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Abstract

This paper deals with the relationship between asymptotic behavior of the numerical
solution and that of the true solution itself for fixed step-sizes. The numerical solution is
viewed as a dynamical system in which the step-size acts as a parameter. We present a
unified approach to look for bifurcations from the steady solutions into spurious solutions
as step-size varies.
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1. Introduction

It is well-known that a numerical method which is convergent in a finite interval does not
necessarily yield the same asymptotic behavior as the underlying differential equation. In many
circumstances, we are interested in the asymptotic behavior in the differential equations. The
asymptotic states of a dynamical system are captured in the w— and a— limit sets which may
concern equilibria, periodic orbits, attractors, etc. It is desirable to design numerical schemes for
which these sets are close to the corresponding limit sets of the underlying differential equation,
and to understand and hence to avoid conditions under which spurious members of the limit
sets are introduced by the time discretization.

Runge-Kutta and linear multistep methods are commonly used to obtain a numerical solu-
tion of ordinary differential equations (ODEs). Dynamics of the numerical solution produced
by Runge-Kutta and linear multistep methods solving ODEs has been extensively studied (see,
for example, [3, 6, 7, 8,9, 10, 12, 17]).

In this paper, we are concerned with the nonlinear delay differential equation with a constant
lag in the form

<
~
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|

= f(y(t)vy(t - T))v t>0, (1)
y(t) = ¢@t), -T7<t<0,

where y, f are real scalar functions and 7 > 0 is a constant lag. The solution (if it exists) is
determined by a choice of initial function ¢. The results on existence, uniqueness and continuous
dependence of solution of (1) can be found in the books by Hale and Lunel [4] and Driver [2].
We assume throughout that the initial function ¢ is continuous.
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Consider approximating the solution of (1) usmg a consistent numerical method with a fixed
step-size h such that h = =~ > 0, where m > k is some positive integer and kis a positive
integer depending upon the specific method. Let y,, denote our approximation to y(t, ), where

t, = nh. Typically the sequence y,, is derived from a map of the form

f(yn_m,---,ynJr%;h):O, n=20,1,..., (2)
together with k initial conditions. Thus (2) must be solved for Yoo BIVED Ynmy =, Y 5oy
By introducing a new vector Uy, = [Yn—m, " - - ,yn_%_l]T € RF™ we may write (2) as a one-step
map of the form

H(Upn,Ups1;h) = 0. (3)

Definition 1.1.

1. The numerical scheme (2) is reqular of degree 1, denoted R1Y, if every fized point i € R of
(2) satisfies f(u,w) =0 of (1) for all h > 0 and all equatwns (1) with f € C?. Otherwise

it is irreqular of degree 1.

2. The numerical scheme (2) is reqular of degree 2, denoted R, if (2) does not admit real
period two solution in n for all h > 0 and all equations (1) with f € C%. Otherwise it is
irreqular of degree 2.

The following two lemmas are used in the proofs of our main results. The first one concerns
the bifurcation of fixed points from simple eigenvalue, while the second concerns the bifurcation
of period 2 solutions in the map (3).

Lemma 1.2 [7] Let the function H(a,b; h) satisfy C’T(R’Hm XR’H’” R) for some integer r > 2.
Assume that the map (3) has a fived point U for all h > 0. Assume also that BH (U U;h) +
BH (U U h) is singular at h = h. and there exists a nonzero vector 1 € R’Hm such that
Null(aH(U U;hc) + %—7;([7, ﬁ; he)) = span{n}. If

dcil (%H(U U;h) + %—7;(U U; h)) vt h:hcn ¢ Range (%—Z(ﬁ, Ui he) + %—7([7’,(7;]1&) :
Then, for 0 < € < 1, there exists a fized point of (3) with the form
h(e) = he+O(le]),
Unle) = en+0O(el*)

which is C"~1 in e.

Lemma 1.3 [7] Let the function H(a,b; h) satisfy C" (R%"’m x RE+m. R) for some integer r > 2.
Assume that the map (3) has a fixed point U for all h > 0. Assume also that there ezists a
nonzero vector ¥ € RET™ such that Null (%—7:([7, U;he) — %—7;((7, U; hc)> = span{¥} and that

ST, Us he) + 24U, U; he) is invertible. If

dciz <%H(U U;h) — %?(U U; h)> S Y ¢ Range (%—z(ﬁ,ﬁ;hc) - %—7;(17,[7, hc)) .
Then, for 0 < e < 1, there exists a period 2 solution of (3) with the form
h(e) = he+O(le]),
Un(e) = U+e(=1)"9+O(le)

which is C™~1 in e.
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Many authors have investigated linear stability and contractivity of Runge-Kutta and linear
multistep methods solving DDEs (see, for example, [1, 5, 14, 15, 16, 19]). Regularity properties
of Runge-Kutta and linear multistep methods for DDEs (1) have been widely investigated (see,
for example, [11, 13, 18]). The aim of this paper is to present a unified approach to look for
bifurcations from the steady solutions into spurious solutions as step-size varies.

2. Runge-Kutta methods

Rung-Kutta methods are natural candidates for solving DDEs, because they can be more
readily adapted to cope with discontinuities and appear to be well suited to problems where
frequently step-size changing is required.

Let (A, b, ¢) denote a given Runge-Kutta method with an s x s matrix A = (a;;) and vectors
b= (b1,b2, ,bs)T, ¢ = (c1,c2,---,¢5)T. Let h > 0 be a given step-size such that 7 = mh

for some positive integer m, and define grid-points t,, = nh,n = —m,—m + 1,---. Then the
approximations y,4+1 to y(tn+1) (n =0,1,2,--+) are defined by
YP o=yt h a0, =12, (4)
Yntl = Ynth Zi:l bif(yinv Y; )7
where the arguments Y;” are approximations to y(t, + ¢;h) (i =1,2,---,s).

We assume that § € R is a hyperbolic equilibrium of DDE (1) which satisfies that the
characteristic equation P(z) = z — f{ — f5¢7*7 = 0 has no zeros on the imaginary axis, where
f1= g—{l@, V), 14 = a—’;@, 7), and f(y, z) is the right-hand function of (1). The following lemma
is easy to prove.

Lemma 2.1 [9] Consider the real (p+ 1) x (p+ 1) bordered matriz

_| A<
_XTli,

where A is a p X p matriz, ( and x are vectors of length p, and k is a scalar. Then

(1]

1. If rank(A) = p, then Z is singular if and only if K — xTA=1¢ = 0.

2. If rank(A) = p — 1, then = is singular if and only if xT¢ =0 or ¢T¢ = 0. Here Ap =0
and ¢TA = 0.

Let vectors &, € R® satisfy [h(f] + f3)A — I)¢ = 0 and [h(f] + f5)AT — I]n = 0. Denote
e=[1,1,---,1]".

Theorem 2.2. Let § be a hyperbolic steady solution of DDFE (1). Spurious fixed points of (4)
in n bifurcate from the fized points y, =¥ at h. = - for some positive integer m, where

1. bTI — he(f] + fH)A]7te = 0, provided that bT[I — ho(f] + f4) Al 2%e # 0 and that (I —
he(f1 + f5)A) is invertible; or where

2. [I — he(f] + f3)A] is singular with one-dimensional null-space and with left and right
eigenvectors n and €, respectively, such that n"e = 0,b7¢ # 0, and Technical Condition
A holds; or where

3. [I = he(f] + f5)A] is singular with one-dimensional null-space and with left and right
eigenvectors n) and &, respectively, such that nTe # 0,b7¢ = 0, and Technical Condition
B holds.

Technical Condition A: Let nTe = 0,b7¢ # 0, and let o be the unique vector with aTb =0
satisfying
[ = he(fi + f3)Ala —e =0.
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Then
nTa #0.

Technical Condition B: Let nTe # 0,b7¢ = 0, and let 8 be the unique vector with fTe =0
satisfying

[ - hC(f{ + fé)AT]ﬁ - hC(f{ + fé)b =0.
Then
pre# 0.
Proof. Let Y™ = (Y*, Y%, .-+, Y")T. We introduce a new vector Z,, as
Zn — ((Yn—m)T, (Yn—m—i-l)T’ e (Yvn—l)T7 yn)T-

Then the Runge-Kutta formula (4) can be written as

Zni1=BZp+ F(Zny1, Zn) (5)
where

ro I 0 O 0 0 07

0 0 I O 0 0 O

B:

0 0 0 O 0 I O

0 00 O 0 0

L0 0 0 O 0 0 1 |
and

_ 0 _
0

F(Zn—i-la Zn; h) = h ijl aljf(}/jn’ }/jnim)

h 2;21 asa‘f(yjna an_m)
L th:1 bjf(ana anim) J

Denote H(a,b;h) = a — Bb — F(a,b; h), H, = 2 (2 Z;h) ,and H, = 21 (2 Z;h), where
Z\ = (geTvgeTa ) Z/J\eTa Z/J\)T Then

I 00 0 -~ 0 0 0

071 0 0 -~ 0 0 0
H, =

00 0 0 I 0 0

00 0 0 -~ 0 I-hffA 0O

00 0 0 -~ 0 —hfip" 1|
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and

Hy, =
0 0 0 O 0o —-I 0
—hfiA 0 0 O 0 0 -—e
| —hfpT 0 0 0 0 0 -1 |
For seeking spurious fixed points, consider H(Z, Z; h) = 0 and solve the equation
Xd =0, (6)
where } )
1 - 0 0 0 0 0
0 I -1 0 0 0 0
X=H,+Hy=| & 5 e - (7)
0 0 o o .- I —I 0
—hflA 0 0 0 -+ 0 I-hffA —e
| —hfpT 0 0 0 -~ 0 —hfitt 0

and ¢ = [ ?7¢ga"'7¢£zv¢m+l]T 6Rms+17 (bz S Rsai = 152"'7m7 and ¢m+1 eR.
Case 1: For [I — h.(f] + f4)A] is invertible, the null-space of X at h = h, is spanned by

® = [(( = he(f{ + f5)A)7L)T -, (I = he(f] + f3)A)1e)T, 1]

Next, we need to show that

dX
— ® ¢ Range(X |n=n.)- (8)
dh |j,_p.
Suppose there is a vector I' € R™**+! such that
X
X|p=p I = — P 9
|h7hc dh heh. ) ( )

where I' = (v, -+ 4L 1)t € R™SHL 4, € R i = 1,2,---,m, and 7,41 € R. From the
equation (9) we obtain

TL=Y2 = = Umy

—A(f1 + f2)m = [I = he A(f1 + f2)lrm — €Ym1,

heb® (ff + f3)7m = b7 (f1 + f3)bm-
Then
heb i = b1 [T = heA(f] + f5)] e =0T [T = heA(f1 + f3)] e+ heb [T = heA(fi + f5)] ' evmia.
One has bT[I — h.A(f] + f4)]"?e = 0. This is a contradiction and Lemma 1.2 yields the desired
result.

Case 2: First we show that the matrix X|,—p, is singular with one-dimensional null-space.
From the equation (6), we obtain

P1 =2 =" = o,
I¢m - hcA(f{ + fé)(bm = e(bm—i-la
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Suppose ¢p1 = 0. Then b7¢ = 0 and this is a contradiction. Without loss of generality, let
¢m+1 = 1. According to Technical Condition A, the null-space of X|,—p, is spanned by
® = (aT,aT,---,aT 1)T. We need to show (8) holds. From the equation (9), we have

=Y == Ym,
—A(fi + fo)a=[I — heA(f1 + f5)]Ym — €Ym+1,
heb™ (f1 + f5)vm = T (f] + f5)ax,

which implies 0 = —henT[I — hA(f] + f3)]vm + henTeyms1 = he(f] + fHnT Aa = nTa # 0.
This is a contradiction.

Case 3: The proof is similar to that of Case 2. If [I — h.(f] + f})A] is singular of rank
s — 1, then X|,—p, is singular if ¥7¢ = 0 or nTe = 0, where ¢ is a right eigenvector and

nT is a left eigenvector. It is easy to show that the null-space of X|—j, is spanned by ® =

[(hefs(ATB+0NT, - (hef5(ATB +b))T, 87, 1]T. This completes the proof.

Theorem 2.3. Let § be a hyperbolic steady solution of (1). Period 2 solutions of (4) in n
bifurcate from the steady solution y at h. = ;- for some even m, where

T / N1—1 2 _
b™[I = he A(f1 + £5)] e+m—0 (10)
provided that
bIII = heA(f] + f5)] e #0 (11)

and that the matriz [I — h A(f] + f4)] is invertible.
Proof. Our aim is to find where period 2 solutions of (4) bifurcate from a genuine steady

solution. First we will show that H, — Hy at h = h.. is singular with one-dimensional null-space.
Let Z = H, — Hp. Then the matrix Z is given by

T I 0 0O --- 0 0 0
0 I I 0 --- 0 0 0
Z=H,—Hy=| = i . : L (12)
0 o o o - I 1 0
hf$A 0 0 0 -+ 0 I—hf{A e
L afsp™ 0 0 0 -~ 0 —hfidT 2 |
Solve
(Ho — Hp)|p=n.® =0, (13)
where ® = (¢7 .- ¢T hpi1)T € R ¢, € R%i =1,2,---,m, and ¢,,11 € R. Since m is
even, we thus have

P1=—¢2 =" = Pp_1= —0m,
(I - hcA(f{ + fé))(bm = _e¢m+lu
heb (f1 + f5)bm = 20m11,

which implies —bT (f] + f3)hell — heA(f] + f5)] redmr1 = 20m1-
Since 5

Trr_ L+ ) et s =
BT = heA(S{+ )] e+ s =0,

(Hoy — Hp)|ph=n, is singular with one-dimensional null-space.
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Next we show that H, + H, is invertible at h = h.. Consider the equation

X|p=n T =0, (14)
where I' = (77,72, 4L 4my1)T. This is equivalent to
=72 = = Ym-1= Tm;

—heAfoy + I = he Afi]Ym — €Yms1 =0,
_thTfé”Yl - hchf{'Ym =0,

which implies —b"he(f] + f5)[I — heA(f] + f3)] " €Ymt1 = 0. Since
- 2
O (fL+ ) = heA(f + f3)] Te = o= #0,
we deduce that Ymi1 = 0,Ym = Ym_1 = --- =71 = 0. Hence H, + Hy, at h = h, is invertible.

Finally, we show that
dz

|y ® ¢ Range (Z|n=h.). (15)
Consider
fl—i . &= Z|p_pT. (16)
From the equation (16), we obtain
M="72=""=Tm-1= ~Tm,

_A(f{ + fé)¢m = [I - hcA(f{ + fé)h/m + eVm+1,
—bT(f1 + f3)pm = —hebDT (f1 + [5)Vm + 2Vmt1s

which implies
0T (fi + FI = heA(fL + f3)] " b + 07 (f1 + fo)hell — heA(f] + f3)] ' evmar + 2ymir = 0.

Thus b7 (f] + ) — heA(f] + f5)] 2€dm+1 = 0, a contradiction. It follows from Lemma 1.3
that period 2 solutions in n bifurcate from the steady solution y at h = h. = ;- for some even
m. This completes the proof.

3. Linear Multistep Methods

Consider approximating the solution of (1) using a general consistent k—step linear multistep
method

k k
Z QjYntj =h Z 6jf(yn+ja ynJrj*m) (17)
j=0 j=0
with fixed step-size h such that h = - > 0 for some positive integer m > k. Here y,, is the
numerical approximation to y(t,), and t, = nh,n = —m, —m+1,---. It is assumed the starting
values yo, Y1, -, Yk—1 are given.

Define the polynomials p(z), o(z) by
k k
p(2) =3 s, olz) =3 8,7, (18)
=0 =0
We will assume throughout that the linear multistep method is consistent and zero-stable. This
implies that
p(1) =0, p'(1)=0(1) #0. (19)
The following result shows that a consistent and zero-stable linear multistep method is
regular of degree 1.
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Lemma 3.1 [13] For a consistent and zero-stable linear multistep method (17), 4 is a fixed
point of (17) if and only if f(y,y) = 0.

The following lemma is easy to prove and will be used to prove Theorem 3.3.

Lemma 3.2 [9] Consider the real l X I companion matriz

0 1 0 0
0 0 1 0
E = ;
0 0 0 1
—Qp —aip —az —ap-1

and the polynomial
o(z) = a2 o+ arx + ao.

Then det(xl — E) = o(x),det(I — E) = o(1), and det(I + E) = (—1)'o(—1).

Theorem 3.3. Let § be a hyperbolic steady solution of (1). Let the linear multistep method
(17) be consistent and zero-stable with p(—1) # 0,0(—1) # 0. Then period 2 solutions in n

1
bifurcate from the steady solution y at h, = W = for some even m.

Proof. Without loss of generality we assume o, = 1. Let Y? = (y;, -+, yirx)? and Y] =
Yitj,t = —m,—m+1,---,5=0,1,---, k. The linear multistep method (17) can be rewrltten
for n >0 as

yn—m+l oI --- 0 O yn—m 0
Yn7m+2 0 O .. ' 0 O Ynferl O
: = - : + ; ;
v 0.0 - 0 I L e
Y 00 --- 0 B Y hZ —o B fY YT
(20)
where
0 1 0
0 0 1 0
B =
0 0 0 1
0 -y —Q1 o —Ok—1
Denote
o 7 --- 0 0 Yn—m+1 0
0 0 0 0 Yn—m+2 0
A= R . . , L= , F(Zn;h)=
0 0 0 I yr o
00 0 B Y Wy o Bif (YY) ™)

So the equation (20) can be rewritten as Z,, = AZ,_1 + F(Z,; h).
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Let H(a,b;h) = a — Ab — F(a;h). Denote H, = %—Ii (2,2; h) JHy = 8_1;( (2,2; h), where

Z = (eT,jeT, - -, )T € R*+1). Then

I 0 -0 0 0 - 00
o 7 --- 0 0 0 0 0 0
H, = : ) Hy, = ’
00 0 0 0 0 —I
00 0 Ao By 0 0 —B
where
1 0 0 0
0 1 0 0
Ao = : : K : :
0 0 0 1 0
—hBofi —hBifi - —hBrk-1fi 1—hBkfi
and
0 0 0 0
0 0 0 0
By = : : - : :
0 0 0 0 0
hBofs hBifs -+ hBu-1fs hBkfs
We have
I I 0 0 I I 0 0
0 I 0 0 0 I 0 0
H,+ Hy, = : . . : : , Hy,— Hy, =
0 0 I -1 0 0 I I
—-By 0 0 Ay—B By 0 0 Ay+B
It follows that
1 -1 0 0
0 1 - 0 0
det(H, + Hp) = det(Ag — B — Byp) = det S . . ,
o o0 .- 1 -1
co €1 - Ck—1 Ck
where
co = —hBo(fi + f2), cr =1 —hBe(fi + f3) + a1,
and
CjZ—hﬁj(f{—f—fz/)-i-Oéj_l, j=1,2,"-,/€—2,/€—1.
From Lemma 3.2 we obtain
k k
det(Ho + Hy) =1+ (ck— 1)+ +ecr+co = aj—h(fi + ) B
j=0 =0

Due to the consistency and zero-stability of the method, we arrive at

det(H, + Hy) = —h(f} + f)o(1) # 0.
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Since m is even, then

det(H, — Hy) = det((=1)™ By + B+ Ag)
= det(Ao + B — Bo)
1 1 .- 0 0
o 1 . 0 0
= det : .. .. : : y
o o0 --- 1 1
do di -+ dpg—1 dg
where
do = —hBo(f1 + f3), dy =1 —hB(fi + f) — ar
and
dj:_h’ﬁj(f]i—i_fé)_ajfla j:17255k_25k_1
It follows from Lemma 3.2 that
det(H, — Hy) = (=1)*"[dy+ (=1)dy + -+ (=1)"(dp + 1) + (=1)*]

= (=D [=hBo(f1 + f3) + hBi(fi + f3) + a0 + -
+(=1)F (k-1 — hBL(f1 + f3)) + (—1) ]
k
= (=DF! Z[h(f{ + £5)B; (=1 + oy (1))
j=0
= (=D)M=h(fi + f2)o(=1) + p(-1)).
Since h, = %, then (H, — Hp)|p=p, is singular. In addition,
Null(H, — Hp)|p=h, = span{P}
where ® = [¢p7, —¢T, -, —¢T]|T € R™*+D) with ¢ = [1,—1,---,(=1)F]T.

Now we are in position to prove (-4 H, — <= H})|—p, ® ¢ Range ((H, — Hp)|p=n,). From

the expression of H, and Hj, we have

0 o --- 0 O
0 0O .. 0 0
d d
R e
dh an? SRRV
0 o --- 0 0
B: 0 0 A;
where
0 0 0 0
0 0 0 0
BSZ : . . : : )
0 0 0 0
Bofs Bify - Bu—1fs Brfs
0 0 0 0
0 0 0 0
A5 = : . . : :
0 0 0 0

—Bofi —Bifi - =Brafi —Befi
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Suppose (4= H, — = Hy)| =, ® € Range((H, — Hy)|n=n.). Then there exists ' = [y{, -+, yL]T
such that

(@)
(@)
(@)
(@)
ASH
~
~
ja]
ja]

71
0 0 0 0 -9 0 I 0 0 V2
0 0 0 0 ¢ 0 0 I I Ym-1
By 0 - 0 A —¢ Boln=n, 0 0 B+ Agln=n, Tm

where 7; € R¥t1 i = 1,2, ... m. From the left-hand side of the equation, we have
Bo(f1+ 1) + (ZDB (1 + f3) + -+ (CD Be(f] + f3) = (f1 + f3)o(=1) #0.
While from the right-hand side of the equation, we have
—(do = di +dz + -+ (=1)*dx) = = [he(f] + f3)o(=1) = p(=1)] = 0.

Consequently (d%Ha - d%Hb) }h:h ® & Range (H,— Hyp)|p=n.. Application of Lemma 1.3 yields
the desired result and this completes the proof.
Example 3.1. Consider the following delay differential equation

y'(t) =2[y(t = 1)° — y(1)].

From the equation, we have y = 1, f{ + f5 = 4. Application of the 2-step method with
p(2) = 22 — 2z and o(z) = 1 to the delay differential equation gives

Yn+2 — Yn+1 = 2h[y§17m - yn]

It is easy to see that p(1) = 0,p'(1) = o(1) = 1,p(—1) = 2,0(—1) = 1. When h, = 1, the
numerical scheme has a period 2 solution

Yn = (=1)"V3.
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