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Abstract

In this paper, we propose a new approach to solve the approximate implicitization
problem based on RBF networks and MQ quasi-interpolation. This approach possesses
the advantages of shape preserving, better smoothness, good approximation behavior and
relatively less data etc. Several numerical examples are provided to demonstrate the effec-
tiveness and flexibility of the proposed method.
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1. Introduction

As we know that parametric curves/surfaces and implicit curves/surfaces are two important
topics in Computer Aided Geometry Design and Geometric Modeling. It is easy to generate
points on parametric curves/surfaces. On the other hand, it is convenient to determine whether
a point is on, inside or outside a given solid with the implicit treatments.

Accurate implicitization (especially surface implicitization) has not been popular in practice.
This is due to the fact that the curve/surface implicitization is relatively complex and the degree
of the implicit curves/surfaces is higher. Another difficulty is that implicit curves/surfaces may
have unexpected components and self-intersections which lead to computational instability and
topological inconsistency in geometric modeling. So finding approximate implicitization has
some practical. In recent years, many authors have proposed several approaches to solve this
problem. The earlier work on approximate implicitization was done by Velho et al.([6]), who
presented an approximate implicitization scheme from parametric surfaces to implicit surfaces
based on wavelet analysis. Sederberg et al.([4]) proposed an approach to solve approximate im-
plicitization problem by using monoid curves and surfaces. Recently, Chen et al.([2]) presented
a concept of interval implicitization of rational curves and developed an effective algorithm.

In this paper, we put forward a new method for solving the approximate implicitization
problem based on RBF networks and MQ quasi-interpolation. This method has the advan-
tages of shape preserving, better smoothness, good approximation behavior and relatively less
data etc. Numerical examples are provided to illustrate the effectiveness and flexibility of the
proposed method.

2. The Principle of RBF Networks

A RBF network is a three layer feed-back network consisting of one input layer, one hidden
layer, and one output layer ([5]). The input layer feeds the input data to each neuron of hidden
layer. Each hidden layer neuron calculates the distance between the input vector and its own
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center. The determined distance is transformed via radial basis functions, and the result is
exported from a neuron. Each output layer neuron is fully connected to the hidden layer and
computes a linear weight sum of the outputs of the hidden neurons.

The output formula of a RBF network is calculated as follows:

fj(x) = λj0 +
N∑

i=1

λjiφ(‖x − ci‖), j = 1, · · · , M, (1)

where M denotes the number of the output layer neurons, N denotes the number of the hidden
layer neurons, x ∈ Rd denotes the input data, ck represents the center of the kth basis function,
λj0 denotes the biases of the jth hidden layer neuron and λji is the weight parameter between
the ith hidden layer neuron and the jth output layer neuron.

In (1), φ(r) is a radial basis function. Examples of the radial basis functions used in
applications include

(1) Gauss distribution function of Kriging method: φ(r) = e−cr2
;

(2) Hardy’s MQ and inverse MQ functions: φ(r) = (r2 + c2)
1
2 and φ(r) = (r2 + c2)−

1
2 ;

(3) Wendland’s compactly supported radial basis function.
If we choose the centers of the radial basis functions properly, any multivariate continuous

function can be approximated with arbitrary precision by a RBF network with small number
of neurons.

The application of a RBF network requires a training set for learning phase and a testing set
for evaluating phase. For computational convenience, we adopt the following learning algorithm
([3]):

Step1. Select the centers of the radial basis functions in the hidden layer as the training
points, i.e., ci = xi, i = 1, · · · , n = N , where n is the number of training points. Moreover,
suppose that the output layer consists of the simplest case of a single neuron.

Step2. Compute the biases and weight parameters with the RBF interpolation formula (1).
Step3. Evaluate the approximate implicitization curve with the testing point set.

3. MQ Quasi-interpolation

A radial basis function is a relatively easy multivariate function which is generated from
a univariate function ([7]). Due to its simple form and good approximation behavior, the
radial basis function approach has become an effective tool for multivariate scattered data
interpolation during the last two decades.

Beaton and Powell ([1]) proposed a univariate quasi-interpolation formula which is the linear
combination of Hardy’s MQ basis

φi(x) =
√

(x − xi)2 + c2

and lower order polynomials. Their formula requires the derivative values at the endpoints.
So it is not convenient for practical application. Wu and Schaback ([8]) gave another quasi-
interpolation formula without using the derivative values at the endpoints.

Wu-Schaback’s MQ quasi-interpolation formula is given by:

LF (x) =
n∑

j=0

F (xj)αj(x), (2)

where

α0(x) =
1
2

+
φ1(x) − (x − x0)

2(x1 − x0)
,

α1(x) =
φ2(x) − φ1(x)

2(x2 − x1)
− φ1(x) − (x − x0)

2(x1 − x0)
,

αi(x) =
φi+1(x) − φi

2(xi+1 − xi)
− φi(x) − φi−1

2(xi − xi−1)
, i = 2, · · · , n − 2,
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αn−1(x) =
(xn − x) − φn−1(x)

2(xn − xn−1)
− φn−1(x) − φn−2(x)

2(xn−1 − xn−2)
,

αn(x) =
1
2

+
φn−1(x) − (xn − x)

2(xn − xn−1)
.

Theorem 3.1.([8]) MQ quasi-interpolation operator (2) preserves linear reproduction, monotonic-
ity, convexity and variation-diminishing.

4. Approximate Implicitization of Rational Curves

Suppose that P (t) is a rational parametric curve of the form
P (t) = (x(t), y(t)), t ∈ [a, b],

where x(t) is a single-valued function.
Our aim is to construct G(x, y) such that its zero point set {(x, y)|G(x, y) = 0} can not only

interpolate the set of training points S = {(xi, yi)|i = 1, · · · , n} of the rational curve, but also
possess good global approximation behavior.

In this section, we propose a new method for solving the approximate implicitization problem
based on RBF networks and MQ quasi-interpolation. The basic idea is to approximate the set
of training points with MQ quasi-interpolation in order to possess shape preserving and then
to approximate the error function by using RBF networks. Thus the combined curve possesses
the properties of interpolation and good global approximation behavior.

Algorithm 4.1. Approximate implicitization of rational curves.
Input: rational parametric curve: P (t) = (x(t), y(t)), t ∈ [a, b].
Output: approximate implicit curve: {(x, y)|G(x, y) = 0}.
Step1. Select a set of training points S = {Pi = (x(ti), y(ti))|i = 1, · · · , n} and constitute

an input vector matrix (
x1 · · · xn

y1 · · · yn

)
.

Step2. Construct an MQ quasi-interpolation operator LF (x) with data {Pi = (xi, yi)}n
i=1and

define an error function
ε(x, y) = y − LF (x).

Step3. Define an output vector matrix T = (ε1, · · · , εn) corresponding to an input vector
matrix, where εi = ε(x(ti), y(ti)).

Step4. Determine f(x, y) by using a RBF network and the corresponding learning algorithm
based on the input and output vector matrices.

Hence, G(x, y) = f(x, y) − ε(x, y) = 0 is the required approximate implicit curve.

Remark 4.1. The condition that x(t) is a single-valued function only makes {xi}n
i=1 pairwise

distinct, which guarantees the existence of MQ quasi-interpolation. As for general parametric
curve, we can split the original curve so that x(t) is a single-valued function on every segment
(see Example 2). Or, we can choose the pairwise distinct training points {xi}n

i=1 without
spitting curve whether x(t) is a single-valued function or not (see Example 3 below).

It is known that any multivariate continuous function can be approximated with arbitrary
precision by using sufficiently large number of hidden neurons. So we have

Theorem 4.1. Let G(x, y) = 0 be the approximate implicit curve obtained from the above
algorithm. Then for arbitrary ε > 0, we have

max
t∈[a,b]

|G(x(t), y(t))| < ε.
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5. Numerical Examples

In this section, we provide several examples to illustrate the effectiveness of the proposed
algorithm for approximate implicitization of rational curves.

In the following figures, we simultaneously give the original parametric curve, approximate
implicit curve, and the training points, denoted by black line, colored line, and black dots
respectively.
Example 1. The rational curve P (t) = ( t

1+t2 , 1−t2

1+t2 ), t ∈ [0, 1].
(1) Select 10 training points and adopt Gauss function and the inverse MQ function in the

hidden layer (see Fig. 1 and Fig. 2 respectively).
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(2) Select 20 training points and adopt Gauss function and the inverse MQ function in
hidden layer (see Fig. 3 and Fig. 4 respectively).
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Choose 100 arbitrary points as a testing set. The maximum errors and variances for the
above figures are listed in Table 1.

Table 1
Figure Fig. 1 Fig. 2 Fig. 3 Fig. 4

Max error 5.5057 × 10−4 1.94956 × 10−3 1.06126 × 10−4 5.33411 × 10−5

Variance 1.81836 × 10−7 5.79315 × 10−7 3.55358 × 10−6 1.55561 × 10−10

Example 2. The rational curve P (t) = ( 2
t2+1 , t3+t−1

t2+1 ), t ∈ [−1, 1].
It is obvious that x(t) is not a single-valued function in t ∈ [−1, 1], thus we split the curve

P (t) at t = 0.
(1) Select 10 training points on every segment and adopt Gauss function and the inverse

MQ function in hidden layer (see Fig. 5 and Fig. 6 respectively).
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(2) Select 20 training points on every segment and adopt Gauss function and the inverse
MQ function in the hidden layer (see Fig. 7 and Fig. 8 respectively).
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Choose 100 arbitrary points as a testing set. The maximum errors and variances for Figs.
5-8 are listed in Table 2.

Table 2
Figure Fig. 5 Fig. 6 Fig. 7 Fig. 8

Max error 1.30317× 10−2 7.08159× 10−2 5.07437× 10−2 2.47669× 10−2

Variance 1.07246× 10−3 3.29078× 10−4 4.02932× 10−3 2.39035× 10−6

Example 3. The rational curve P (t) = (3t3+t+1
1+3t2 , 3t4+t2−1

1+3t2 ), t ∈ [0, 1].
Although x(t) is not a single-valued function for t ∈ [−1, 1], we can still find an approximate

implicit curve globally.
(1) Select 10 training points and adopt Gauss function and the inverse MQ function in

hidden layer (see Fig. 9 and Fig. 10 respectively).
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(2) Select 20 training points and adopt Gauss function and the inverse MQ function in the
hidden layer (see Fig. 11 and Fig. 12 respectively).
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Choose 100 arbitrary points as a testing set. The maximum errors and variances for Figs.
9-12 are listed in Table 3.

Table 3
Figure Fig. 9 Fig. 10 Fig. 11 Fig. 12

Max error 966484× 10−3 602603× 10−3 3.60533× 10−4 1.96091× 10−4

Variance 5.61721× 10−6 3.36597× 10−6 2.7655× 10−8 3.72529× 10−8

Remark 5.1. From the above numerical examples, we can easily see that the parametric curve
and the approximate implicit curve are almost coincide with each other, which demonstrate the
effectiveness of the proposed method.

6. Conclusion

In this paper, a new method is introduced to solve the approximate implicitization problem
based on RBF networks and MQ quasi-interpolation. The numerical examples demonstrate
that the proposed method not only has the properties of interpolation but also possesses good
global approximation behavior. Moreover, it is not sensitive to the number of training points
and different types of radial basis functions. They are also satisfied with the approximate
implicit curves in view of the testing effects.

It is point out that the optimal centers and radius on the radial basis functions are not
investigated in this work. The problem of how to choose optimal centers and the number of
radial basis functions in the hidden layer remains to be our future.
Acknowledgement. We are very grateful to the referees for their careful reading of the
original manuscript and many valuable suggestions, which greatly improved the presentation of
this paper.
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