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Abstract

A fourth-order operator marching method for the Helmholtz equation in a waveguide is

developed in this paper. It is derived from a new fourth-order exponential integrator for lin-

ear evolution equations. The method improves the second-order accuracy associated with

the widely used step-wise coupled mode method where the waveguide is approximated

by segments that are uniform in the propagation direction. The Helmholtz equation is

solved using a one-way reformulation based on the Dirichlet-to-Neumann map. An alter-

native version closely related to the coupled mode method is also given. Numerical results

clearly indicate that the method is more accurate than the coupled mode method while

the required computing effort is nearly the same.
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1. Introduction

For acoustic [1], microwave and optical waveguides [2], it is often necessary to solve the

Helmholtz equation

uxx + uzz + κ2(x, z)u = 0 (1.1)

in a domain which has an extended length scale in one direction, say x. Here, x is the variable

along the axis of the waveguide (i.e., the main propagation direction), z is the transverse

variable and the wavenumber κ varies with both x and z. Typically, the original waveguide is

infinite in the x direction, but we assume that the x-dependent part of the waveguide is finite.

That is, κ is x-independent when x < 0 and x > L for some L > 0. For a given incident wave

in x < 0, the problem is to calculate the reflected wave for x < 0 and the transmitted wave for

x > L. This is a boundary value problem and the solution can be highly oscillatory if κ is large.

Finite difference [3–5] and finite element [6–9] methods have been used to solve this problem.

In particular, highly accurate solutions can be obtained by the adaptive finite element method

[10, 11]. However, the problem is difficult to solve by a direct discretization of the Helmholtz

equation when L ≫ 1. The finite difference and finite element methods give rise to large linear

systems that are difficult to solve, because the coefficient matrix is complex, non-Hermitian and

indefinite.

Typically, we are interested in waveguides that change slowly in the propagation direction.

That is, the variation of κ with x is small over the scale of a typical wavelength (i.e., 1/κ). In

this case, approximate one-way models [1] which have a first-order derivative in x are widely
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used. These one-way models can be efficiently solved by marching forward in the x direction.

However, for problems where the reflected waves are important and when the overall change

of the waveguide (over a large propagation distance) is significant, it is still necessary to solve

the Helmholtz equation. Standard discretization schemes of the Helmholtz equation require

that a step size in the x-direction be smaller than a fraction of the typical wavelength. For

slowly varying waveguides, it is possible to develop more efficient numerical methods [12] where

the step size in x is only restricted by the variation of the waveguide in the x direction. In

the step-wise coupled mode method [1, 2, 13], the waveguide is approximated by a sequence of

x-invariant segments. For the segment from xj−1 to xj = xj−1 + h, the wavenumber κ(x, z) is

approximated by κ(xj−1/2, z), where xj−1/2 = xj − h/2, and the solution is expanded in the

eigenfunctions of the operator ∂2
z + κ2(xj−1/2, z). When κ has a weak dependence on x, the

segment length h can be larger than a typical wavelength. Notice that this is a second-order

method, so that the numerical solution should have an O(h2) error. But the coefficient in the

error term vanishes when the waveguide becomes x-independent.

The second-order methods developed in [14] is equivalent to the step-wise coupled mode

method, but it uses a one-way reformulation of the Helmholtz equation in terms of the Dirichlet-

to-Neumann map. The advantage of such a one-way operator marching scheme is that the

required computer memory is independent of the total distance in the x direction, i.e. L. On

the other hand, the required computer memory of the coupled mode method depends linearly

on L. The two methods require nearly the same computing effort in terms of the floating

point operations. The fourth-order method developed in [14] reduces the O(h2) error of the

coupled mode method to O(h4) and it preserves the property that h can be larger than a

typical wavelength when κ varies with x slowly. However, this method needs to evaluate the

derivatives of κ. This can be very inconvenient, for example, when κ itself is calculated from

a coordinate transform when the original waveguide has a more complicated geometry [15].

Based on a fourth-order Magnus method [16] for linear evolution equations, we derived another

fourth-order operator marching method for the Helmholtz equation in [17]. The method does

not require the derivative of κ, but it cannot be applied to the more general Helmholtz equation

as in [15] due to the existence of a commutator in the fourth-order Magnus method [16].

In this paper, we develop a new derivative-free fourth-order operator marching method

that can be applied to the more general case. It is based on a new fourth-order exponential

integrator for linear evolution equations. This exponential integrator may be useful in other

applications and its fourth-order of accuracy is proved in this paper. While there are many

high order numerical methods for linear evolution equations, only a few methods can be used to

derive efficient operator marching schemes for the Helmholtz equation. The new fourth-order

operator marching method is given using a one-way reformulation based on the Dirichlet-to-

Neumann map, but we also present a version of this method which is similar to the standard

step-wise coupled mode method [1, 2, 13]. Although the fourth-order methods in [14, 17] also

have variants similar to the widely used coupled mode methods, this connection has not been

revealed before. Numerical examples are used to illustrate the fourth-order accuracy of the

proposed method.

2. One-way Re-formulations

The waveguide is assumed to be x-invariant for x < 0 and x > L; thus, we let

κ = κ0(z) for x < 0, κ = κ∞(z) for x > L.
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For simplicity, we assume that the domain is bounded between z = 0 and z = 1 and u satisfies

some simple homogeneous boundary conditions, such as

u(x, 0) = uz(x, 1) = 0. (2.1)

For x < 0, the transverse operator has eigenvalues λk and eigenfunctions φk (for k = 1, 2, · · · )
satisfying

[

d2

dz2
+ κ2

0(z)

]

φk(z) = λkφk(z), φk(0) = φ′
k(1) = 0.

The wave field in the region x < 0 can be written as u = u+ + u−, where

u+ =

∞
∑

k=1

akφk(z)ei
√

λkx, u− =

∞
∑

k=1

bkφk(z)e−i
√

λkx,

for some coefficients {ak, bk}. Here, u+ and u− represent wave field components that propagate

in the increasing and decreasing x directions, respectively. If we define the square root operator

B0 =
√

∂2
z + κ2

0(z) as a linear operator satisfying

B0 φk =
√

λk φk, k = 1, 2, 3, · · · ,

then

u+
x = iB0u

+, u−
x = −iB0u

−.

Typically, we assume that u+ (the incident wave) is given in x < 0. Then u− is the reflected

wave to be determined. This gives rise to

ux + iB0u = 2iB0u
+, x < 0. (2.2)

Similarly, we can define the square root operator B∞ =
√

∂2
z + κ2

∞(z) for x > L and decompose

the wave field as u = u+ +u−. We allow only waves propagating towards x = +∞ in the region

x > L, i.e., u− = 0, then u = u+ satisfies

ux = iB∞u, x > L. (2.3)

Various numerical methods have been developed to solve the boundary value problem (1.1)-

(2.3). When L is extremely large, it is advantageous to use a one-way reformulation, so that

the problem can be solved within a computer memory that is independent of L. Fishman

[18] proposed a one-way reformulation based on the scattering operators, but the approach

based on the Dirichlet-to-Neumann (DtN) map [19] is simpler. Define the DtN map Q and the

fundamental solution operator Y (at a fixed x) by

Q(x)u(x, z) = ux(x, z), Y (x)u(x, z) = u(L, z), (2.4)

where u is an arbitrary solution of the Helmholtz equation (1.1) satisfying the boundary con-

ditions (2.1) and (2.3). The operators Q and Y act on functions of z, and they satisfy the

following differential equations [19]:

dQ

dx
= −Q2 − [∂2

z + κ2(x, z)], (2.5)

dY

dx
= −Y Q(x), (2.6)
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and the following “initial” conditions:

Q(L) = iB∞, Y (L) = I,

where I is the identity operator. The above condition on Q(L) is obtained from (2.3). This is

an initial value for the two operators Q and Y , it can be solved from x = L to x = 0. Once

Q(0) and Y (0) are calculated, we can find the reflected and transmitted waves. From (2.2),

u(0, z) satisfies

[Q(0) + iB0]u(0, z) = 2iB0u
+(0−, z).

Thus, u−(0−, z) = u(0, z) − u+(0−, z) is the reflected wave at x = 0−. The transmitted wave

can be simply obtained from

u(L, z) = Y (L)u(0, z).

To solve equations (2.5) and (2.6), the operators Q and Y must be approximated by matrices.

If the transverse variable z is discretized by N points, the operators are reduced to N × N

matrices. This can be rather expensive, since N maybe quite large. A more efficient approach

[19] is to represent the operators in a local eigenfunction expansion. For a waveguide with a

relatively small number of propagating modes, the operators can be approximated by n × n

matrices, where n is an integer that is slightly larger than the number of propagating modes.

Typically, n is much smaller than N .

With a proper matrix representation of the operators, equations (2.5) and (2.6) can be solved

by standard ODE solvers. However, these methods do not take advantage of the fact that the

waveguide is slowly varying in x. The step size would be restricted even if the waveguide

happens to be x-invariant. Our methods (developed in [14] and in the next section) overcome

this restriction and they allow large step sizes in x for slowly varying waveguides.

3. Discretization Schemes

The Helmholtz equation (1.1) can be written as a first-order system

∂~y

∂x
= A(x)~y, (3.1)

where

~y =

[

u

ux

]

, A(x) =

[

0 I

−∂2
z − κ2(x, z) 0

]

. (3.2)

For (3.1), we have the following second-order midpoint exponential method

~yj = ehAj−1/2 ~yj−1, (3.3)

where ~yj ≈ ~y(xj), ~yj−1 ≈ ~y(xj−1), Aj−1/2 = A(xj−1/2) for xj−1 = xj−h and xj−1/2 = xj−h/2.

Since κj−1/2(z) = κ(xj−1/2, z) is used to approximate κ(x, z), it is equivalent to replacing the

Helmholtz equation by

uxx + uzz + κ2
j−1/2(z)u = 0 for xj−1 < x < xj .

The second-order method developed in [14] is based on (3.3). A fourth-order generalization

of (3.3) was developed in [20] and it gives rise to the fourth-order operator marching method

for the Helmholtz equation in [14]. However, this fourth-order Helmholtz solver requires the
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derivatives of κ. This is not convenient, since the derivatives of κ are often not available. In the

following, we derive a derivative-free fourth-order operator marching method for the Helmholtz

equation based on the following new fourth-order exponential method:

~yj = e
h
12 (Aj−Aj−1)e

h
6 (Aj−1+4Aj−1/2+Aj)e

h
12 (Aj−1−Aj)~yj−1. (3.4)

The local truncation error of the above method is derived in the Appendix.

For the Helmholtz equation given in (3.1), the exponential method (3.4) gives rise to

[

uj

Qjuj

]

= exp

([

0 0

−sj−1/2 0

])

exp

(

h

[

0 I

−∂2
z − γj−1/2 0

])

exp

([

0 0

sj−1/2 0

]) [

uj−1

Qj−1uj−1

]

,

where sj−1/2 and γj−1/2 are the following functions of z:

sj−1/2 =
h

12
(κ2

j − κ2
j−1), γj−1/2 =

1

6
(κ2

j−1 + 4κ2
j−1/2 + κ2

j ). (3.5)

The first and the third exponentials are easy to evaluate. We have

exp

([

0 0

−sj−1/2 0

])

=

[

I 0

−sj−1/2 I

]

=

[

I 0

sj−1/2 I

]−1

.

Therefore,

[

uj

(Qj + sj−1/2)uj

]

= exp

(

h

[

0 I

−∂2
z − γj−1/2 0

]) [

uj−1

(Qj−1 + sj−1/2)uj−1

]

.

Similar to the derivation in [14], we end up with the following set of formulas:

B =
√

∂2
z + γj−1/2, (3.6)

R = (iB + Qj + sj−1/2)
−1(iB − Qj − sj−1/2), (3.7)

P = eihBReihB, (3.8)

Qj−1 = iB(I − P )(I + P )−1 − sj−1/2, (3.9)

Yj−1 = Yj(I + R)eihB(I + P )−1. (3.10)

This gives rise to a set of relationships between (Qj, Yj) and (Qj−1, Yj−1), leading to a fourth-

order method for solving (2.5) and (2.6). This method reproduces the exact relationships

between these operators if κ is x-independent in the interval. When κ varies with x slowly, the

step size h can often be much larger than the typical wavelength.

To use the above algorithm, we represent the operators Qj−1 and Yj−1 by n × n matrices

resulting from a truncated expansion in the eigenfunctions of the transverse operator ∂2
z +

γj−1/2(z). The details are similar to the fourth-order method developed in [14].

The method can be generalized to the following more general Helmholtz equation:

uxx + α(x, z)uzz + β(x, z)uz + κ2(x, z)u = 0. (3.11)

Such an equation is obtained when the original Helmholtz equation (1.1) is considered in a

waveguide with a curved boundary which is flattened by a local orthogonal transform [15]. For
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Eq. (3.11), the linear evolution equation (3.1) now involves an operator A defined as in (3.2)

with ∂2
z replaced by α∂2

z + β∂z. With the following modifications

B =
1√
6

[

(αj−1 + 4αj−1/2 + αj)∂
2
z + (βj−1 + 4βj−1/2 + βj)∂z + κ2

j−1 + 4κ2
j−1/2 + κ2

j

]1/2

,

sj−1/2 =
1

12

[

(αj − αj−1)∂
2
z + (βj − βj−1)∂z + κ2

j − κ2
j−1

]

,

the main steps of the method (3.7)-(3.10) remain valid. On the other hand, it is difficult to

generalize the Magnus method [17] to Eq. (3.11), since it involves the commutator A(ξ1)A(ξ2)−
A(ξ2)A(ξ1), where ξ1 and ξ2 are two different values in (xj−1, xj).

4. Relating to the Coupled Mode Method

A widely used version of the coupled mode method [13] starts from a discretization of the

waveguide,

0 = x0 < x1 < x2 < · · · < xm = L

and replaces the wavenumber κ(x, z) in each interval by an x-independent function of z, that is

κ(x, z) ≈ κ(xj−1/2, z) = κj−1/2(z), xj−1 < x < xj . (4.1)

The solution is then expanded in the local eigenfunctions of the transverse operator ∂2
z +

κ2
j−1/2(z) and the coefficients are solved from a large linear system of equations. Because of the

midpoint approximation (4.1), the method has a second-order of accuracy. In this section, we

describe how the coupled mode method can be modified to achieve a fourth-order of accuracy.

In the section xj−1 < x < xj , the eigenvalue problem is

[

d2

dz2
+ κ2

j−1/2(z)

]

φ
(j)
k (z) = λ

(j)
k φ

(j)
k (z), 0 < z < 1, (4.2)

φ
(j)
k (0) =

dφ
(j)
k

dz
(1) = 0. (4.3)

Assuming that the eigenfunctions are normalized as

∫ 1

0

φ
(j)
k φ(j)

s dz =

{

1 if k = s,

0 if k 6= s,

we may write down the solution in this section as

u(x, z) =

∞
∑

k=1

[

a
(j)
k eiβ

(j)
k (x−xj−1) + b

(j)
k e−iβ

(j)
k (x−xj)

]

φ
(j)
k (z), (4.4)

where β
(j)
k =

√

λ
(j)
k . To simplify the notation, we introduce the quantity

p
(j)
k = eiβ

(j)
k

(xj−xj−1).

For x < 0, we let κ−1/2(z) = κ(0−, z) and define eigenfunctions (for j = 0) as before. Then

expand the solution as

u(x, z) =
∞
∑

k=1

[

a
(0)
k eiβ

(0)
k x + b

(0)
k e−iβ

(0)
k x

]

φ
(0)
k (z),
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where a
(0)
k is a coefficient of the given incident wave in x < 0, b

(0)
k is a reflection coefficient.

The above can be consistent with (4.4), if we let x−1 = 0. In this case, p
(0)
k = 1. Similarly for

x > L, we let κm+1/2(z) = κ(L+, z), define the eigenfunctions for j = m + 1 as in (4.2) and

expand the solution as

u(x, z) =

∞
∑

k=1

[

a
(m+1)
k eiβ

(m+1)
k (x−L) + b

(m+1)
k e−iβ

(m+1)
k (x−L)

]

φ
(m+1)
k (z).

The coefficient a
(m+1)
k is a transmission coefficient and b

(m+1)
k = 0 because only outgoing waves

are allowed for x > L. The above can be consistent with (4.4), if we let xm+1 = L. Thus,

p
(m+1)
k = 1.

At xj (j = 0, 1, · · · , m), u and ux are continuous. This gives rise to

p
(j)
k a

(j)
k + b

(j)
k =

∞
∑

s=1

v
(j)
ks

[

a(j+1)
s + p(j+1)

s b(j+1)
s

]

, (4.5)

β
(j)
k

[

p
(j)
k a

(j)
k − b

(j)
k

]

=

∞
∑

s=1

v
(j)
ks β(j+1)

s

[

a(j+1)
s − p(j+1)

s b(j+1)
s

]

, (4.6)

for k = 1, 2, 3, · · · , where

v
(j)
ks =

∫ 1

0

φ
(j)
k φ(j+1)

s dz.

In practice, we can truncate the expansion (4.4) to n terms and solve the coefficients (for

k = 1, 2, · · · , n) from the above system.

Our fourth-order method starts with a slightly different eigenvalue problem in each segment.

Eq. (4.2) is replaced by
[

d2

dz2
+ γj−1/2(z)

]

φ
(j)
k (z) = λ

(j)
k φ

(j)
k (z), 0 < z < 1, (4.7)

where

γj−1/2(z) =
1

6

(

κ2
j−1(z) + 4κ2

j−1/2(z) + κ2
j(z)

)

.

The expansion (4.4) can still be used if we use the new φ
(j)
k and β

(j)
k . At xj , we have the

continuity of u and (4.5) is still valid. However, the continuity of ux should be interpreted as
[

ux − sj−1/2u
]

x=xj−
=

[

ux − sj+1/2u
]

x=xj+
, (4.8)

where

sj−1/2 =
h

12
(κ2

j − κ2
j−1), sj+1/2 =

h

12
(κ2

j+1 − κ2
j).

This gives rise to

β
(j)
k

[

p
(j)
k a

(j)
k − b

(j)
k

]

=

∞
∑

s=1

v
(j)
ks β(j+1)

s

[

a(j+1)
s − p(j+1)

s b(j+1)
s

]

+i
∞
∑

s=1

w
(j)
ks

[

a(j+1)
s + p(j+1)

s b(j+1)
s

]

, (4.9)

where

w
(j)
ks =

∫ 1

0

δj(z)φ
(j)
k φ(j+1)

s dz, δj(z) = sj+1/2 − sj−1/2 =
h

12
(κ2

j+1 − κ2
j−1).

The coefficients a
(j)
k and b

(j)
k are then solved from (4.5) and (4.9).
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Fig. 5.1. (a). Relative errors of u(L, z) for various values of h; (b). Comparison of u(L, z) for h = 2

and h = 1/128.

5. Numerical Examples

As an example, we consider a waveguide where

κ2(x, z) = 100
[

1 + 0.05e−20(x/L−0.5)2 sin2(πz)
]

.

We take L = 10 and discretize z by N = 30 points, namely, zj = j/(N +0.5) for j = 1, 2, · · · , N .

A fourth-order finite difference scheme is used to approximate the operator ∂2
z . In the first case,

we calculate the solution at x = L based on the following Dirichlet boundary condition at x = 0

u(0, z) =

7
∑

j=1

sin(mjz0) sin(mjz)/
√

κ2
0 − m2

j for mj = (j − 1/2)π, z0 = 0.65.

Various values of the step size h (for discretizing x) are used and the numerical solutions are

compared with the “exact” solution to find the relative error (denoted by E(h)) in the L2 norm.

The relative errors for h = 2, 1, 1/2, 1/4, · · · , 1/32 are shown in Fig. 5.1(a), using a logarithmic

scale. It gives a clear indication that the method is indeed fourth-order. The large stepping

capacity is also quite clear. In fact, as it is illustrated in Fig. 5.1(b), the result obtained with

h = 2 is already quite accurate.

In the second case, we calculate the back-scattered wave generated by the following incident

wave

u(i)(0, z) = sin(2.5πz).

This corresponds to the third propagating mode in the waveguide (away from the distortion

near x = L/2). Since the waveguide has a very gradual variation in the x direction, the

back-scattered wave is quite weak. However, we are able to obtain a fairly accurate solution

with h = 1/8. In Fig. 5.2, the numerical solution obtained with h = 1/8 is compared with a

much more accurate solution calculated with h = 1/256. Notice that the magnitude is only
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Fig. 5.2. A comparison of the back-scattered waves calculated with step size h = 1/8 (small circles)

and h = 1/128 (solid line).

around 10−5. Using the numerical solution obtained with h = 1/256 as the “exact” solution,

we compute the relative errors for a few values of h. The results are listed in the following

table:

h 1/8 1/16 1/32 1/64

E(h) 2.01 × 10−2 1.11× 10−3 6.75× 10−5 4.19 × 10−6

6. Conclusions

A numerical method is developed for the Helmholtz equation in a slowly varying waveguide.

In the propagation direction x, the method has a fourth-order of accuracy and it also preserves

exact solutions when the waveguide is x-independent. In general, the step size in x is not

restricted by the wavelength of the field and it can be large, when the x-dependence is weak.

The method is derived from the fourth-order derivative-free exponential method (3.4) for linear

evolution equations. In our implementation, a one-way re-formulation of the Helmholtz equation

in terms of the Dirichlet-to-Neumann map is used. This gives rise to a fourth-order operator

marching method that does not require the derivatives of κ. We also present our method as a

simple modification of the standard step-wise coupled mode method [13]. Numerical examples

are used to demonstrate the fourth-order accuracy when the step size in x is reduced and also

the good accuracy obtained with larger step sizes in x when the dependence on x is weak.

Appendix

For the linear system of ordinary differential equations

y′ = A(t)y, (6.1)
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the solution is highly oscillatory if the matrix A has an eigenvalue with a large imaginary part.

Exponential methods have the advantage that a larger step size h is possible when A varies

with t slowly. For a step from tj to tj+1 = tj + h, we show that the method

yj+1 = e
h
12 [Aj+1−Aj ]eh[Aj+4Aj+1/2+Aj+1]/6e

h
12 [Aj−Aj+1] yj , (6.2)

has a fourth-order accuracy, where Aj , Aj+1/2 and Aj+1 denote the matrix A evaluated at tj ,

tj+1/2 and tj+1, respectively.

To find the local truncation error, we let y(tj+1) be the exact solution of (6.1) starting with

the initial condition y(tj) = yj . Based on the Taylor expansions of y(tj) and y(tj+1) around

tj+1/2, we obtain [20]:

y(tj+1) =
(

I + hC1 + h2C2 + h3C3 + h4C4 + h5C5 + · · ·
)

yj ,

where

C1 = A,

C2 =
A2

2
,

C3 =
A3

6
+

A′′ + 2A′A − 2AA′

24
,

C4 =
A4

24
+

1

48

(

A′′A + AA′′ + 2A′A2 − 2A2A′
)

,

C5 =
1

1920

[

A(4) + 4(A′′′A − AA′′′ + A′A′′ − A′′A′)

+8(2A′′A2 + AA′′A + 2A2A′′ + A′2A + AA′2 − 2A′AA′)

+24(A′A3 − A3A′) + 8A(A′A − AA′)A + 16A5
]

,

where A and its derivatives are all evaluated at the midpoint tj+1/2. On the other hand, for

yj+1 given in (6.2), we have

yj+1 =
(

I + hC1 + h2C2 + h3C3 + h4C4 + h5Ĉ5 + · · ·
)

yj,

where

Ĉ5 =
1

120
A5 +

1

72
(A′A3 − A3A′) +

1

24
(A2A′′ + A′′A2 + AA′′A)

+
1

288
(A′2A + AA′2 − 2A′AA′ + A′A′′ − A′′A′ + A′′′A − AA′′′) +

1

1152
A(4).

Therefore, the local truncation error is

y(tj+1) − yj+1 = − h5

720

[

A′A3 − A3A′ + A′A′′ − A′′A′ + A′′′A − AA′′′

−1

2
(A′2A + AA′2 − 2A′AA′) + 24(A2A′′ + A′′A2) + 27AA′′A

−3A(A′A − AA′)A +
1

4
A(4)

]

yj + · · · .

A variant of the scheme (6.2) is

yj+1 =
I + h

24 (Aj+1 − Aj)

I − h
24 (Aj+1 − Aj)

e
h
6 (Aj+4Aj+1/2+Aj+1) I + h

24 (Aj − Aj+1)

I − h
24 (Aj − Aj+1)

yj. (6.3)
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This corresponds to replacing exp[± h
12 (Aj+1 − Aj)] by its [1/1] Padé approximants. The error

introduced here is O(h6). Therefore, (6.3) is also a fourth-order method and its local truncation

error is exactly the same as (6.2).
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