7)

and energy flux
F = up+ vq. (2.8)
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The system (2.6) also has local momentum conservation law (2.5) with momentum density

I = −pu− qv + pb (2.9)

and momentum flux

G = −1
2
Q(a2 + b2) +

1
2
(p2 + q2 + u2 + v2) − ub. (2.10)

The LECL and LMCL are the local properties because they are independent of boundary
conditions. However, under appropriate assumptions, such as periodic boundary condition or
zero boundary condition, we can obtain the corresponding global conservation laws of local
properties.

Proposition 2.1. Under the assumptions of periodic boundary condition (1.2), the system (1.1)
has global energy and momentum conservation laws

d

dt
E(ψ) = 0, (2.11)

and
d

dt
P(ψ) = 0, (2.12)

where
E(ψ) = ‖ψt‖2 + ‖ψx‖2 +

∫ L
0
Q(|ψ|2)dx,

P(ψ) =
∫ L
0

(�(ψ)�(ψx) − 1
2 (ψxψt + ψxψt))dx.

(2.13)

In (2.13), �(u),�(u) and u denote the real, imaginary part and the conjugate of the complex
function u respectively.

Proof. First, we note that

E(ψ) = −2
∫
R

Edx, P(ψ) =
∫
R

Idx. (2.14)

Integrating (2.4) over interval [0, L] yields∫ L

0

∂tEdx+
∫ L

0

∂xFdx = 0. (2.15)

The periodic boundary condition (1.2) implies∫ L

0

∂xFdx = F |L0 = 0. (2.16)

Substituting (2.16) into (2.15) and using the expression of E give

d
dt [− 1

2

∫ L
0 Q(a2 + b2)dx − ∫ L

0 (u2 + v2 + p2 + q2)dx] = 0,

which shows that (2.11) holds. Similarly, combining (2.14) and the local momentum conserva-
tion law (2.5), we can obtain the momentum conservation law (2.12).

3. Semi-discrete Approximation and Spatial Conservation Laws

The multisymplectic integrator was first introduced by Bridge [3]. The discretization of
the multisymplectic PDE (2.1) and the multisymplectic conservation law (2.2) can be solved
numerically by

M∂j,kt zkj + K∂j,kx zkj = (∇zS(z))kj , (3.1)

and
∂j,kt ωkj + ∂j,kx κkj = 0, (3.2)
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where (∇zS(z))kj = (∇zS(zkj )), ∂
j,k
t and ∂j,kx are discretizations of the corresponding derivatives

∂t and ∂x respectively, and

ωkj =
1
2
(dz)kj ∧ M(dz)kj , κkj =

1
2
(dz)kj ∧ K(dz)kj .

The numerical schemes (3.1) is said to be multisymplectic if (3.2) is a discrete conservation law
of (3.1) [3, 4].

Bridge and Reich [5] introduced the multisymplectic Fourier transform for multisymplectic
PDEs with periodic boundary conditions. Multisymplectic Fourier transform leads to the multi-
symplecticity on Fourier space. Chen and Qin [9] demonstrated that the Fourier pseudospectral
discretization applied to the periodic nonlinear Schrödinger equation lead to a multisymplectic
integrator. In this section, we will apply Fourier pseudospectral discretizations to the NSEW
(1.1), which yields a multisymplectic integrator. We start by introducing some basic properties
of the Fourier pseudospectral method that will be used in the remaining of the paper. For
simplicity, we will consider the spatial domain Λ = [0, L].

For any integer N > 0, denote by

SN = {gj(x);−N/2 ≤ j ≤ N/2 − 1}
the interpolation space, where gj(x) is a trigonometric polynomial of degreeN/2 given explicitly
by

gj(x) =
1
N

N/2∑
l=−N/2

1
cl
eilµ(x−xj). (3.3)

In (3.3), cl = 1 (|l| 	= N/2), c−N/2 = cN/2 = 2, µ = 2π
L .

Let h = L
N be spatial step. Consider the set of points

xj = hj, j = 0, 1, · · · , N − 1,

referred as collocation nodes. The discrete Fourier coefficients of a function u in Λ with respect
to these points are

ũl =
1
Ncl

N−1∑
j=0

u(xj)e−ilµxj . (3.4)

Due to the orthogonality relation

1
N

N−1∑
m=0

eiµpxm =
{

1, p = nN, n is an integer
0, p 	= nN

, (3.5)

we have the inversion formula

uj = u(xj) =
N/2∑

l=−N/2
ũle

ilµxj . (3.6)

The interpolation operator IN is defined as follows. For a function u(x) ∈ C0(Λ), N/2-degree
trigonometric interpolation operator IN at the nodes satisfies

INu(xj) = u(xj), j = 0, 1, · · · , N − 1.

For u, v ∈ C0(Λ), define the bilinear form

(u, v)N = h

N−1∑
j=0

u(xj)v(xj). (3.7)
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Associate with (3.7) is the discrete norm

‖u‖N = (u, u)1/2N . (3.8)

It is easy to verify that
(INu, v)N = (u, v)N , ∀u, v ∈ SN . (3.9)

As a consequence, (3.7) is an inner product on SN , and the interpolation operator IN can be
regarded as an orthogonal projection on SN with respect to the inner product (3.7).

The values for the derivatives d
dxINu(x) at the collocation points xj are obtained in terms

of the values of uj and the differential matrix DN , i.e.

d

dx
INu(x)|x=xj = (DNu)j ,

where DN represents Fourier pseudospectral differential matrix with the elements

dj,s =
{

(−1)j+s πLcot (xj−xs)π
L , s 	= j,

0, s = j.

We introduce the notation of the Hadamard product of vectors and state its properties.

Definition 3.1. Let u = (u0, u1, · · · , uN−1)T and v = (v0, v1, · · · , vN−1)T . The Hadamard
product of vectors is defined by

u ◦ v = (u0v0, u1v1, · · · , uN−1vN−1)T .

According to the definition of the discrete inner product and the discrete norm, following
identities can be derived easily.

Lemma 3.1. (1) h
∑N−1

j=0 (u ◦ v)j = (u, v)N , and (2) h
∑N−1

j=0 (u ◦ u)j = ‖u‖2
N .

Lemma 3.2. Let u(x), v(x) ∈ SN , u = (u0, u1, · · · , uN−1)T , v = (v0, v1, · · · , vN−1)T , where
uj = u(xj), vj = v(xj), with xj being the Fourier collocation points. Then

DN (u ◦ v) = DNu ◦ v + u ◦DNv. (3.10)

Proof. Let Dx represent the differential operator d
dx . Since u ∈ SN , we have

Dxu(x) = Dx(INu(x)) = Dx[
N/2∑

l=−N/2
(

1
Ncl

N−1∑
n=0

u(xn)e−ilµxn)eilµx]

=
N/2∑

l=−N/2

N−1∑
n=0

ilµ

Ncl
u(xn)eilµ(x−xn).

On the other hand, by the definition of DN

(DNu)j =
N−1∑
n=0

dj,nu(xn) =
N−1∑
n=0

1
N

(Dx

N/2∑
l=−N/2

1
cl
eilµ(x−xn))|x=xju(xn)

=
N−1∑
n=0

N/2∑
l=−N/2

ilµ

Ncl
u(xn)eilµ(xj−xn)

= (Dxu(x))|x=xj .

Thus, we get
(Dxu(x))|x=xj = (DNu)j. (3.11)



Multisymplectic Pseudospectral Method for Schrödinger Equations 37

From the definition of Hadamard product, (3.11) implies

[Dx(u(x) · v(x))]|x=xj = [DN (u ◦ v)]j . (3.12)

Combining (3.12) and the following identity

[Dx(u(x) · v(x))]|x=xj = [Dxu(x)]|x=xj · v(xj) + u(xj) · [Dxv(x)]|x=xj ,

we obtain
[DN (u ◦ v)]j = [Dxu(x)]x=xj · v(xj) + u(xj) · [Dxv(x)]x=xj ,

which is equivalent to (3.10). The proof is completed.

Lemma 3.3. Let u = (u0, u1, · · · , uN−1)T and v = (v0, v1, · · · , vN−1)T . Then

h

N−1∑
j=0

[DN (u ◦ v)]j = 0. (3.13)

Proof. By virtue of Lemmas 3.1 and 3.2, and note that DN is skew-symmetric, we have

h

N−1∑
j=0

[DN (u ◦ v)]j = (DNu, v)N + (u,DNv)N = 0,

which complete the proof.
The semi-discrete Fourier pseudospectral approximation for system (2.6) is constructed as

follows: Find a(t), b(t), u(t), v(t), p(t), q(t) ∈ SN , such that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut(xj , t) − bt(xj , t) − (DNp)(xj , t) = −g[a2(xj , t) + b2(xj , t)]a(xj , t),
−at(xj , t) = −u(xj, t),
(DNa)(xj , t) = p(xj , t),
at(xj , t) + vt(xj , t) − (DNq)(xj , t) = −g[a2(xj , t) + b2(xj , t)]b(xj , t),
−bt(xj , t) = −v(xj , t),
(DNb)(xj , t) = q(xj , t).

(3.14)

Rewrite (3.14) as complex function: Find ψ(t), φ(t), w(t) ∈ SN , such that⎧⎨
⎩

φt(xj , t) − (DNw)(xj , t) + iψt(xj , t) = −g(|ψ(xj , t)|2)ψ(xj , t),
ψt(xj , t) = φ(xj , t),
(DNψ)(xj , t) = w(xj , t).

(3.15)

The system (3.14) is called the multisymplectic Fourier pseudospectral discretization for system
(2.6), because it satisfies the following multisymplectic conservation law.

Theorem 3.1. The multisymplectic Fourier pseudospectral discretization (3.14) has N semi-
discrete multisymplectic conservation laws

d

dt
ωj +

N−1∑
k=0

(DN )jkκjk = 0, (j = 0, 1, · · · , N − 1), (3.16)

and satisfies the total symplecticity in time

d

dt

N−1∑
j=0

ωj = 0, (3.17)

where
ωj = dzj ∧ M+dzj = daj ∧ duj + dbj ∧ daj + dbj ∧ dvj ; (3.18)

κjk = dzj ∧ K+dzk + dzk ∧ K+dzj
= dpj ∧ duk + dqj ∧ dvk + dpk ∧ duj + dqk ∧ dvj . (3.19)
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Proof. First, rewrite (3.14) as a compact form

M
d

dt
zj + K

N−1∑
k=0

(DN )j,kzk = ∇zS(zj). (3.20)

The variational equation associated with (3.20) is

M
d

dt
dzj + K

N−1∑
k=0

(DN )j,kdzk = ∇zzS(zj)dzj . (3.21)

Taking the wedge product with dzj on both sides of (3.21) and noting that

dzj ∧∇zzS(zj)dzj = 0,
1
2dzj ∧Mdzj = dzj ∧ M+dzj ,
1
2dzj ∧ Kdzj = dzj ∧ K+dzj ,

we can obtain (3.16). Summing the semi-discrete multisymplectic conservation law (3.16) over
all spatial grid points, and noting that

N−1∑
j=0

N−1∑
k=0

(DN )jkκjk = 0, (3.22)

we can reach the desired result (3.17). The proof is completed.
Theorem 3.1 indicates in addition to conservation of local symplecticity (3.16), it also has

conservation of total symplecticity in time (3.17). This partially explains that the multisym-
plectic integrators can well approximate the energy and momentum conservation of the system
over long time [13]. Furthermore, it is found that the spatial conservation property of energy
to the NSWE when the Fourier pseudospectral discretizations is used.

Theorem 3.2. The multisymplectic Fourier pseudospectral discretization (3.14) satisfies the
local spatial energy conservation law

d

dt
Ej(t) + (DNF (t))j = 0, j = 0, 1, · · · , N − 1, (3.23)

where
Ej(t) = − 1

2Q[a2
j(t) + b2j(t)] − 1

2 [u2
j(t) + v2

j (t) + p2
j(t) + q2j (t)],

F (t) = u(t) ◦ p(t) + v(t) ◦ q(t); (3.24)

and the spatial energy conservation law

d

dt
E(t) = 0, (3.25)

where

E(t) = −2h
N−1∑
j=0

Ej(t) = h

N−1∑
j=0

Q(|ψj |2) + (‖ψt(t)‖2
N + ‖ψx(t)‖2

N ). (3.26)

Proof. We consider the abstract form of (3.14)

M
d

dt
zj(t) + K(DNz(t))j = ∇zS(zj(t)). (3.27)

Let K = K+ +K− with KT
+ = −K−. Taking inner product with d

dtzj(t) on both sides of (3.27)
and noting that ( ddtzj(t),M

d
dtzj(t)) = 0, we obtain

( ddtzj(t),K+(DNz(t))j) + ( ddtzj(t),K−(DNz(t))j) = d
dtS(zj(t)).
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It follows
d
dt [S(zj(t) + (DNz(t))j ,K+zj(t))]
−( ddtzj(t),K+(DNz(t))j) − (K+zj(t), (DN

d
dtz(t))j) = 0.

(3.28)

By some computations, it is not difficult to show that

S(zj(t)) + (DNz(t))j ,K+zj(t))]
= − 1

2Q[a2
j(t) + b2j(t)] − 1

2 [u2
j(t) + v2

j (t) + p2
j(t) + q2j (t)],

(3.29)

and
( ddtzj(t),K+(DNz(t))j) + (K+zj(t), (DN

d
dtz(t))j)

= −uj(t)(DNp(t))j − vj(t)(DN q(t))j − pj(t)(DNu(t))j − qj(t)(DNv(t))j
= −(DN (u(t) ◦ p(t))j − (DN (v(t) ◦ q(t))j .

(3.30)

Substituting (3.29) and (3.30) into (3.28) and using Hadamard product and Lemma 3.1, we can
obtain (3.23).

According to Lemma 3.3 and (3.24), we have

h

N−1∑
j=0

(DNF (t))j = 0. (3.31)

Multiplying (3.23) by −2h, summing over the spatial index and by using (3.31), we can obtain
the desired result (3.25). The proof of this theorem is then complete.

4. Fully Discrete Scheme and Error Estimation of Energy
Conservation Law

To obtain a multisymplectic integrator, symplectic time integrator methods, such as implicit
midpoint method and symplectic Störmer-Verlet method, should be used.

Let zn = (zn1 , zn2 , · · · , znN−1)
T , where znj denotes the numerical approximation of z(xj , tn).

Let ∆t = tn+1 − tn be the temporal step. In addition, define the average operator

µtznj = 1
2 (zn+1

j + znj ),

and the difference operator

δ+t znj = 1
∆t (z

n+1
j − znj ).

For difference operator δ+t and average operator µt, we have the following lemma (see[14]).

Lemma 4.1. Let B(v, w) be a bilinear form. Then a discrete chain rule holds for B(v, w)

B(δ+x vni , µxw
n
i ) +B(µxvni , δ

+
x wn

i ) = δ+x B(vni ,w
n
i ).

Applying the implicit midpoint rule to discretize (3.14) in time yields a simple second-order
Fourier pseudospectral scheme⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δ+t u
n
j − δ+t b

n
j − (DNµtp

n)j = −g[(µtanj )2 + (µtbnj )
2]µtanj ,

−δ+t anj = −µtunj ,
(DNµta

n)j = µtp
n
j ,

δ+j a
n
j + δ+t v

n
j − (DNµtq

n)j = −g[µtanj )2 + (µtbnj )
2]µtbnj ,

−δ+t bnj = −µtvnj ,
(DNµtb

n)j = µtq
n
j .

(4.1)

The abstract form of (4.1) is

Mδ+t znj + K(DNµtzn)j = ∇zS(µtznj ). (4.2)

Following the argument similar to the proof of Theorem 3.1, we can obtain the fully discrete
multisymplectic conservation law.
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Theorem 4.1. The integrator (4.1) has N fully-discrete multisymplectic conservation laws

δ+t ω
n
j +

N−1∑
k=0

(DN )jkµtκnjk = 0, (j = 0, 1, · · · , N − 1), (4.3)

and also satisfies the total symplecticity in time
N−1∑
j=0

ωn+1
j =

N−1∑
j=0

ωnj , (4.4)

where
ωnj = dznj ∧M+dznj

= danj ∧ dunj + dbnj ∧ danj + dbnj ∧ dvnj ;
κnjk = dznj ∧K+dznj

= dpnj ∧ dunk + dqnj ∧ dvnk + dpnk ∧ dunj + dqnk ∧ dvnj .
(4.5)

Islas and Schober [13] have proved that if S(z) is the quadratic functional in z, then the mul-
tisymplectic Fourier pseudospectral method (4.2) conserves the LECL and LMCL exactly. Since
the equation (1.1) is nonlinear and S(z) is not a quadratic function, we use the discretization
of the forms

(RE)n+1/2
j = δ+t E

n
j + (DNFn+1/2)j , (4.6)

(RM )n+1/2
j = δ+t I

n
j + (DNGn+1/2)j , (4.7)

to evaluate the local conservation laws of energy and momentum, where

Enj = −1
2
Q[(anj )

2 + (bnj )
2] − 1

2
[(unj )

2 + (vnj )2 + (pnj )
2 + (qnj )2],

Fn+1/2 = µtun ◦ µtpn + µtvn ◦ µtqn, Inj = pnj · bnj − pnj · unj − qnj · vnj ,

Gn+1/2 = −1
2
Q[(µtan)2 + (µtbn)2] +

1
2
[(µtun)2 + (µtvn)2 + (µtpn)2 + (µtqn)2]− µtun ◦ µtbn.

(RE)n+1/2
j and (RM )n+1/2

j are called the residual of LECL and LMCL, respectively. If (RE)n+1/2
j =

0, for all spatial index j and temporal index n, then we say the solutions of (4.2) satisfies discrete
LECL.

In addition, we define the discrete energy and momentum as follows

En = −2h
N−1∑
j=0

Enj , Pn = h
N−1∑
j=0

Inj . (4.8)

Lemma 4.2. The residual (RE)n+1/2
j of the LECL has the expression:

(RE)n+1/2
j = δ+t S(znj ) − (δ+t znj ,∇zS(µtznj )). (4.9)

Proof. Taking inner product with δ+t znj on both sides of (4.2) and noting that

(δnt z
n
j ,Mδ+t znj ) = 0,

we have
(δ+t znj ,K(DNµtzn)j) = (δ+t znj ,∇zS(µtznj )). (4.10)

Since matrix K = K+ + K− with KT
+ = −K−, by Lemma 4.1, we can deduce

(δ+t znj ,K+(DNµtzn)j) + (δ+t znj ,K−(DNµtzn)j)
= δ+t (znj , µtz

n
j ) − (µtznj , δ

n
t K+(DNzn)j) − ((DNµtzn)j ,K+δ

n
t z

n
j ).

(4.11)
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Combining (4.10) and (4.11) gives

δ+t S(znj ) − (δ+t znj ,∇zS(µtznj ))
= δ+t [(K+znj , (DNzn)j) + S(znj )] − (K+µtznj , (DNδ

+
t zn)j)

−(δ+t znj ,K+(DNµtzn)j).
(4.12)

It is easy to show that

(K+µtznj , (DNδ
+
t zn)j) + (δ+t znj ,K+(DNµtzn)j)

= −[DN(δ+t znj ,K+µtznj )]j
= −(DNF

n+1/2)j .
(4.13)

It follows from (4.12) and (4.13) that

(RE)n+1/2
j = δ+t S(znj ) − (δ+t znj ,∇S(µtznj )).

The proof of this lemma is complete.
By using similar technique proposed by Hong and Li [10], we obtain the error estimates for

the LECL and discrete energy.

Theorem 4.2. Assume ∆t is sufficiently small, and the solution z of (3.16) and ∂tz are bounded
in the considering (x, t) domain. Then there exists a constant C1 independent of ∆t and h,
such that the residual (RE)n+1/2

j of discrete LECL satisfies∣∣∣(RE)n+1/2
j

∣∣∣ ≤ C1∆t2. (4.14)

Proof. Let z = 1
2 (x + y) and v = y − x. Using Taylor’s expansion gives

S(y) = S(z) +
1
2
DS(z) · v +

1
2! × 4

D2S(z) · (v,v)

+
1

3! × 8
D3S(z) · (v,v,v) +

1
4! × 16

D4S(z) · (v,v,v,v) +O(‖v‖5),

S(x) = S(z) − 1
2
DS(z) · v +

1
2! × 4

D2S(z) · (v,v)

− 1
3! × 8

D3S(z) · (v,v,v) +
1

4! × 16
D4S(z) · (v,v,v,v) +O(‖v‖5),

which gives

S(y) − S(x) −DS(z) · v =
1

3! × 4
D3S(z) · (v,v,v) +O(‖v‖5), (4.15)

where the operator D is the first order derivative with respect to z (i.e. the gradient ∇z), D2

is the second derivative matrix ∇zz and so on.
Let v = αw, where α > 0, and w ∈ Rd is a unit vector. Take y = zn+1

j , x = znj . Then the
expression (4.15) can be written as

S(zn+1
j ) − S(znj )−(∇zS(µtznj ), zn+1

j − znj )

=
1
24
α3D3S(µtznj ) · (w,w,w) +O(α5),

or

(RE)n+1/2
j =

1
24∆t

α3D3S(µtznj ) · (w,w,w) +
O(α5)

∆t
. (4.16)

Notice that α
∆t = ‖δ+t znj ‖. Then the boundedness of z and ∂tz imply

α

∆t
= ‖δ+t znj ‖ ≤ C.
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Thus, we have ∣∣∣(RE)n+1/2
j

∣∣∣ ≤ C1∆t2.

This complete the proof of this theorem.

Theorem 4.3. Under the assumptions of Theorem 4.2, the local error of the energy En satisfies∣∣En+1 − En∣∣ ≤ C2∆t3, (4.17)

where C2 is independent of ∆t and h.

Proof. By Theorem 4.2 and notice that h
∑N−1
j=0 (DNF

n+1/2)j = 0, we have

∣∣En+1 − En∣∣ = ∆th
N−1∑
j=0

(RE)n+1/2
j

≤ ∆th
N−1∑
j=0

C1∆t2 = LC1∆t3 ≤ C2∆t3.

The proof is finished.

Corollary 4.1. Under the assumptions of Theorem 4.2, the global error of the energy En
satisfies ∣∣En − E0

∣∣ ≤ C3∆t2, (4.18)

where C3 is independent of ∆t and h.

Now if
S(z) =

1
2
zTAz + bT z, (4.19)

where A is an arbitrary symmetric matrix with the size in terms of z, and b is any vector with
the same size of z, we have

Dk(z) ≡ 0, for k ≥ 3.

According to (4.16), we find that
(RE)n+1/2

j ≡ 0.

In this situation, from Theorem 4.2 and Theorem 4.3, we can get that

Corollary 4.2. For the multisymplectic Hamiltonian system (2.1), if the Hamiltonian S(z) has
the form of (4.19), then the multisymplectic Fourier pseudospectral method conserves the LECL
and energy conservation law, i.e.

(RE)n+1/2
j = 0, En − E0 = 0, for n ≥ 1. (4.20)

5. Numerical Experiments

To illustrate our results presented in previous sections, we present the numerical simulation
results of the NSEW with periodic initial boundary conditions by using the multisymplectic
Fourier pseudospectral method.

The complex vector notation of the multisymplectic Fourier pseudospectral method of (4.1)
reads {

A1ψ
n+1 = A2ψ

n + 2∆tφn − ∆t2g(
∣∣ψn+1/2

∣∣2) ◦ ψn+1/2,
φn+1 = 2

∆t(ψ
n+1 − ψn) − φn,

(5.1)

where A1 = (2 + i∆t)EN − 1
2∆t2D2

N , A2 = (2 + i∆t)EN + 1
2∆t2D2

N and EN is the identity
matrix.
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Figure 1: Evolution of the error in the simulation of a plane wave with N=32, ∆t = 0.01, 2450 < t <
2500. Left: maximum error in the LECL, right: maximum error in the LMCL.
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Figure 2: Evolution of the error in the simulation of a plane wave with N=32, ∆t = 0.01, 2450 < t <
2500. Left: maximum local error of the energy, right: maximum local error of the momentum.

The implementation of the first equation of (5.1) requires the solutions of a nonlinear system
at each time step. We propose the following Predictor-Corrector algorithm which is much easier
to implement and much more efficient in computations.
Predictor:

A1ψ
n+1,[0] = A2ψ

n + 2∆tφn − ∆t2g(|ψn|2) ◦ ψn (5.2)

Corrector:

A1ψ
n+1,[l+1] = A2ψ

n + 2∆tφn − ∆t2g(
∣∣∣ψn+ψn+1,[l]

2

∣∣∣2) ◦ ψn+ψn+1,[l]

2

l = 0, 1, 2, · · ·
(5.3)

In our calculation, the iterations to solve system (5.3) on each time step were judged to be
convergent if the maximum absolute error of two successive iterative values was less than ap-
proximately 1.0 × 10−15.
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Figure 3: Evolution of the error in the simulation of a plane wave with N=32, ∆t = 0.01, 2450 < t <
2500. Left: maximum global error of the energy, right: maximum global error of the momentum.
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Figure 4: The modulus of the numerical solution of a solitary wave.

Let ∆En = En−E and ∆Pn = Pn−P be the global errors of discrete energy and momentum,
∆lEn = En−En−1 and ∆lPn = Pn−Pn−1 be the local errors of discrete energy and momentum
at t = n∆t, respectively. Let

RE = max|(RE)n+1/2
j |, RM = max|(RM )n+1/2

j |,
∆lE = max |∆lEn|, ∆lP = max |∆lPn|,
∆E = max |∆En|, ∆P = max |∆Pn|.

The purpose of the present numerical experiments is to verify numerically for the proposed
schemes (i) the error in the energy conservation laws depends only on the temporal step ∆t; (ii)
the error in LECL and the global error of energy are second-order accurate in time while the
local error of energy is of third-order accuracy; and (iii) the discrete momentum is conserved
exactly since it is quadratic invariant.
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Figure 5: Evolution of the error in the simulation of a solitary wave with N=128, ∆t = 0.01, 0 < t <
1000. Left: maximum error in the LECL, right: maximum error in the LMCL.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−13 The local error of the discrete energy

time
0 200 400 600 800 1000

0

0.5

1

1.5

2

2.5

3
x 10

−15 The local error of the discrete momentum

time
Figure 6: Evolution of the error in the simulation of a solitary wave with N=128, ∆t = 0.01, 0 < t <
1000. Left: maximum local error of the energy, right: maximum local error of the momentum.

Example 1. In the first example, we choose g(s) = 2s. The problem is solved with periodic
boundary conditions on the space domain [0, 2π], and the initial conditions

ψ0 = (1 + 0.1 ∗ i cos(x)); ψ1 = i sin(x),

for times up to T = 100.
Table 1 lists the numerical errors in the LECL and LMCL, and in the local and global errors

of energy and momentum with various collocation points and temporal steps. It is observed
from Table 1 that the errors in the LECL and the discrete energy are numerically independent
of the number of collocation points, which are second order in time both in the LECL and
in the global error of energy, third order in local error of energy. This is consistent with the
theoretical results of Theorem 4.2 , Theorem 4.3 and Corollary 4.1.
Example 2. Plane wave solution. The NSEW (1.1) has a plane wave solution of the form

ψ(x, t) = Aei(Kx−Ωt). (5.4)
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Figure 7: Evolution of the error in the simulation of a solitary wave with N=128, ∆t = 0.01, 0 < t <
1000. Left: maximum global error of the energy, right: maximum global error of the momentum.

Table 1: The errors in the LECL and LMCL, and the local and global errors of the discrete
energy and momentum, with T=100.

N 32 32 32 64 64 64

∆t 0.05 0.01 0.005 0.05 0.01 0.005

RE 3.95E-03 1.58E-04 4.06E-05 3.98E-03 1.59E-04 3.98E-05

RM 8.52E-06 1.41E-05 1.39E-05 2.92E-07 4.58E-10 5.52E-11

∆lE 7.61E-04 6.13E-06 7.70E-07 7.61E-04 6.13E-06 7.67E-07

∆lP 1.69E-12 8.71E-13 7.36E-14 1.69E-12 8.70E-13 7.14E-14

∆E 5.51E-03 2.21E-04 5.53E-05 5.51E-03 2.21E-04 5.53E-05

∆P 2.84E-10 1.99E-10 4.34E-10 1.63E-10 1.80E-10 4.34E-10

where A is the amplitude, K is the wave-number and Ω is the frequency, which satisfy

Ω2 − Ω − g(A2) −K2 = 0.

In this experiment, we choose g(s) = 2s, A =
√

3, K = 6,Ω = 7. The problem is solved with
periodic boundary conditions on the space domain [0, 2π], and the initial conditions

ψ0 =
√

3ei6x, ψ1 = −7
√

3iei6x,

for times up to T = 2500. It follows from (2.13) that the exact values of the energy E and the
momentum P for this problem are E = 528π,P = 234π, respectively.

The local and global invariants obtained by using the multisymplectic Fourier pseudospectral
schemes are very well preserved for long time computations. For example, the maximum errors
in the LECL and LMCL for 2450 < t < 2500 are O(10−5) and O(10−9) (see Figure 1), while
the local errors of the discrete energy and momentum are O(10−6) and O(10−12) (see Figure
2), respectively. Moreover, Figure 1-3 show that the errors in the global invariants and the local
conservation laws do not exhibit any growth for the duration of the simulation except for the
global error of momentum.
Example 3. Solitary wave solution. We consider the following problem

∂2ψ

∂t2
− ∂2ψ

∂x2
+ i

∂ψ

∂t
− 2 |ψ|2 ψ = 0, (5.5)
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with the boundary condition ψ → 0 as |x| → +∞. The analytic expression of the solitary
solution of the equation (5.5) is

ψ(x, t) = Asech(Kx)eiΩt,

where the amplitude A of the wave and Ω are relate to K through the relation

A = |K|, Ω =
1
2
(−1 ±

√
1 − 4K2).

It is expected that the solitary solution will also be valid for sufficiently large (finite) region.
Thus, we imposed the periodic boundary conditions on spatial domain that was sufficiently
large so that the solitary waves were not affected by the boundaries.

We choose K = 1
4 and Ω = − 1

2 −
√

3
4 . Using the numerical scheme presented in the previous

section, we solve the equation (5.5) together with the initial condition

ψ0 =
1
4
sech(Kx), ψ1 = −Ωi

4
sech(Kx), (5.6)

on the interval −40 ≤ x ≤ 40 for times up to T = 1000. The modulus of the numerical solution
obtained using spatial grid points N = 128 and a time step of ∆t = 0.01 is presented in Figure
4, which shows that the solitary wave is stable in the sense that it does not leave dispersive
oscillations. The evolution of the maximum errors in the LECL and LMCL are plotted in Figure
5 which shows that the errors are up to O(10−7). In Figure 6 and Figure 7, we present the
local and global errors of the discrete energy and momentum, respectively. Clearly, we can see
from Figure 6 and Figure 7 that the multisymplectic Fourier pseudospectral method preserves
each of the conserved quantities very well (up to O(10−10) for energy and up to O(10−14) for
momentum). This behavior provides a valuable check on our numerical results.

6. Conclusions

In this paper we have developed the multisymplectic Fourier pseudospectral method for
the nonlinear Schrödinger equations with wave operator. The main issues are spatial energy
conservation laws and the error estimates in the LECL and in the discrete energy. We have
proved that the multisymplectic Fourier pseudospectral method proposed in this work admits
the spatial energy conservation. Moreover, we demonstrated that the error in the LECL and
the global error in discrete energy are second order in time, while the local error in the discrete
energy is of third order. Numerical solutions are in good agreement with our theoretical results.
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