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Abstract

The main aim of this paper is to study the convergence of a nonconforming triangular
plate element-Morley element under anisotropic meshes. By a novel approach, an explicit
bound for the interpolation error is derived for arbitrary triangular meshes (which even
need not satisfy the maximal angle condition and the coordinate system condition ), the
optimal consistency error is obtained for a family of anisotropically graded finite element
meshes.
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1. Introduction

It is well-known that regular assumption or quasi-uniform assumption[9,12] of finite element
meshes is a basic condition in the convergence analysis of finite element approximation both
for conventional conforming and nonconforming elements. However, with the development of
the finite element methods and its applications to more fields and more complex problems,
the above conventional meshes conditions become a severe restriction for the finite element
methods. For example, the solution may have anisotropic behavior in parts of the domain.
This means that the solution varies significantly only in certain directions. In such cases, it is
an obvious idea to reflect this anisotropy in the discretization by using anisotropic meshes with
a small mesh size in the direction of the rapid variation of the solution and a larger mesh size
in the perpendicular direction.

Indeed, some early papers have been written to prove error estimates under more general
conditions (refer to [7, 15]). Recently, much attention is paid to FEMs under anisotropic
meshes. In particular, for second order problems and rectangular meshes, we refer to Acosta
[1,2], Apel[3−6], Chen[10,11], Duran[13,14], Shenk[22] and references therein. Above all, it is now
well known that the regularity assumption is not needed. As to fourth order problems, the plate
bending problem for example, only some rectangular elements have been concerned, interested
reader can refer to [11] for Adini’s element and [19] for bicubic Hermite element. However, up to
now, there are no papers on anisotropic triangular plate elements, especially for nonconforming
ones. This paper is devoted to fill the gap of it.

It is known that the nonconforming Morley element is an effective element for the plate
bending problem. This quadratic triangular element is particularly attractive, because of its
simple structure and low degrees of freedom. However, since the continuity of Morley element
is very weak (nonconforming non-C0 element), even under quasi-uniform meshes, the error
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estimate of it is not easy and has been explored a long way (refer to [17, 20, 6, 21]). In
this paper, we consider the plate bending problem discretized with the nonconforming Morley
element under anisotropic triangular meshes. Since the technique developed to estimate the
local interpolation error (refer to [4, 10]) is not convenient to be applied for triangular elements,
we turn to other tricks. By using of the special properties of the shape function space of Morley
element and the results of Poincaré inequality (refer to [8, 18]), we derive an explicit bound of
its interpolation error under arbitrary triangular meshes. The consistency error is even more
hard to be treated. In order to obtain the optimal consistency error, we have to consider a
special type of product anisotropic triangular meshes, namely, tensor product meshes. As to
more general anisotropic triangular meshes, we are still work on them.

The outline of the paper is as follows. In the next section, after introducing the nonconform-
ing Morley element approximation to the plate bending problem, we derive the interpolation
error of it under arbitrary triangular meshes. In section 3, the optimal anisotropic consistency
error of Morley element is obtained by a novel approach under a family of anisotropically graded
finite element meshes . In order to verify the validity of theoretical analysis, some numerical
experiments are carried out in section 4.

2. The Interpolation Error Estimate on Arbitrary Triangular Meshes

We consider the plate bending problem[12]:




42u = f, in Ω,

u =
∂u

∂n
= 0, on ∂Ω,

(2.1)

where Ω denotes a plane polygonal domain, f ∈ L2(Ω) is the applied force, n is the unit outward
normal along the boundary ∂Ω. The related variational form is :

{
Find u ∈ H2

0 (Ω), such that

a(u, v) = (f, v), ∀v ∈ H2
0 (Ω),

(2.2)

where

a(u, v) =
∫

Ω

A(u, v)dxdy,

A(u, v) = 4u4v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx),

(f, v) =
∫

Ω

fvdxdy,

H2
0 (Ω) = {v ∈ H2(Ω), v =

∂v

∂n
= 0, on ∂Ω}

and σ is the Poisson ratio, 0 < σ < 1
2 , uxy = ∂2u

∂x∂y , etc.
Clearly, the above bilinear form a(·, ·) is bounded and coercive :

{
|a(v, w)| ≤ (1 + σ)|v|2,Ω|w|2,Ω, v, w ∈ H2

0 (Ω)

a(v, v) ≥ (1− σ)|v|22,Ω, v ∈ H2
0 (Ω).

(2.3)

Throughout this paper, we adopt the standard conventions for Sobolev norms and seminorms
of a function v defined on an open set G:

‖v‖m,G =




∫

G

∑

|α|≤m

|Dαv|2



1
2

,
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|v|m,G =




∫

G

∑

|α|=m

|Dαv|2



1
2

.

We shall also denote by Pl(G) the space of polynomials on G of degrees no more than l.
Let Jh be an arbitrary triangulation of Ω, with each element K being an open triangle of

size hK , and h = max
K∈Jh

hK . On this triangulation we construct the so-called Morley element

(cf. [17]):

Vh = {vh ∈ L2(Ω) : vh|K ∈ P2(K), vh is continuous at each vertex

a ∈ K,

∫

F

[
∂vh

∂n
]ds = 0,∀ F ⊂ K, K ∈ Jh, vh(a) = 0, a ∈ ∂Ω} (2.4)

where we denote faces of elements by F and by [v] the jump of the function v on the faces F .
For boundary faces we identify [v] with v.

We note that Vh is not a subspace of H1(Ω) (non C0 nonconforming element). The discrete
problem of (2.2) then reads as

{
Find uh ∈ Vh, such that

ah(uh, vh) = (f, vh), ∀vh ∈ Vh,
(2.5)

where ah(uh, vh) =
∑

K∈Jh

∫

K

A(uh, vh)dxdy.

Put

‖ · ‖h =

( ∑

K∈Jh

| · |22,K

) 1
2

.

It is easy to prove that ‖ · ‖h is a norm of Vh, so the discrete problem (2.5) has unique
solution by Lax-Milgram Lemma [9,12].

Let u and uh be the solutions of (2.1) and (2.5) , respectively, by Strang’s Lemma [9,12],

‖u− uh‖h ≤ C

(
inf

vh∈Vh

‖u− vh‖h + sup
vh∈Vh

|ah(u, vh)− (f, vh)|
‖vh‖h

)
, (2.6)

where the first term is the approximation error and the second one is the consistency error.
Throughout this paper, the positive constant C will be used as a generic constant,which is
independent of hK and of hK

ρK
. In this section we only consider the approximation error, the

consistency error will be discussed in the next section.
The Morley’s interpolant Πh, Πh : H2(Ω) −→ Vh is defined by Πh|K = ΠK with





ΠKu(a) = u(a), ∀ vertex a ∈ K,∫

F

∂ΠKu

∂n
ds =

∫

F

∂u

∂n
ds, ∀F ⊂ ∂K.

(2.7)

The following result is the classic Poincaré inequality can be found in [18].
Lemma 2.1. Let G be a bounded convex domain and let w ∈ H1(G) be a function with
vanishing average, then

‖w‖0,G ≤ d

π
|w|1,G (2.8)

where d is the diameter of G.
Remark 2.1. It is very interesting to remark that the constant in the Poincaré inequality can
be taken explicitly and independent of the shape (i.e., depending only on the diameter) for a
general convex domain. However, the proof in [18] contains a mistake, and recently [8] gives
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a modification proof, fortunately, the optimal constant d
π in the Poincaré inequality remains

valid.
Now, we will derive the optimal interpolation error estimate under arbitrary triangular

meshes.
Theorem 2.1. Under the above hypothesis, let u ∈ H3(Ω), then there holds

inf
vh∈Vh

‖u− vh‖h ≤ ‖u−Πhu‖h ≤ 2
π

h|u|3,Ω. (2.9)

Proof. We only need to prove the the following result

|u−ΠKu|2,K ≤ 2
π

hK |u|3,K ,∀K ∈ Jh. (2.10)

Firstly, let us consider α = (2, 0), since DαΠhu = const, then by Green’s formula and the
definition of Morley’s interpolant, we have

DαΠKu =
1
|K|

∫

K

DαΠKudxdy =
1
|K|

∑

F⊂∂K

∫

F

∂ΠKu

∂x
nxds

=
1
|K|

∑

F⊂∂K

∫

F

(
∂ΠKu

∂n
nx − ∂ΠKu

∂s
ny

)
nxds

=
1
|K|

∑

F⊂∂K

∫

F

(
∂u

∂n
nx − ∂u

∂s
ny

)
nxds

=
1
|K|

∑

F⊂∂K

∫

F

∂u

∂x
nxds

=
1
|K|

∫

K

Dαudxdy.

(2.11)

Therefore, Dαu − DαΠKu has vanishing mean value on the element K, it follows form
Lemma 2.1 that

‖Dαu−DαΠKu‖0,K ≤ hK

π
|Dαu|1,K . (2.12)

By the same argument, we can obtain the same result of (2.11) for α = (0, 2) and α = (1, 1),
which implies (2.10) and completes the proof of the theorem.

3. The Consistency Error Estimate on Anisotropic Triangular Meshes

In this section, we will focus on explain the ideas for the estimation of the consistency error.
For the sake of simplicity, let Ω be a union of rectangles with sides parallel to the axes of the
Cartesian coordinate system (x,y). Firstly, assume Ω is decomposed as a union of rectangular
elements K with length hK1, hK2 in x and y direction respectively, then Jh is obtained by
dividing each rectangle into two triangles.

In the sense of (2.6), it is our aim to derive an estimate for

sup
vh∈Vh

|ah(u, vh)− (f, vh)|
‖vh‖h

.

If we start in the usual way, the well known result[16] gives

ah(u, vh) = −
∑

K∈Jh

∫

K

∇4u · ∇vh + E1(u, vh) + E2(u, vh), (3.1)
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where 



E1(u, vh) =
∑

K∈Jh

∫

∂K

[4u− (1− σ)uss]vhnds,

E2(u, vh) =
∑

K∈Jh

∫

∂K

(1− σ)usnvhsds

(3.2)

and (·)s = ∂
∂s , (·)n = ∂

∂n , are tangential and normal derivatives along element boundaries,
respectively.

The classical method to estimate the consistence error[16] is directly based on the estimate
of the following identity:∫

F

(v − P0,F v)(w − P0,F w)ds, F ⊂ ∂K, v, w ∈ H1(K), (3.3)

where P0,F v = 1
|F |

∫
F

vds, using coordinate transformation, interpolation theory and trace

theorem, through ∂K → ∂K̂ → K̂ → K, then we have∣∣∣∣
∫

F

(v −MF v)(w −MF w)ds

∣∣∣∣
≤ ‖v −MF v‖0,F ‖w −MF w‖0,F

≤ C
|F |
|K| ×


 ∑

i=1,2

h2
Ki‖∂iv‖20,K




1
2


 ∑

i=1,2

h2
Ki‖∂iw‖20,K




1
2

,

(3.4)

where ∂1 = ∂
∂x , ∂2 = ∂

∂y .
In fact, the estimate is all right for a small side of an element, but we can not get the desire

convergence result of (3.4) as usual. Thus it is more difficult for us to estimate anisotropic
nonconforming consistency error than conventional one.

(((((((((
F2

F1

F3

Figure 1. a narrow triangle element K

Let us consider a narrow triangle element K illustrated in Figure 1, hK1 À hK2, for the
two long edges F1, F3, we have the factor (hK1

hK2
)

1
2 ( which is unbounded ) in the estimate (3.4).

So, something must be done for the two long edges.
For the later use, we define an operator T : H1(K) −→ P, P = span{1, y} as follows:∫

Fi

Tvds =
∫

Fi

vds, i = 1, 3. (3.5)

It can be checked easily that the operator T is well-posed.
Now, we are in a position to prove an estimate for the consistency error.

Theorem 3.1. Assume u , uh to be the solution of (2.2) and (2.5), respectively, further assume
u ∈ H3(Ω) ∩H2

0 (Ω), f ∈ L2(Ω), then we have

sup
vh∈Vh

|ah(u, vh)− (f, vh)|
‖vh‖h

≤ Ch (|u|3,Ω + h‖f‖0,Ω) . (3.6)

Proof. Firstly, we consider the following term,∫

K

4u4 vhdxdy =
∫

K

4u(vhxx + vhyy)dxdy.
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Noticed vhyy = const, ny|F2 = 0, by Green’s formula, we have

vhyy =
1
|K|

∫

K

vhyydxdy =
1
|K|

∑

i=1,3

∫

Fi

vhynyds

=
1
|K|

∑

i=1,3

∫

Fi

Tvhynyds =
1
|K|

∫

K

(Tvhy)ydxdy

= (Tvhy)y.

(3.7)

So, ∫

K

4u4 vhdxdy =
∫

K

4u(vhxx + (Tvhy)y)ddxdy

= −
∫

K

[(4u)xvhx + (4u)yTvhy] dxdy

+
3∑

i=1

∫

Fi

4u(vhxnx + Tvhyny)ds.

(3.8)

Green’s formula gives∫

K

uxxvhyydxdy =
∫

K

uxx(Tvhy)ydxdy

= −
∫

K

uxxyTvhydxdy +
3∑

i=1

∫

Fi

uxxTvhynyds

= −
∫

K

uxxy(Tvhy − vhy)dxdy

−
∫

K

uxxyvhydxdy +
3∑

i=1

∫

Fi

uxxTvhynyds

= −
∫

K

uxxy(Tvhy − vhy)dxdy +
∫

K

uxyvhxydxdy

−
3∑

i=1

∫

Fi

uxyvhynxds +
3∑

i=1

∫

Fi

uxxTvhynyds,

(3.9)

and
∫

K

uyyvhxxdxdy = −
∫

K

uxyyvhxdxdy +
3∑

i=1

∫

Fi

uyyvhxnxds

= −
∫

K

uxyy(vhx − Tvhx)dxdy −
∫

K

uxyyTvhxdxdy +
3∑

i=1

∫

Fi

uyyvhxnxds

= −
∫

K

uxyy(vhx − Tvhx)dxdy +
∫

K

uxy(Tvhx)ydxdy

−
3∑

i=1

∫

Fi

uxyTvhxnyds +
3∑

i=1

∫

Fi

uyyvhxnxds

= −
∫

K

uxyy(vhx − Tvhx)dxdy +
∫

K

uxyvhxydxdy

−
3∑

i=1

∫

Fi

uxyTvhxnyds +
3∑

i=1

∫

Fi

uyyvhxnxds.

(3.10)
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Note that the proof of (3.10) has exploited the property (Tvhx)y = vhxy, which can be obtained
by the same argument as (3.7).

Let Ih be piecewise linear interpolation operator on Ω, Ih|K = IK , IK is the linear interpo-
lation operator on K. Apparently, Ihvh ∈ H1

0 (Ω), then

(f, Ihvh) = (42u, Ihvh)

= −
∑

K∈Jh

∫

K

54 u · 5Ihvhdxdy

−
∑

K∈Jh

∫

K

[(4u)x(Ihvh)x + (4u)y(Ihvh)y]dxdy.

(3.11)

By (3.8), (3.9), (3.10) and (3.11), we have

ah(u, vh)− (f, vh) = (f, Ihvh − vh) +
∑

K∈Jh

∫

K

(4u)x(IKvh − vh)xdxdy

+
∑

K∈Jh

∫

K

(4u)y((IKvh)y − Tvhy)dxdy

+
∑

K∈Jh

3∑

i=1

∫

Fi

4u(vhxnx + Tvhyny)ds + (1− σ){

∑

K∈Jh

∫

K

uxxy(Tvhy − vhy)dxdy +
∑

K∈Jh

∫

K

uxyy(vhx − Tvhx)dxdy

+
∑

K∈Jh

3∑

i=1

∫

Fi

uxyvhynxds−
∑

K∈Jh

3∑

i=1

∫

Fi

uxxTvhynyds

+
∑

K∈Jh

3∑

i=1

∫

Fi

uxyTvhxnyds−
∑

K∈Jh

3∑

i=1

∫

Fi

uyyvhxnxds}

=
4∑

i=1

Ii + (1− σ)
10∑

i=5

Ii.

(3.12)

Now we will estimate the above terms one by one.
From classical interpolation theory [9,12], we have

I1 = (f, Ihvh − vh) ≤
∑

K∈Jh

∣∣∣∣
∫

K

f(IKvh − vh)
∣∣∣∣

≤
∑

K∈Jh

‖f‖0,K‖IKvh − vh‖0,K

≤
∑

K∈Jh

Ch2
K‖f‖0,K |vh|2,K

≤ Ch2‖f‖0,Ω‖vh‖h.

(3.13)

By [3, 4], the interpolation Ih is an anisotropic interpolation, and have the following estimate

|IKv − v|1,K ≤ ChK |v|2,K , ∀v ∈ H2(K), (3.14)
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then
I2 =

∑

K∈Jh

∫

K

(4u)x(IKvh − vh)xdxdy

≤
∑

K∈Jh

|u|3,K |IKvh − vh|1,K

≤ Ch|u|3,Ω‖vh‖h.

(3.15)

I3 can be decomposed as

I3 =
∑

K∈Jh

∫

K

(4u)y(IKvh − vh)ydxdy

+
∑

K∈Jh

∫

K

(4u)y(vhy − Tvhy)dxdy

= I31 + I32.

(3.16)

Similar to I2, I31 can be estimated as

I31 ≤ Ch|u|3,Ω‖vh‖h. (3.17)
Since the operator T is exact for constant, by the interpolation theory we have

I32 ≤
∑

K∈Jh

|u|3,K‖vhy − Tvhy‖0,K

≤
∑

K∈Jh

ChK |u|3,K |vhy|1,K

≤ Ch|u|3,Ω‖vh‖h.

(3.18)

By the same argument, we can obtain

I5 ≤ Ch|u|3,Ω‖vh‖h, I6 ≤ Ch|u|3,Ω‖vh‖h. (3.19)
I4 can be decomposed as

I4 =
∑

K∈Jh

3∑

i=1

∫

Fi

4uvhxnxds +
∑

K∈Jh

3∑

i=1

∫

Fi

4uTvhynyds

= I41 + I42.

(3.20)

Employing the properties of the Morley’s finite element space, we get

I41 =
∑

K∈Jh

3∑

i=1

∫

Fi

(4u− P0,Fi
4 u)(vhx − P0,Fi

vhx)nxds, (3.21)

and

I42 =
∑

K∈Jh

3∑

i=1

∫

Fi

(4u− P0,Fi 4 u)(Tvhy − P0,Fi(Tvhy))nyds. (3.22)

Thanks to the fact that nx|F1 = 0, nx|F2 = 1, nx|F3 = − hK2√
h2

K1+h2
K2

(refer to Figure 1), then by

(3.4),

I41 ≤
∑

K∈Jh

3∑

j=1

C
|Fj |nx

|K| ×

 ∑

i=1,2

h2
Ki‖∂i 4 u‖20,K




1
2


 ∑

i=1,2

h2
Ki‖∂ivhx‖20,K




1
2

≤
∑

K∈Jh

3∑

i=1

ChK |u|3,K |vh|2,K

≤ Ch|u|3,Ω‖vh‖h.

(3.23)



Convergence Analysis of Morley Element on Anisotropic Meshes 177

Noticed that ny|F2 = 0 and Tvhy ∈ span{1, y}, by (3.4) we have

I42 =
∑

K∈Jh

∑

j=1,3

∫

Fj

(4u− P0,Fj 4 u)(Tvhy − P0,Fj (Tvhy)
)
nyds

≤
∑

K∈Jh

∑

j=1,3

|Fj |ny

|K| ×

 ∑

i=1,2

hKi
2‖∂i 4 u‖20,K




1
2


 ∑

i=1,2

hKi
2‖∂i(Tvhy)‖20,K




1
2

=
∑

K∈Jh

∑

j=1,3

|Fj |ny

|K| ×

 ∑

i=1,2

h2
Ki‖∂i 4 u‖20,K




1
2

hK2‖(Tvhy)y‖0,K

=
∑

K∈Jh

∑

j=1,3

|Fj |ny

hK1
×


 ∑

i=1,2

h2
Ki‖∂i 4 u‖20,K




1
2

‖vhyy‖0,K

≤
∑

K∈Jh

∑

j=1,3

ChK |u|3,K |vh|2,K

≤ Ch|u|3,Ω‖vh‖h.

(3.24)

Following the lines of I41, there holds

I7 ≤ Ch|u|3,Ω‖vh‖h, I10 ≤ Ch|u|3,Ω‖vh‖h. (3.25)

By the same argument of I42, we can show that

I8 ≤ Ch|u|3,Ω‖vh‖h, I9 ≤ Ch|u|3,Ω‖vh‖h. (3.26)

Thus we have obtain that

ah(u, vh)− (f, vh) ≤ Ch (|u|3,Ω + h‖f‖0,Ω) ‖vh‖h, (3.27)

which implies the desired result of (3.6) directly.
A combination of Theorem 2.1 and Theorem 3.1 gives the following optimal error estimate.

Theorem 3.2. Under the hypothesis of Theorem 3.1, we have

‖u− uh‖h ≤ Ch(|u|3,Ω + h‖f‖0,Ω). (3.28)

4. Numerical Experiment

In order to examine the numerical performance of Morley element for narrow triangular
meshes, we consider the unit square plate bending problem[23] with clamped supported bound-
aries under a uniform load. Let the Poisson ratio σ = 0.3, f = 1. The analytic values of
deflection and bending moment at the center are 0.00126532 and 0.0229051 respectively.

The unit square Ω = [0, 1]× [0, 1] is subdivided in the following two fashions:
mesh 1 : Each edge of Ω is divided into n segments with n + 1 points (1− cos( iπ

n ))/2, i =
0, 1, ..., n

2 , (1 + sin( iπ
n − π

2 ))/2, i = n
2 + 1, ..., n. The mesh obtained in this way for n = 16 is

illustrated at left Figure 2, and the anisotropic triangular mesh is obtained by dividing each
rectangular into two triangles.

mesh 2 : Each edge of Ω is divided into n segments with n + 1 points sin( iπ
n )/2, i =

0, 1, · · · , n/2, (1− cos( iπ
n − π

2 ))/2, i = n/2 + 1, · · · , n. The mesh obtained in this way for n = 16
is shown at right Figure 2. Then the anisotropic triangular mesh is obtained by dividing each
rectangular into two triangles.

The error of the deflection |(u− uh)(O)| and the error of bending moment |(M −Mh)(O)|
at the center of the unit square are shown in Table 4.1 and Table 4.2, from which the optimal
convergence of the element for unregular subdivisions can be seen.
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Furthermore, in order to present the advantages of the anisotropic meshes over the regular
meshes, we carry our another experiment by solving a biharnomic differential equation with
Ω = [0, 1] × [0, 1], σ = 0.3, and the right hand side f(x, y) is taken such that u(x, y) =
(1−e−x(1−x)/ε)2(1−e−y(1−y)/ε)2 (refer to the left of Figure 2) is the exact solution, which varies
significantly near the boundary of Ω for small ε. A comparison of the errors ‖u − uh‖h/‖u‖h

between square triangular mesh and mesh 1 (please refer to Figure 3), which shows that the
anisotropic meshes are more attractive than the regular meshes for some special cases.

Figure 2. The initial rectangular meshes of Ω for case n = 16, mesh 1 (left) and mesh 2 (right)
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Figure 3. the solution u for case ε = 0.05 (left) and for case ε = 0.01 (right)
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Figure 4. the error ‖u− uh‖h/‖u‖h for case ε = 0.05 (left) and for case ε = 0.01 (right)
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Table 4.1. The errors |(u− uh)(O)| and |(M −Mh)(O)| (mesh 1)

n× n 8× 8 16× 16 32× 32 64× 64 128× 128

|(u− uh)(O)| 0.00192686 0.00147450 0.00131584 0.00127800 0.00126849

|(M −Mh)(O)| 0.02123944 0.02253187 0.02281558 0.02288296 0.02289956

max
K∈Jh

hK 0.270598 0.137950 0.069309 0.034696 0.017353

max
K∈Jh

{hK/ρK} 7.109732 14.358751 28.786978 57.608674 115.234703

Table 4.2. The errors |(u− uh)(O)| and |(M −Mh)(O)| (mesh 2)

n× n 8× 8 16× 16 32× 32 64× 64 128× 128

|(u− uh)(O)| 0.00185503 0.00141956 0.00130444 0.00127514 0.00126778

|(M −Mh)(O)| 0.02164107 0.02262186 0.02283717 0.022888306 0.02290090

max
K∈Jh

hK 0.270598 0.137950 0.069309 0.034696 0.017353

max
K∈Jh

{hK/ρK} 7.109732 14.358751 28.786978 57.608674 115.234703
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