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Abstract

The analytic and discretized dissipativity of nonlinear infinite-delay systems of the form

x′(t) = g(x(t), x(qt))(q ∈ (0, 1), t > 0) is investigated. A sufficient condition is presented

to ensure that the above nonlinear system is dissipative. It is proved the backward Euler

method inherits the dissipativity of the underlying system. Numerical examples are given

to confirm the theoretical results.
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1. Introduction

Let H be a complex Hilbert space with the inner product 〈·, ·〉 and ‖ · ‖ the correspond-
ing norm, X a dense continuously imbedded subspace of H . Consider the delay differential
equations (DDEs) {

x′(t) = g(t, x(t), x(α(t))), t ≥ 0,

x(t) = ϕ(t), t ∈ [ inf
s≥0

α(s), 0], (1)

where g : [0, +∞) × X × X → H, ϕ(t) and α(t) are given functions with α(t) ≤ t for all t ≥ 0.
Many dynamical systems are characterized by the property of possessing a bounded absorb-

ing set which all trajectories enter in finite time and thereafter remain inside. In the study of
dissipative systems it is often the asymptotic behaviour of the system that is of interest, and so
it is highly desirable to have numerical methods that retain the dissipativity of the underlying
system.

In 1994, Humphries and Stuart[5, 6] first studied the dissipativity of Runge-Kutta methods
for dynamical systems without delay. Later, many results on the dissipativity of numerical
methods for dynamical systems without delays were found[7, 8, 20]. For DDEs with constant
delay, i.e., τ(t) ≡ τ , Huang[9, 10] gave a sufficient condition for the dissipativity of the theo-
retical solution, and investigated the dissipativity of (k, l)-algebraically stable[3] Runge-Kutta
methods and G(c, p, 0)-algebraically stable[13] one-leg methods. In 2004, Tian[18] studied the
dissipativity of DDEs with a bounded variable lag and the numerical dissipativity of θ-method.
Moreover, Wen (Wen L.P., Numerical stability analysis for nonlinear Volterra functional dif-
ferential equations in abstract spaces(in Chinese), Ph.D.Thesis, Xiangtan University, 2005.)
discussed the dissipativity of Volterra functional differential equations, and further investigated
the disspativity of DDEs with piecewise delays and a class of linear multistep methods.
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An interesting case of (1) is the pantograph equation, corresponding to

α(t) = qt, q ∈ (0, 1),

which can be viewed as a representative of infinite time delay. The pantograph equation arises
in quite different fields of pure and applied mathematics such as number theory, dynamical
systems, probability, mechanics and electrodynamics[2, 11]. In particular, it was used by Ock-
endon and Tayler[17] to study how the electric current is collected by the pantograph of an
electric locomotive, from where it gets its name.

In early work, a constant stepsize was considered for discretization of pantograph equations.
As pointed out in Liu[15, 16], however, this kind of stepsize precludes long time integration
due to computer memory restrictions. In order to overcome this difficulty, Liu[15] transformed
the pantograph equation into a differential equation with a constant delay by a change of
variable, suggested by Jackiewicz [12]. Later, Liu[16] and Bellen, Guglielmi and Torelli [1]
proposed non-constant stepsize strategies where the stepsizes are geometrically increasing and
they investigated the stability of the θ-method.

Recently, many papers have dealt with exact and discretized stability of pantograph equa-
tions (see, e.g.,[1, 11, 16]). But up to now, no results of dissipativity have been known for the
pantograph equation and its discrete counterpart.

In this paper, we transform the pantograph equation into a non-autonomous DDE with a
constant delay by a change of variable, then investigate the dissipativity of the resulting DDE
and the backward Euler method. A sufficient condition is presented to ensure that the above
system is dissipative. It is shown that the backward Euler method inherits the dissipativity of
the underlying system.

2. Dissipativity of DDEs

Consider pantograph equation{
x′(t) = g(x(t), x(qt)), t ≥ 0,

x(0) = x0,
(2)

where q is a constant with 0 < q < 1, and g satisfies

Re〈u, g(u, v)〉 ≤ γ + α‖u‖2 + β‖v‖2, u, v ∈ X, (3)

with γ, α and β denoting real constants.
By the change of the independent variable y(t) = x(et)(see [12, 15]), (2) can be transformed

into the constant delay differential equation{
y′(t) = f(t, y(t), y(t − τ)), t ≥ 0,

y(t) = ϕ(t), t ≤ 0,
(4)

where τ = −logq and
f(t, y(t), y(t − τ)) = etg(y(t), y(t − τ)). (5)

It follows from (3) and (5) that

Re〈u, f(t, u, v)〉 ≤ et(γ + α‖u‖2 + β‖v‖2), t ≥ 0, u, v ∈ X. (6)

Definition 1. The evolutionary equation (2) is said to be dissipative in H if there is a bounded
set B ⊂ H such that for all bounded sets Φ ⊂ H there is a time t0 = t0(Φ), such that for all
initial values x0 contained in Φ, the corresponding solution x(t) is contained in B for all t ≥ t0.
B is called an absorbing set in H.
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Proposition 1. If a function g satisfies (3), then β ≥ 0 and γ ≥ 0.
Lemma 1. Suppose

Y ′(t) ≤ 2et(γ + αY (t) + βY (t − τ)), t ≥ 0 (7)

with α + β < 0 and β > 0. Then

Y (t) ≤ − γ

α + β
+ Ge−µ∗t, t ≥ 0, (8)

where G = 2 sup
t≤0

Y (t) > 0, and µ∗ > 0 is defined as

µ∗ = inf
t≥0

{µ(t) : µ(t) + 2etα + 2etβeµ(t)τ = 0}. (9)

Proof. For any t ≥ 0, let
H(µ) = µ + 2etα + 2etβeµτ ,

we have H(0) = 2et(α + β) < 0, H(+∞) = +∞ and H ′(µ) = 1 + 2etβτeµτ > 0. Therefore,
for this given t, there is a unique µ(t) > 0 such that µ(t) + 2etα + 2etβeµ(t)τ = 0. Hence the
relation

µ + 2etα + 2etβeµτ = 0, t ≥ 0, (10)

determines an implicit function µ = µ(t) for t ≥ 0. Differentiating both sides of (10) with
respect to t yields

dµ

dt
+ 2etα + 2etβeµτ + 2etβτeµτ dµ

dt
= 0. (11)

Setting dµ
dt = 0 in (11), we have

µ =
1
τ

log
−α

β
> 0,

that is, µ(t) > 0 when t satisfies dµ
dt = 0.

For t = 0 in (10), we obtain µ(0) > 0. (10) can be rewritten as

e−tµ + 2α + 2βeµτ = 0.

It follows from the above formula that µ(+∞) > 0. Therefore,

µ∗ = min{µ(0), µ(+∞),
1
τ
log

−α

β
} > 0.

Now we will prove by contradiction that (8) is true. Suppose there is some t̃ > 0 such that

Y (t̃) > − γ

α + β
+ Ge−µ∗ t̃.

Let Z(t) = − γ
α+β + Ge−µ∗t, w(t) = Z(t) − Y (t) and

ς = inf{t ≥ 0 : Z(t) − Y (t) ≤ 0}. (12)

It is obvious that w(0) > 0, w(t̃) < 0. Therefore, there is ς > 0 such that w(ς) = Z(ς)−Y (ς) = 0
and

w′(ς) = Z ′(ς) − Y ′(ς) ≤ 0. (13)

On the other hand, it follows from (7) that

w′(ς) = Z ′(ς) − Y ′(ς) ≥ −Gµ∗e−µ∗ς − 2eς(γ + αY (ς) + βY (ς − τ)). (14)

Let µ(ς) satisfy µ(ς) + 2eςα + 2eςβeµ(ς)τ = 0.
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(i) If ς − τ ≥ 0, it follows from (14) that

w′(ς) > −Gµ∗e−µ∗ς − 2eςγ − 2eςα(− γ
α+β + Ge−µ∗ς) − 2eςβ(− γ

α+β + Ge−µ∗(ς−τ))
= Ge−µ∗ς(−µ∗ − 2eςα − 2eςβeµ∗τ )
= Ge−µ∗ς(−µ∗ − 2eςα − 2eςβeµ∗τ + µ(ς) + 2eςα + 2eςβeµ(ς)τ )
= Ge−µ∗ς(µ(ς) − µ∗ + 2eςβ(eµ(ς)τ − eµ∗τ ))
≥ 0,

which contradicts (13).
(ii) If ς − τ < 0, it follows from (14) that

w′(ς) > −Gµ∗e−µ∗ς − 2eςγ − 2eςα(− γ
α+β + Ge−µ∗ς) − 2eςβG

= −2eςγ(1 − α
α+β ) + Ge−µ∗ς(−µ∗ − 2eςα − 2eςβeµ∗ς)

> Ge−µ∗ς(−µ∗ − 2eςα − 2eςβeµ∗τ )
= Ge−µ∗ς(−µ∗ − 2eςα − 2eςβeµ∗τ + µ(ς) + 2eςα + 2eςβeµ(ς)τ )
= Ge−µ∗ς(µ(ς) − µ∗ + 2eςβ(eµ(ς)τ − eµ∗τ ))
≥ 0,

which contradicts (13). Therefore, we have

Y (t) ≤ − γ

α + β
+ Ge−µ∗t t ≥ 0,

and the proof is completed.
Theorem 1. Suppose y(t) is a solution of (4) where f satisfies (6) and α + β < 0. Then for
any given ε > 0 there exists t = ť(ϕ̄, ε), ϕ̄ = sup

t≤0
‖ϕ(t)‖2, such that for all t > ť,

‖y(t)‖2 < − γ

α + β
+ ε. (15)

Hence the system is dissipative, and the open ball B = B(0,
√
− γ

α+β + ε) is an absorbing set
for any ε > 0.

Proof. Define
Y (t) := ‖y(t)‖2 = 〈y(t), y(t)〉. (16)

Then
Y ′(t) = 2Re〈y(t), y′(t)〉 = 2Re〈y(t), f(t, y(t), y(t − τ))〉

≤ 2et(γ + αY (t) + βY (t − τ)), t ≥ 0.
(17)

If β > 0, the conclusion follows directly from (17) and Lemma 1.
If β = 0, (17) yields

e−2α
� t
0 esds(Y ′(t) − 2αetY (t)) ≤ 2e−2α

� t
0 esdsetγ. (18)

Integrating (18) from 0 to t gives

Y (t) ≤ e2α
� t
0 esdsY (0) + (1 − e2α

� t
0 esds)

γ

−α
, t > 0,

which shows that (15) holds for any t > ť. The proof is completed.
Corollary 1. Assume that system (2) satisfies (3) and α + β < 0. Then the system is
dissipative.
Remark 1. Theorem 1 is different from the dissipativity results obtained by Tian[18] and Wen
(see footnote 1) on page 2). Their studies were restricted to the case: either γ(t) is bounded,
or γ(t), α(t) and β(t) are all bounded. In this paper, γ(t) = etγ, α(t) = etα and β(t) = etβ

(see formula (6)) are not restricted by the conditions. Moreover, the pantograph equation does
not belong to the system investigated by Tian[18] and Wen (Wen L.P., Numerical stability



Exact and Discretized Dissipativity of the Pantograph Equation 85

analysis for nonlinear Volterra functional differential equations in abstract spaces(in Chinese),
Ph.D.Thesis, Xiangtan University, 2005).
Remark 2. There exist some important differences between the condition (3) and the monotonic-
ity conditions[2, 19]

Re〈u1 − u2, g(u1, v) − g(u2, v)〉 ≤ a‖u1 − u2‖2, t ≥ 0, u1, u2, v ∈ X, (19)

‖g(u, v1) − g(u, v2)‖ ≤ b‖v1 − v2‖, t ≥ 0, u, v1, v2 ∈ X. (20)

In fact, as an example without delays, Humphries and Stuart[6] proved that after translation
of the origin, the Lorenz equations are dissipative, but do not satisfy the condition (19).

3. Dissipativity of the Backward Euler Method

For solving problem (4), we consider the backward Euler method

yn = yn−1 + hf(tn, yn, ȳn), n = 1, 2, · · · , (21)

where h > 0 is the stepsize, yn is an approximation to the exact solution y(tn) with tn = nh,
and ȳn is an approximation to y(tn − τ) that is obtained by a specific interpolation at the point
tn − τ .

Let τ = (m − δ)h with integer m ≥ 1 and δ ∈ [0, 1). We define

ȳn = δyn−m+1 + (1 − δ)yn−m, (22)

where yl = ϕ(lh) for l < 0. It is well known that backward Euler method is of order 1. So the
linear interpolation procedure (22) will not lead to order reduction for every stepsize h > 0.
Definition 2. A numerical method is said to be dissipative if, when the method is applied to
(4), (6) with α + β < 0, there exists a constant r such that, for any initial function ϕ(t), there
exists an n0, depending only on ϕ(t) and h, such that

‖yn‖ ≤ r, n ≥ n0, (23)

holds.
Theorem 2. The backward Euler method is dissipative.

Proof. Making the inner products of (21) with yn and using (6), we have

‖yn‖2 = Re〈yn, yn−1〉 + hRe〈yn, f(tn, yn, ȳn)〉
≤ ‖yn‖‖yn−1‖ + hetn(γ + α‖yn‖2 + β‖ȳn‖2)
≤ 1

2‖yn−1‖2 + 1
2‖yn‖2 + hetn(γ + α‖yn‖2 + β‖ȳn‖2).

(24)

In view of (22) we obtain

‖ȳj‖2 = δ2‖yj−m+1‖2 + (1 − δ)2‖yj−m‖2 + 2δ(1 − δ)Re〈yj−m+1, yj−m〉
≤ δ2‖yj−m+1‖2 + (1 − δ)2‖yj−m‖2 + δ(1 − δ)(‖yj−m+1‖2 + ‖yj−m‖2)
= δ‖yj−m+1‖2 + (1 − δ)‖yj−m‖2.

(25)

A combination of (24) and (25) leads to

‖yn‖2 ≤ 1
2‖yn−1‖2 + 1

2‖yn‖2 + hetn(γ + α‖yn‖2 + βδ‖yn−m+1‖2 + β(1 − δ)‖yn−m‖2). (26)

(i) If m = 1, it follows from (26) and α + βδ < 0 that

‖yn‖2 ≤ hetnγ
1
2 − hetn(α + βδ)

+
1
2 + hetnβ(1 − δ)
1
2 − hetn(α + βδ)

‖yn−1‖2. (27)

It is easily seen that

sup
n≥0

hetnγ
1
2 − hetn(α + βδ)

=
γ

−(α + βδ)
, sup

n≥0

1
2 + hetnβ(1 − δ)
1
2 − hetn(α + βδ)

=
1
2 + hβ(1 − δ)
1
2 − h(α + βδ)

. (28)
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Let k1 =
1
2+hβ(1−δ)
1
2−h(α+βδ)

, k2 = γ
−(α+βδ) . Considering (27) and (28), we have

‖yn‖2 ≤ kn
1 ‖y0‖2 + k2

n−1∑
i=0

ki
1 ≤ kn

1 ‖y0‖2 + k2
1−k1

= kn
1 ‖y0‖2 + γ

−(α+β) · 1−2h(α+βδ)
−2h(α+βδ) .

(29)

(ii) If m > 1, it follows from (26) that

‖yn‖2 ≤ 2hetn γ
1−2hetn α + 1

1−2hetn α‖yn−1‖2 + 2hetn β
1−2hetn α (δ‖yn−m+1‖2 + (1 − δ)‖yn−m‖2)

≤ 2hetn γ
1−2hetn α + 1+2hetn β

1−2hetn α max
1≤j≤m

‖yn−j‖2.
(30)

A straightforward calculation shows that

sup
n≥0

1 + 2hetnβ

1 − 2hetnα
=

1 + 2hβ

1 − 2hα
, sup

n≥0

2hetnγ

1 − 2hetnα
=

γ

−α
. (31)

Let l1 = 1+2hβ
1−2hα , l2 = γ

−α . In view of (30) and (31), we obtain

‖yn‖2 ≤ l2 + l1 max
1≤j≤m

‖yn−j‖2, (32)

which yields

‖ypm+j‖2 ≤ l2 + l1 max
1≤i≤m

‖ypm+j−i‖2

≤ · · · ≤ l2(1 + l1 + · · · + lpm+j−1
1 ) + lp1 max

−m+1≤i≤0
‖yi‖2

≤ l2
1−l1

+ lp1 max
t≤0

‖ϕ(t)‖2

≤ γ
−(α+β) · 1−2hα

−2hα + lp1 max
t≤0

‖ϕ(t)‖2, j = 0, 1, · · · , m − 1, p = 1, 2, · · ·

(33)

where we have used the fact that l1 < 1. Noting that the fact k1 < 1, l1 < 1 and 1−2h(α+βδ)
−2h(α+βδ) ≥

1−2hα
−2hα , for any ε > 0, letting

r =

√
γ

−(α + β)
1 − 2h(α + βδ)
−2h(α + βδ)

+ ε,

and using (29) and (33), we have that there exists an n0, which depends on ϕ(t) and h, such
that

‖yn‖ ≤ r, n ≥ n0.

This completes the proof.

4. Numerical Examples

Consider the nonlinear problem{
x′(t) = −ax(t) + bx(qt)

1+x(qt)N , t ≥ 0,

x(0) = x0,
(34)

where q is a constant with 0 < q < 1, a > 0 and b are real parameters, and N is an even positive
integer. This equation is a modification of the model[4] for respiratory diseases. The constant
delay τ(t) = τ is replaced by the infinite delay τ(t) = (1 − q)t. For N = 2, 4, an application of
Theorem 3.2 in Li[14] gives that the system (34) is asymptotically stable when | b |< a. On the
other hand, for certain values of the parameters and of the delay, the solution is oscillatory, and
sometimes it oscillates even chaotically. In these cases the system is not asymptotically stable.
However, for any c ∈ (0, a) we can choose α = −a + c, β = 0, γ = b2/(4c) such that (3) holds.
Therefore, the system is dissipative.
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By the transformation y(t) = x(et), the pantograph equation (34) can be transformed into
a DDE with constant delay,{

y′(t) = et(−ay(t) + b y(t−τ)
1+y(t−τ)N ), t ≥ 0,

y(t) = ϕ(t), t ≤ 0,
(35)

where τ = −logq.
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Fig.1.  N=4,a=1,b=−4,q=0.5,h=0.5, initial function: t3−2t+5

Fig. 4.1. Numerical results for b = −4
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Fig.2.  N=4,a=1,b=−10,q=0.5,h=0.5, initial function: t3−2t+5

Fig. 4.2. Numerical results for b = −10

We apply the backward Euler method to the problem (35). For N = 4, the numerical results
are shown in Fig.1-2, where a = 1, q = 0.5, h = 0.5, ϕ(t) = t3 − 2t + 5. Fig.1-2 show that the
problem (35) with the given parameters is dissipative. Therefore, these numerical examples
confirm our theoretical results.
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