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Abstract

In this paper, we are concerned with a non-overlapping domain decomposition method

(DDM) for exterior transmission problems in the plane. Based on the natural boundary

integral operator, we combine the DDM with a Dirichlet-to-Neumann (DtN) mapping

and provide the numerical analysis with nonmatching grids. The weak continuity of the

approximation solutions on the interface is imposed by a dual basis multiplier. We show

that this multiplier space can generate optimal error estimate and obtain the corresponding

rate of convergence. Finally, several numerical examples confirm the theoretical results.
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1. Introduction

Domain decomposition method (DDM) with nonmatching grids is a kind of nonconforming

finite element methods. In the past few years, there is a fast growing interest in this field (see

[1], [2], [5], [7] ). This kind of DDM allows different discretizations in different nonoverlapping

subdomains by some Lagrange multiplier. This nonconforming element method also allows for

local refinement in only certain subregions of the computational domain. Hence, it is suitable

for parallel computing (see [6]).

The key point to deal with the nonmatching grids is how to choose the matching condition

so that the resulting approximation problem possesses the optimal error estimate. The approx-

imate solutions must satisfy some weak continuity such as the integration matching condition,

whereas the pointwise matching.

In this paper, we propose a new class of multiplier space for the exterior unbounded problems

with annular interfaces, which is based on the idea of dual basis multiplier (refer to [7]). We

impose weak continuity conditions in the sense that the jump of the DDM solution across the

interface is required to be orthogonal to a space of test functions. Due to the character of

annular interface that there is no intersections between any of two subregions, it is easier for

us to construct efficient and practical multiplier. The basis functions of the multiplier spaces
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are generated by a set of simple functions with local compact supports. The resulting discrete

system is still symmetric and positive definite. It will be shown such construction guarantee

the optimal energy error estimate for the approximation solutions and the discrete formulation

is easy to be solved.

The outline of the paper is as follows. In Section 2, we present the coupled variational

formulation for the exterior transmission problem by the finite element method and the natural

boundary element method (FEM-NBEM). Then we make a finite element discretization with

nonmatching grids for this coupled system in Section 3, and the construction of the multiplier

spaces is also introduced. It will be shown that the nonconforming approximation posseses the

optimal energy error estimate. In Section 4, we give a D-N alternating method to solve the

discrete system and show that this D-N algorithm is convergent and independent of the finite

element meshes. Finally, in Section 5, we illustrate these theoretical results by using some

numerical examples.

2. FEM-NBEM Coupling

As a model problem, we consider a second order elliptic equation in divergence form coupled

with the Laplace equation in the exterior unbounded region. Let Ω0 be a bounded domain of R
2

with a Lipschitz-continuous boundary Γ0. Ω1 is the annular region bounded by Γ0 and another

smooth closed curve Γ1 that is strictly contained in R
2\Ω̄0 (see Figure 1). We denote by Ωc

the complement of Ω̄0

⋃

Ω̄1. Assume that g ∈ H1/2(Γ0) and f ∈ L2(Ω1), then the exterior

transmission problem reads as: find u such that

u1 = g, on Γ0 − div (A∇u1) = f in Ω1 (2.1a)

u1 = uc and (A∇u1) · n =
∂uc

∂n
on Γ1 (2.1b)

−∆uc = 0, in Ωc uc(x) = O(1) as |x| → ∞ (2.1c)

where n = (n1, n2)
T denotes the unit outward normal to Γ1 and A is uniformly symmetric pos-

Figure 1: The domain of transmission problem

itive definite matrix with Lipschitz-continuous coefficients, that is to say, there exists constants



Domain Decomposition with Nonmatching Grids for Exterior Transmission Problems ... 325

α1 and α2 such that

α1||η||
2 ≤ (Aη) · η ≤ α2||η||

2 ∀ η ∈ R
2 (2.2)

Since Γ1 is not a circle generally, we draw a auxiliary circle Γ2 with radius R, centered at the

origin, such that its interior region contains Ω̄0

⋃

Ω̄1 properly. The auxiliary boundary divides

the exterior region of Γ1 into two nonoverlapping subdomains: one bounded annular domain

denoted by Ω2, another unbounded subdomain denoted by Ω3. Set Ω := Ω1

⋃

Γ1

⋃

Ω2, then

Ω3 = R
2\Ω̄, and define ui = u|Ωi

, i = 1, 3. For the picture see Figure 2.

Define

H1
Γ0

(Ω) :=
{

v ∈ H1(Ω) : v|Γ0
= g

}

and H1
0 (Ω) :=

{

v ∈ H1(Ω) : v|Γ0
= 0

}

(2.3)

Then we rewrite our exterior transmission (1.1a-1.1c) as follows: Find u ∈ H1
Γ0

(Ω) such that

u1 = g, on Γ0 − div (A∇u1) = f in Ω1 (2.4a)

u1 = u2 and (A∇u1) · n =
∂u2

∂n
on Γ1 (2.4b)

−∆u2 = 0, in Ω2 (2.4c)

u2 = u3,
∂u2

∂n
=
∂u3

∂n
on Γ2 (2.4d)

−∆u3 = 0, in Ω3, u3(x) = O(1) as |x| → ∞ (2.4e)

Here we use standard notations for Sobolev spaces and their norms and semi-norms. (·, ·)Ωi
,

Figure 2: Ω = Ω1

⋃

Γ1

⋃

Ω2 and Γ is an auxiliary circle

〈·, ·〉Γi
denote the L2 inner product in Ωi and on Γi, respectively.

Applying the natural boundary reduction principle([10],[11]) in the exterior region Ω3, we

obtain the Poisson integral formula

u(r, θ) =
r2 −R2

2π

∫ 2π

0

λ(θ′)

R2 + r2 − 2Rr cos(θ − θ′)
dθ′, r > R (2.5)
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and the natural integral equation

∂u(θ)

∂n
= −

1

4πR

∫ 2π

0

λ(θ′)

sin2 θ−θ′

2

dθ′ = −
1

4π sin2 θ
2

∗ λ(θ) (2.6)

Here ∗ denotes the convolution with respect to θ. Define K : H1/2(Γ) → H−1/2(Γ) as the

natural integral operator, then (2.6) can be written

∂u(θ)

∂n
≡ −Kλ(θ) (2.7)

Next, we multiply the divergence partial differential equation in (1.1) by any test function

v ∈ H1
0 (Ω) and apply the Green formula to yield

∫

Ω1

(A∇u1) · ∇vdx −

∫

Γ1

(A∇u1) · nvds =

∫

Ω1

fvdx (2.8)

According to the interface condition (2.4b), we have

∫

Ω1

(A∇u1) · ∇vdx−

∫

Γ1

∂u2

∂n
vds =

∫

Ω1

fvdx (2.9)

In the same way, on Ω2, we get

∫

Ω2

∇u2 · ∇vdx +

∫

Γ1

∂u2

∂n
vds−

∫

Γ2

∂u2

∂n
vds = 0 (2.10)

which, due to the natural integral equation (2.7), becomes

∫

Ω2

∇u2 · ∇vdx +

∫

Γ1

∂u2

∂n
vds+

∫

Γ2

vKu2ds = 0 (2.11)

Adding (2.9) and (2.11), we obtain the coupled FEM-NBEM variational problem of (2.4):

{

find u ∈ H1
Γ0

(Ω) such that

a(u, v) = f(v), ∀ v ∈ H1
0 .

(2.12)

where a(u, v) is the bilinear form

a(u, v) := (A∇u,∇v)Ω1
+ (∇u,∇v)Ω2

+ 〈Ku, v〉Γ2
(2.13)

and f(v) := (f, v)Ω1
is the linear functional.

Lemma 2.1. The natural integral operator K : H
1

2 (Γ2) → H− 1

2 (Γ2) is just the Dirichlet-

Neumann operator (Steklov-Poincaré operator) for the exterior domain Ω3. It is symmetric

and semi-positive definite with respect to the inner product 〈·, ·〉Γ2
, (see [10], [11]), i.e. there is

a positive constant c such that

〈Kv, v〉Γ2
≥ c||v||21

2
,Γ2

, ∀ v ∈ H1/2(Γ2)/P0 (2.14)

where P0 denotes the set of all constants.



Domain Decomposition with Nonmatching Grids for Exterior Transmission Problems ... 327

which together with the strongly elliptic condition (2.2) of A , yields the following coercivity

lemma.

Lemma 2.2. Suppose that the matrix valued function A satisfies the condition (2.2). Then,

for any function v ∈ H1
0 (Ω) there exists a positive constant C such that

a(v, v) ≥ C(|v|21,Ω1
+ |v|21,Ω2

+ ||v||21
2
,Γ2

) (2.15)

Therefore, the coercivity and the continuity of a(u, v) and the boundedness of f(v) give the

uniqueness solvability of the variational problem (2.12) according to the Lax-Milgram Lemma.

3. Finite Element Discretization with Non-matching Grids

In this section, we make a finite element discretization for the subdomains and introduce the

non-matching grids method (See [8]) and the construction of basis functions of the Lagrange

multiplier space. The main motivation to do this is that we can couple different discretizations in

different subdomains in this way. It seems very reasonable especially for the case of singularities

of the solution.

Families of finite element triangulations Thi
, i = 1, 2, are associated with Ω1 and Ω2 (e.g.

some regular quasi-uniform triangles and curved triangles at the interfaces). We denotes by hi

the maximum diameter of the elements of Thi
. But in most real calculation, the curved triangles

nearby the interfaces are approximated by the straight triangles which has the same nodes

with the curved triangles. This simplified method generates only small error. Let Vhi
(Ωi) ⊂

H1(Ωi), i = 1, 2, be the finite element spaces on Ωi with respect to Thi
, i = 1, 2. Next, we

discretize the auxiliary circle Γ2. Given n ∈ N, we let 0 = t0 ≤ t1 ≤ · · · ≤ tn = 2π be a uniform

partition of [0, 2π] with h3 = ti+1 − ti = 2π
n , j = 0, 1, · · · , n− 1, which generates a division Th3

on Γ2. We denote this boundary element space by Vh3
(Γ2) .

The division in Ωi, i = 1, 2 leads to a division on the interface Γ1 and Γ2, so we set

Vhi
(Γ1) = {v|Γ1

: v ∈ Vhi
(Ωi), i = 1, 2} and Vh2

(Γ2) = {v|Γ2
: v ∈ Vh2

(Ω2)} (3.1)

We note that the meshes need not match at the interface between any two subdomains.

Thus in order to discretize the space H1
Γ0

(Ω), we have to introduce a Lagrange multipliers

space Mh used to impose a weak continuity constraint across the interface.

We set the product spaces Qh

Qh := Vh1
(Ω1) × Vh2

(Ω2) × Vh(Γ2) (3.2)

Define

Vh = {vh = (vh1
, vh2

, vh3
) ∈ Qh :

∫

Γ1

S
Γ2

[vh] · µds = 0, ∀ µ ∈Mh(Γi), i = 1, 2}, (3.3)

V 0
h = {vh ∈ Vh : vh1

|Γ0
= 0} (3.4)

where [·] denotes the jump of the function vh across the interfaces.

Then we obtain the discrete problem of (2.12) with respect to this kind of non-matching

grids discretization.
{

find uh ∈ Vh such that

a(uh, vh) = f(vh), ∀ vh ∈ V 0
h .

(3.5)
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Figure 3: Dual basis functions

Remark 3.1. The setting of Lagrange multipliers space would guarantee uniform ellipticity

of this discrete problem(see [8]). Then it can be shown that the coupled discrete problem (3.5)

has unique solution (uh1
, ϕh2

) ∈ Vh.

As we have seen, the construction of Lagrange multiplier space is of great importance for

the unique solvability. It is proven in [7] the dual basis mortar method leads to a stable and

optimally convergent approximation. Here we apply the same dual basis approach and introduce

a new non-matching grids method for unbounded domain problems (see [8]).

Here and below we only discuss the interface Γ1. A similar definition is to the interface Γ2.

To avoid confusion for the subscript, let us denote by Γ = Γi, i = 1, 2. Let N be the number of

nodes on Γ and {ai}
N
i=1 be the set of nodal points in Γ. For the nodal basis {Φi}

N
i=1, we define

by the dual basis {Ψi(θ)}
N
i=1(see Figure 3 for piecewise linear basis funcitons)

〈Φi(θ),Ψi(θ)〉Γ = δi,j 〈Φi(θ), 1〉Γ , 1 ≤ i, j ≤ N (3.6)

where δij is the Kronecker symbol.

Before we begin the analysis of error estimate, we will introduce two important projection

operator. Since each interface has two sides, we denote by Γ12 and Γ21. Define the projection

operator Πh in such way : it maps the space Vh(Γ12) into Vh(Γ21) or maps Vh(Γ21) into Vh(Γ12).

We can see that the choice of side is rather arbitrary. In our case, we choose the fine mesh side

as the beginning such as Γ12. That is to say, Given v ∈ L2(Γ), the values of Πhv ∈ Vh(Γ21) can

be determined by
∫

Γ

(v − Πhv)µds = 0, ∀µ ∈Mh(Γ). (3.7)

Since Vhi
(Γ) ⊂ H

1

2 (Γ), the multiplier space Mh(Γ) generated by the dual basis may be

embedded in the dual space of H
1

2 (Γ) with respect to the L2-inner product. Therefore,

Mh(Γ) ⊂ H− 1

2 (Γ). This operator was used in ([2],[7],[8]) and plays a central role in the error

analysis of the nonmatching grid finite discretization.

Then define by Ph : L2(Γ) → Mh(Γ) the usual orthogonal projection operator. We recall

its approximation properties in the following lemma. We can verify it in the standard manner

and do not include the proof here. See the proof in [7].
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Lemma 3.1. For any real number s, 0 ≤ s ≤ 1, there exist constants such that the following

estimates hold for any function v in Hs(Γ) :

||v − Phv||0,Γ ≤ c hs||v||s,Γ, (3.8)

||v − Phv||
(H

1

2 (Γ))′
≤ chs+ 1

2 ||v||s,Γ. (3.9)

Here the dual norm is defined by

||f ||X′ := sup
v∈X

〈f, v〉

||v||X
, (3.10)

where X ′ is the dual space of the Hilbert space X . The definition of operator Ph yields to:

∫

Γ

(v − Phv)µds = 0, ∀µ ∈Mh(Γ), (3.11)

where Phv ∈Mh(Γ). Then

∫

Γ

(Πhv − Phv)µds = 0 ∀µ ∈Mh(Γ), (3.12)

which means Phv is also the projection of Πhv into the multiplier space Mh(Γ).

The next lemma shows the stability property of the projection operator Πh in L2(Γ) and

H1(Γ).

Lemma 3.2. There exist a constant c > 0 such that for ∀ v ∈ L2(Γ)

||Πhv||0,Γ ≤ c||v||0,Γ, (3.13)

Let v ∈ H1(Γ), then for uniform meshes we have

|Πhv|1,Γ ≤ c′|v|1,Γ. (3.14)

Proof. For any v ∈ L2(Γ), Πhv can be written as

Πhv =

N
∑

i=1

αiΦi(θ), (3.15)

Substitute Πhv for (3.15) in (3.7). Due to the global orthogonality relation (3.6) between the

nodal basis {Φi} and its dual basis {Ψi}, the values of αi can be direct calculated by the formula

αi = Πhv(ai) =

∫

Γ
v|Ω1

Ψids
∫

Γ Φids
. (3.16)

Then some primary inequalities lead to

||Πhv||
2
0,Γ ≤

n
∑

i=1

∫

Γ

(Πhv(ai))
2Φ2

i ds

≤

n
∑

i=1

∫

Γ
Φ2

i ds
∫

γ
Ψ2

i ds
(∫

Γ Φids
)2 ||v||20,γ ≤ c||v||20,Γ, (3.17)
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in which γ denotes suppΦi and c is a constant. Thus, (3.13) is obtained.

Let 0 = a0 ≤ a1 ≤ · · · ≤ aN = 2π be a corresponding uniform partition on Γ, which

generates a division Th for the interface Γ. Let T̂ be the 1-dimensional reference element. Let

{φ̂i} be a nodal basis for T̂ and let {ψ̂i} be the dual basis with respect to the inner product for

L2(T̂ ).

In order to derive the stability in H1(Γ), we introduce the piecewise affine mapping

F (θ̂) = β θ̂ + θ0, (3.18)

which maps T̂ one-to-one and onto some T ∈ Ti = [ai−1, ai]. Let {φ̂i} be the nodal basis for T̂

and let {ψ̂i} be the dual basis with respect to the inner product for L2(T̂ ). Then we have (see

[3]), for any v ∈ H1(T ),

||v||1,T ≤ h−
1

2 ||v̂||1,T̂ , (3.19)

||v||L1(T ) ≤ h||v̂||L1(T̂ ) ≤ h||v̂||1,T̂ ≤ (h
1

2 |v|0,T + h
3

2 |v|1,T ), (3.20)

here, h := max
T∈Th

diam(T ).

For any v ∈ H1(Γ), we can prove the local estimat

||Πhv||1,T ≤

k
∑

i=1

|Πhv(ai)|||φi||1,T ≤ Ch−
1

2 max
1≤i≤n

||φ̂i||1,T̂

k
∑

i=1

|Πhv(ai)|

≤ h−
1

2

k
∑

i=1

∣

∣

∣

∣

∫

T
ψivds

∫

T φids

∣

∣

∣

∣

≤ Ch−
1

2

k
∑

i=1

||ψi||L∞(T )||v||L1(T )

≤ Ch−
1

2 h−1(h
1

2 |v|0,T + h
3

2 |v|1,T )

≤ C(h−1|v|0,T + |v|1,T ), (3.21)

where φi and ψi are the nodal basis and dual basis for Ti. The global estimate (3.14) is obtained

by summing over all local contributions.

Then, by an interpolation argument, the following estimate holds for any function v in

H
1

2 (Γ):

||Πhv|| 1
2
,Γ ≤ C||v|| 1

2
,Γ. (3.22)

Define the norm

||vh|| =
(

||vh1
||21,Ω1

+ ||vh2
||21,Ω2

+ ||vh3
||21

2
,Γ

)1/2

. (3.23)

For our nonconforming situation we use the well-known second Strang’s lemma. Let u =

(u1, u2, λ) and uh = (uh1
, uh2

, λh3
) be the solutions of (2.4) and (3.5), respectively. The error

can be formulated as follows:

||u− uh|| ≤ inf
∀ vh∈V 0

h

||u− vh|| + sup
∀ 06=vh∈V 0

h

∫

Γ1

S
Γ2

∂u

∂n
[vh]ds

||vh||
. (3.24)

where vh = (vh1
, vh2

, vh3
). We note that the first term of the right hand of (3.24) is the

approximation error, while the second term is the consistency error. The best approximation

error can be estimated by using interpolation inequalities for conforming finite elements and

stability properties of the projection Πh; For estimation of the consistency error, we use the fact
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the jump of the solution is orthogonal to the multiplier space Mh. We summarize the results

in the following lemmas.

Lemma 3.3. Assume that the solution u of problem 2.4 is satisfy, for any real number s,
1
2 ≤ εi ≤ 1, i = 1, 2, u|Ω1

∈ H1+ε1(Ω1), u|Ω2
∈ H1+ε2(Ω2) and u|Γ2

∈ H
3

2 (Γ2). Then there

exists a function vh ∈ V 0
h such that

||u− vh|| ≤ C(hε1

1 ||u||1+ε1,Ω1
+ hε2

2 ||u||1+ε2,Ω2
+ h3||u|| 3

2
,Γ2

). (3.25)

Proof. First, we estimate the error bound on Γ1. Let πhi
, i = 1, 2 are the Lagrange interpo-

lation operators in Ωi, i = 1, 2, respectively. Then we define vh by

vh1
= πh1

u1, vh2
= πh2

u2 + Πh[πh1
(u1|Γ1

) − πh2
(u2|Γ1

)]. (3.26)

In this way, recalling the definition of projection Πh, we have

〈vh1
− vh2

, µ〉Γ1
= 〈{πh1

(u1|Γ1
) − πh2

(u2|Γ1
)} − Πh{πh1

(u1|Γ1
) − πh2

(u2|Γ1
)}, µ〉Γ1

= 0. (3.27)

For the interface Γ2, we also define

vh2
= πh2

u2, vh3
= πh3

λ+ Πh[πh2
(u2|Γ2

) − πh3
λ], (3.28)

where πh3
is the usual Lagrange interpolation operators on Γ2.

Then the trace theorem and the stability properties of Πh lead to

inf
∀ vh∈V 0

h

||u− vh|| ≤ inf
∀vh∈V 0

h

(

||u1 − vh1
||1,Ω1

+ ||u2 − vh2
||1,Ω2

+ ||λ− vh3
|| 1

2
,Γ2

)

≤ ||u − πh1
u||1,Ω1

+ ||u− πh2
u||1,Ω2

+ ||u− πh3
u|| 1

2
,Γ2

+ ||Πh (πh1
u1 − πh2

u2) || 1
2
,Γ1

+ ||Πh (πh2
u2 − πh3

λ) || 1
2
,Γ2

≤ chε1

1 ||u1||1+ε1,Ω1
+ chε2

2 ||u2||1+ε2,Ω2
+ ch3||λ|| 3

2
,Γ2
, (3.29)

which complete the proof.

Lemma 3.4. Assume that the solution u of problem 2.4 satisfies the same regularity conditions

as the lemma 3.3. then there exists a function vh ∈ V 0
h such that

sup
∀ 06=vh∈V 0

h

∫

Γ1

S
Γ2

∂u

∂n
[vh]ds

||vh||
≤ C(hε1

1 ||u||1+ε1,Ω1
+ h3||u|| 3

2
,Γ2

). (3.30)

Proof. First, we fix our attention to the error on Γ1. From (3.24) and by using the definition



332 J.E. YANG AND D.H. YU

of the projection operators Ph and Πh, we have

∣

∣

∣

∣

∫

Γ1

∂u

∂n
[vh]ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Γ1

∂u

∂n
(vh1

− Πhvh1
)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Γ1

(

∂u

∂n
− Ph

∂u

∂n

)

(vh1
− Πhvh1

)ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂n
− Ph

∂u

∂n

∣

∣

∣

∣

∣

∣

∣

∣

− 1

2
,Γ1

||vh1
− Πhvh1

|| 1
2
,Γ1

≤

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂n
− Ph

∂u

∂n

∣

∣

∣

∣

∣

∣

∣

∣

− 1

2
,Γ1

(

||vh1
|| 1

2
,Γ1

+ ||vh2
|| 1

2
,Γ1

)

. (3.31)

Applying the lemma 3.1 and the trace theorem for vhi
we deduce that

∣

∣

∣

∣

∫

Γ1

∂u

∂n
[vh]ds

∣

∣

∣

∣

≤ Chε1

1

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

∣

∣

∣

∣

1

2
+ε1

(||vh1
||1,Ω1

+ ||vh2
||1,Ω2

)

≤ Chε1

1 ||u||1+ε1,Ω1
(||vh1

||1,Ω1
+ ||vh2

||1,Ω2
) . (3.32)

The error bound on Γ2 can be found in [8]:

∣

∣

∣

∣

∫

Γ2

∂u

∂n
[vh]ds

∣

∣

∣

∣

≤ Ch3||u|| 3
2
,Γ2

(

||vh2
||1,Ω2

+ ||vh3
|| 1

2
,Γ2

)

. (3.33)

Combining (3.32) and (3.33), we obtain (3.30).

The following theorem conclude the discrete error analysis. We can see that the weak

constraint across the interfaces we have defined, for the circle interface, is sufficient to guarantee

the optimal error estimate.

Theorem 3.1. Assume that the solution u of problem 2.4 have the same regularity as the

lemma 3.4 and lemma 3.3, then the exact solution u of (2.4) and the approximate solution uh

of (3.5) satisfy

||u− uh|| ≤ C(hε1

1 ||u||1+ε1,Ω1
+ hε2

2 ||u||1+ε2,Ω2
+ h3||u|| 3

2
,Γ2

). (3.34)

where C > 0 is a constant independent of the mesh parameters hi, i = 1, 3.

Remark 3.2. In order to obtain the optimal error estimation in V 0
h , we should balance the

finite element grids in Ωi, i = 1, 3 such that the fine mesh size hi, i = 1, 3 satisfy hε1

1 ≈ hε2

2 ≈ h3.

The main results given in above theorem can be extended to multi-sub-domains case for the

exterior problems.

4. D-N Alternating Method

The exterior transmission problem (2.4) can be solved by a D-N alternating scheme as

follows:

1. Choose initial value λ0 ∈ H
1

2 (Γ2), λ
0
1 ∈ H

1

2 (Γ1) and set n := 0.
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2. Solve the Dirichlet problem on the exterior subdomain Ω3:















−∆un
3 = 0 in Ω3,

un
3 = Πhλ

n on Γ2,

un
3 = O(1) as |x| → ∞.

(4.1)

3. Solve the mixed boundary value problem in the annular subdomain Ω2:



















−∆un
2 = 0 in Ω2,

∂un
2

∂n
=
∂un

3

∂n
on Γ2,

un
2 = Πhλ

n
1 on Γ1.

(4.2)

4. Solve nonhomogeneous boundary value problem in the annular subdomain Ω1:



















−div(A∇un
1 ) = f in Ω1,

(A∇un
1 ) · n =

∂un
2

∂~n
on Γ1,

un
1 = g on Γ0.

(4.3)

5. Let θn be the n-th linear relaxation factor selected in computation. Set

λn+1 = θnu
n
2 + (1 − θn)λn, on Γ2, (4.4)

and

λn+1
1 = θnu

n
1 + (1 − θn)λn

1 , on Γ1. (4.5)

6. Set n := n+ 1, then goto the second step.

Note that only the approximation of the normal derivative of un
3 on the interface Γ2 is required

for solving the mixed boundary value problem in the annular subdomain Ω2. Thus, in practical

computation, it is not necessary to actually solve the Dirichlet problem (4.1). Applying the

natural integral equation (2.7) and the projection operator Πh defined in previous section, we

can directly compute the value of ∂u3

∂n on Γ2:

∂un
3

∂n
= −K(Πhu

n
2 ). (4.6)

And then through the second and third equation of (4.3), we can solve the PDE system of (4.3)

in subdomain Ω1.

For the analysis of the convergence of our D-N alternating algorithm, we divide it into

two parts. The first part is discussed between the unbounded subdomain Ω3 and the annular

subdomain Ω2 (see [8]).

Define
R1 : H1/2(Γ1) → H1(Ω1),

φ 7→ R1φ,
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It follows that for any φ ∈ H1/2(Γ1), if w = R1φ, then w ∈ H1(Ω1) and satisfies















−div(A∇w) = 0, in Ω1,

w = φ, on Γ1,

w = 0, on Γ0.

(4.7)

R2 : H1/2(Γ1) → H1(Ω2),

φ 7→ R2φ,

for any φ ∈ H1/2(Γ1), if w = R2φ, then w ∈ H1(Ω2) and satisfies















−∆w = 0, in Ω1,

w = φ, on Γ1,

w = 0, on Γ2.

(4.8)

Assume that u1, u2 satisfy















−div(A∇u1) = f, in Ω1,

u1 = λ, on Γ1,

u1 = g, on Γ0.

(4.9)















−∆u2 = 0, in Ω2,

u2 = Πhλ, on Γ1,

u2 = g2, on Γ2.

(4.10)

and Q1, Q2 satisfy














−div(A∇Q1) = 0, in Ω1,

Q1 = 0, on Γ1,

Q1 = g, on Γ0.

(4.11)















−∆Q2 = 0, in Ω2,

Q2 = 0, on Γ1,

Q2 = g2, on Γ2.

(4.12)

Then it’s easy to see

u1 = R1λ+Q1, u2 = R2Πhλ+Q2. (4.13)

On the interface Γ1, λ should satisfies

A∇u1(λ) · n = ∇u2(λ) · n. (4.14)

Set

S1 = −((nxa11 + nxa12)
∂

∂x
(R1·) + (nya21 + nya22)

∂

∂y
(R1·)), (4.15)

S2 =
∂

∂n
(R2Πh·), (4.16)
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where the coefficients a11, a12, a21, a22 are the elements of the matrix function A. Let S =

S1 + S2. Then we obtain the interface equation

Sλ = χ. (4.17)

here S is just the Steklov-Poicaré operator on the interface Γ1 and χ is independent of λ1 and

can be solved beforehand in the subdomains.

Theorem 4.1. The D-N alternating method is equivalent to the preconditioned Richardson

iterative method

S1(λ
n+1 − λn) = θn(χ− Sλn). (4.18)

Proof. We consider the error en
k = u− un

k , k = 1, 2 and µn = Πh (λ− λn), where λ = u|Γ1
.

Then the error terms en
1 and en

2 satisfy the following equations, respectively,















−∆en
2 = 0, in Ω2,

en
2 = µn, on Γ1,

en
2 = 0, on Γ2,

(4.19a)



















−div(Aen
1 ) = 0, in Ω1

en
1 = 0, on Γ0

∂en
1

∂n
= −K(µn), on Γ1,

(4.19b)

and

µn+1 = θnΠh(en
1 |Γ1

) + (1 − θn)µn. (4.20)

Therefore,

en
1 = R1 (en

1 |Γ1
) , en

2 = R2 (en
2 |Γ1

) = R2µ
n, (4.21)

Then we have

S1(e
n
1 |Γ1

) = −
∂

∂n
[R1 (en

1 |Γ1
)] = K (µn) = −

∂

∂n
[Πh(λ− λn)] = −S2(λ− λn). (4.22)

Since

λn+1 − λn = θn (un
1 |Γ1

− λn) , (4.23)

finally we derive

S1(λ
n+1 − λn) = S1[θn(un

1 |Γ1
− λn)] = θn[S1(u

n
1 |Γ1

− λ) + S1(λ− λn)]

= θn(S1 + S2)(λ− λn) = θnS(λ− λn) = θn (χ− Sλn) . (4.24)

The proof is completed.

Define by Ri
h : H1/2(Γ1) → Vhi

(Ωi) the discrete harmonic extension operators, i.e. for any

λh ∈ H1/2(Γ1), R
i
hλh ∈ Vhi

(Ωi) satisfies















ai(R
i
hλh, vh) = 0, ∀ vh ∈ Vhi

(Ωi),

Ri
hλh = λh, on Γ1,

Ri
hλh = 0, on ∂Ωi\Γ1,

i = 1, 2, (4.25)

where ai(u, v), i = 1, 2, are the bilinear forms corresponding to the harmonic problems in Ωi.

The discrete scheme of the D-N alternating methods is as follows:
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1. Choose an initial value λ0
h ∈ Vh2

(Γ2), λ
0
1h ∈ Vh1

(Γ1) and set n := 0.

2. Apply the natural integral equation on Γ2 and compute:

∂un
h3

∂n
= −KΠhλ

n
h , on Γ2. (4.26)

3. Solve the discrete mixed boundary value problem in Ω2:



























find uh2
∈ Vh2

(Ω2) such that ∀ vh2
∈ Vh2

(Ω2) ,

∫

Ω2

∇un
h2

· ∇vh2
dx =

∫

Γ2

∂un
h3

∂n
Πhvh2

ds+

∫

Ω2

∇R2
hΠhλ

n
1h · ∇vh2

ds,

un
h2

= Πhλ
n
1h on Γ1.

(4.27)

4. Solve the discrete mixed boundary value problem in Ω1:















find uh1
∈ Vh1

(Ω1) such that ∀ vh1
∈ Vh1

(Ω1) ,

∫

Ω1

A∇un
h1

· ∇vh1
dx =

∫

Ω1

fvh1
dx+

∫

Γ1

Πhvh1

∂

∂n
un

h2
ds.

(4.28)

5. Set λn+1
h = θnu

n
h1

+ (1 − θn)λn
h on Γ2, and λn+1

1h = θnu
n
h1

+ (1 − θn)λn
1h on Γ1,

6. Let n := n+ 1, then goto the second step.

Theorem 4.2. The discrete D-N alternating method is equivalent to the associated precondi-

tioned Richardson iterative method

S1
h(λn+1

h − λn
h) = θn(χ− Shλ

n), (4.29)

and converges if 0 < θn < 1, where θn is the n-th relaxation factor in the computations.

The proof is similar to [8].

5. Numerical Experiments

We now provide some numerical examples to illustrate the theoretical results in precious

sections. We use the D-N alternating method to solve the discrete problem (3.5).

Example 1. The solution domain and the triangular mesh are illustrated in Figure 4. In this

example we consider A equals the identity matrix I. The exact solution of the problem (2.4) is

given by

u1(x, y) =
1

x2 + y2
, u2(x, y) =

x

x2 + y2
(5.1)

with

f(x, y) = −
4

(x2 + y2)2
, (5.2)

and the boundary value g on Γ0 is computed from the exact solution u1|Γ0
.

The discrete system (3.5) is solved by the D-N alternating method proposed in Section 4.

In our computation we compute the natural boundary element matrix K, and then solve the
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Figure 4: The uniform triangular division for Example 1

−3 −2 −1 0 1 2 3
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0

1
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3

Figure 5: The uniform triangular division for Example 2
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corresponding linear systems by the conjugate gradient method. In Table 1, the discretization

errors are given in the L2-norm and energy norm as well as L∞-norm for the two subdomains,

where NEM1 and NEM2 are the number of elements in Ωi, i = 1, 2, respectively. iters

indicates the number of iterations required by the D-N alternating method. Here we adopt the

notation

|| u− uhi
||∞,Ωi

:= max
j∈{1,··· ,NNMi}

| u(xj) − uhj
(xj) |, i = 1, 2. (5.3)

We observe that the energy error is of order h and the error in the L2-norm is of order h2.

In Figure 6, the errors in the energy norm and the L2-norm are shown versus the number of

elements, which also indicate that the errors are asymptotic optimal. The exact solutions and

numerical solutions are visualized in Figure 9 and Figure 8.

Table 1: Comparison of errors for CG solvers.

NEM1 NEM2 ||u1 − uh1
||0,Ω1

Ratio ||u1 − uh1
||1,Ω1

Ratio ||u1 − uh1
||∞,Ω1

64 16 1.3957× 10−1 — 8.9967 × 10−1 — 4.0603× 10−2

256 64 3.7894× 10−2 3.683 4.5687 × 10−1 1.969 8.9620× 10−3

1024 256 9.7081× 10−3 3.903 2.2980 × 10−1 1.988 2.0970× 10−3

4096 1024 2.4428× 10−3 3.974 1.1510 × 10−1 1.997 5.0595× 10−4

16384 4096 6.1171× 10−4 3.993 5.7574 × 10−2 1.999 1.2403× 10−4

64512 16384 1.5902× 10−4 3.847 2.9207 × 10−2 1.971 3.1644× 10−5

258043 64512 3.9781× 10−5 3.997 1.4604 × 10−2 2.000 7.9193× 10−6

||u2 − uh2
||0,Ω2

Ratio ||u2 − uh2
||1,Ω2

Ratio ||u2 − uh2
||∞,Ω2

iters

1.2019× 10−1 — 4.4410× 10−1 — 6.1547× 10−2 11

3.0114× 10−2 3.783 2.1131× 10−1 2.007 1.6227× 10−2 11

7.4141× 10−3 3.860 1.0449× 10−1 1.996 3.3571× 10−3 11

1.8516× 10−3 3.916 5.2155× 10−2 1.998 7.2441× 10−4 12

4.6399× 10−4 4.004 2.6070× 10−2 1.999 1.9160× 10−4 12

1.2697× 10−4 3.836 1.3035× 10−2 2.000 4.8141× 10−5 13

6.4486× 10−5 3.290 6.5416× 10−3 1.984 1.2032× 10−5 13

Example 2. Let Ω0 be a square with center at (0, 0) and side lengths given by 1 (see Figure

5). The exact solution is given by

u1(x, y) = sin(πx) sin(πy) u2(x, y) =
x2 − y2

(x2 + y2)2
+

x

x2 + y2
. (5.4)

Here we choose the matrix valued function as

A =

(

ǫ 0

0 1

)

(5.5)

with

f(x, y) = (ǫ+ 1)π2sin(πx) sin(πy). (5.6)

In Table 2, order h for the energy norm and the order h2 for the L2-norm can be observed. The

discretization errors are plotted in Figure 10.
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Figure 6: Discretization errors in L2-norm andH1-norm versus number of elements for Example
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Figure 7: Finite element solutions in Ω1 for example 1.
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Figure 8: Finite element solutions in Ω2 for example 1.
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Table 2: Comparison of errors for CG solvers.

NEM1 NEM2 ||u1 − uh1
||0,Ω1

Ratio ||u1 − uh1
||1,Ω1

Ratio ||u1 − uh1
||∞,Ω1

64 16 6.8473× 10−1 — 4.18518 — 2.7447× 10−1

256 64 2.7053× 10−1 2.531 2.52416 1.658 1.6151× 10−1

1024 256 7.6572× 10−2 3.533 1.32712 1.902 3.0370× 10−2

4096 1024 1.9716× 10−2 3.884 0.67223 1.974 8.6012× 10−3

16384 4096 4.9566× 10−3 3.978 0.33723 1.993 2.2386× 10−3

64512 16384 1.2375× 10−3 4.005 0.16964 1.988 5.6412× 10−4

258043 64512 2.9445× 10−4 4.203 0.08484 2.000 1.4442× 10−4

||u2 − uh2
||0,Ω2

Ratio ||u2 − uh2
||1,Ω2

Ratio ||u2 − uh2
||∞,Ω2

iters

1.8424× 10−1 — 0.67003 — 6.1547× 10−2 11

5.1630× 10−2 3.568 0.34369 1.950 4.0774× 10−2 8

1.2182× 10−2 4.238 0.16975 2.025 8.9008× 10−3 9

3.0108× 10−3 4.046 0.08475 2.003 1.8041× 10−3 7

7.5245× 10−4 4.001 0.04238 2.000 4.2226× 10−4 7

1.9506× 10−4 3.858 0.02119 2.000 1.2427× 10−4 7

7.4485× 10−5 2.620 0.01064 1.992 5.5621× 10−5 7
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Figure 10: Discretization errors in L2-norm and H1-norm versus number of elements for Ex-

ample 2.
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