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Abstract

An effective continuous algorithm is proposed to find approximate solutions of NP-hard

max-cut problems. The algorithm relaxes the max-cut problem into a continuous nonlinear

programming problem by replacing n discrete constraints in the original problem with one

single continuous constraint. A feasible direction method is designed to solve the resulting

nonlinear programming problem. The method employs only the gradient evaluations of

the objective function, and no any matrix calculations and no line searches are required.

This greatly reduces the calculation cost of the method, and is suitable for the solution

of large size max-cut problems. The convergence properties of the proposed method to

KKT points of the nonlinear programming are analyzed. If the solution obtained by the

proposed method is a global solution of the nonlinear programming problem, the solution

will provide an upper bound on the max-cut value. Then an approximate solution to the

max-cut problem is generated from the solution of the nonlinear programming and provides

a lower bound on the max-cut value. Numerical experiments and comparisons on some

max-cut test problems (small and large size) show that the proposed algorithm is efficient

to get the exact solutions for all small test problems and well satisfied solutions for most

of the large size test problems with less calculation costs.
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1. Introduction

The max-cut problem is to partition the vertex set of an undirected graph, denoted by
G(V, E), into two parts in order to maximize the sum of the weights on the edges between these
two parts, where V with |V | = n is the set of n vertices and E the edge set of the graph. This
problem has long been known to be NP-hard, and it is solvable in polynomial time only for
some special classes of graphs [10]. Because of its theoretical and practical importance, and
because efficient algorithms for NP-hard combinatorial optimization problems are unlikely to
exist, many approximate algorithms (see [11],[15],[21],[23]) have been proposed to solve max-cut
problems at an approximation factor ρ, that is, to find a cut (S, S̄) such that w(S, S̄) ≥ ρw∗,
where S and S̄ = V \S denote the cut, w(S, S̄) is the value of the cut (S, S̄), w∗ is the max-
cut value, and ρ is generally called the performance guarantee of an algorithm. Among these
approximate algorithms, the most famous is the randomization algorithm with performance
guarantee ρ = 0.87856 proposed by Goemans and Williamson [9]. The algorithm relaxes each
binary variable in {−1, 1} to a unit vector in space Rn to form a semi-definite programming
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problem, hence increasing the problem dimension from n to n × n, and the resulting SDP
problem is then solved using any existing semi-definite programming algorithms, for example,
interior algorithms. Then an approximate solution to the max-cut problem is generated from
the optimal solution of the relaxed SDP problem using a randomization algorithm. Although
extremely interesting because Goemans and Williamson’s algorithm has the best worst case
performance guarantee, it is of complex design and its computation time may prohibitive from
large scale max-cut problems [7]. For solving large scale max-cut problems, some nonlinear
programming methods are proposed in [6],[7],[12],[18]. The strengthened semi-definite pro-
gramming relaxation [4] and the rank two relaxation [7] of max-cut problems are modifications
of Goemans and Williamson’s work. The algorithm in [22] generates an approximate solution
to the max-cut problem by minimizing the largest eigenvalue of the matrix that is the sum of
the Laplacian matrix of the graph and a variable diagonal matrix. Since the algorithm calcu-
lates the largest eigenvalues of a sequence of given matrices satisfying the constraints and the
objective function in minimization is not differentiable everywhere, it is of complex design and
not applicable for the solution of large scale max-cut problems.

In this paper, we present an effective continuous algorithm for approximate solutions of large
scale max-cut problems. The algorithm relaxes the max-cut problem into a continuous nonlinear
programming problem that finds the largest eigenvalue of the Laplacian matrix of the underlying
graph by maximizing a convex quadratic function subject to a single constraint. The constraint
restricts the length of the variable vectors. An efficient feasible direction method is used to
perform the maximization of the resulting nonlinear programming problem. The method only
employs the gradient evaluations of the objective function and no any matrix calculations and
no line searches are required. This greatly reduces the calculation cost in the implementation
of the algorithm and increases the efficiency, and makes the algorithm applicable to large scale
max-cut problems. The convergence of the feasible direction method to KKT points of the
nonlinear programming is proved. If the solution obtained by the feasible direction method
is a global solution of the resulting nonlinear programming, the solution provides an upper
bound on the optimal value of the max-cut. A feasible solution to the max-cut problem can
then be generated from the solution of the nonlinear programming, and provides a lower bound
for the max-cut value. Numerical experiments and comparisons on some well-known max-cut
test problems (small size) and on some large size problems that are randomly generated by
the procedure rudy are made to show the efficiency of the proposed method on both the
computation time and resulting solutions.

Let wij = wji be the weight on edge eij ∈ E of a graph G(V, E), where wij = 0 if there is no
edge connecting vertices Vi and Vj . Using the Laplacian matrix of the graph L = 1

4 (Diag(We)−
W ) = (Lij)n×n with weight matrix W = (wij)n×n, the max-cut problem can be expressed as

(MC) :
{

Max xT Lx

s.t. x2
i = 1, i = 1, · · · , n,

where

Lij =

{
−wij , i 6= j,∑n

k 6=i wik, i = j,

The Laplacian matrix L is positive semi-definite. The constraints in (MC) restrict each variable
taking values either 1 or -1, and hence it is a combinatorial optimization problem. Goemans
and Williamson in [9] relaxe the problem to formulate a semi-definite programming problem by
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replacing each binary variable xi with one unit vector vi ∈ Rn and the scalar product xixj by
inner product vT

i vj

(SDP)





Max L • V

s.t. diag(V ) = e

V º 0,

where L • V =
∑n

i,j=1 LijVij , V = [v1, · · · , vn] and V º 0 means V is positive semi-definite, e

is the vector of all ones. The rank-two algorithm in [7] relaxes the max cut problem to form an
unconstrained optimization problem by replacing each binary variable xi with one unit vector
in space R2 and then using polar coordinates

(PMC) Min f(θ) =
1
2
W • cos(T (θ)), ∀ θ ∈ Rn,

where θ = (θ1, · · · , θn)T , θi ∈ [0, 2π], i = 1, 2, · · · , n, T (θ) is a sckew-symmetric matrix with
entries

Tij = θi − θj , ∀ i, j = 1, 2, · · · , n

Poljak and Rendle in [22] show that

(EMC) ϕ∗ = Min {ϕ(u) = nλmax(L + diag(u))|eT u = 0}

provides an upper bound on the max-cut value w∗ and proposes an algorithm to find the
eigenvalue bound by minimizing the function ϕ(u) for all u ∈ {u|eT u = 0}, where λmax(M)
denotes the largest eigenvalue of the symmetric matrix M , diag(u) is the diagonal matrix with
ui, i = 1, 2, · · · , n as diagonal entries. The algorithm needs to calculate the largest eigenvalue
λmax(L + diag(u)) of the matrix L + diag(u) and the corresponding eigenvector x for any
given vector u satisfying eT u = 0 and then minimizing the function ϕ(u). Since the function
ϕ(u) is not differentiable everywhere, a subgradient method is employed to implement the
minimization.

The rest of the paper is organized as follows. The continuous relaxation of the max-cut
problem is presented in section 2. The relaxation is obtained by replacing the n constraints in
problem (MC) using one single continuous constraint. The resulting nonlinear programming
problem is equivalent to find the largest eigenvalue and the corresponding eigenvector of the
Laplacian matrix L. The feasible direction method for the solution of the relaxed continuous
nonlinear programming problem is described in Section 3. The method is motivated from the
characteristic of the optimal solution of the nonlinear programming. The convergence properties
of the feasible direction method are then analyzed. A neighborhood search strategy is proposed
in section 4. This strategy is designed to improve the approximate solution generated from
the solution of the nonlinear programming problem. Numerical experiments and comparisons
with the GW and rank two algorithms on some standard max-cut test problems and on some
randomly generated large scale max-cut problems are reported in Section 5. Conclusions and
extensions are given in section 6.

2. The Relaxed Continuous Model

In this section we relax the max-cut problem (MC) into a continuous nonlinear programming
problem. It can be understood that optimal solutions of problem (MC) will not change if we
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replace the positive semi-definite matrix L by a positive definite matrix L+σI where σ > 0 is a
constant. Therefore, in the following we will assume that the matrix L is positive definite, and
hence the gradient g = 2Lx of the objective function in (MC) will not be zero for any x 6= 0.

Let F1 = {x|x2
i = 1, i = 1, 2, · · · , n} be the feasible set of problem (MC). It is clear that

any point in set F1 satisfies the single constraint ‖x‖2 = n. Therefore, the continuous model of
the max-cut problem (MC) can be obtained by relaxing the constraints on the binary variables
xi, i = 1, 2, · · · , n using the single continuous constraint, that is, the continuous model has the
form

(NLP) :
{

Max f(x) = xT Lx

s.t. ‖x‖2 = n.

The feasible set F1 of problem (MC) is a subset of the feasible region F2 = {x|‖x‖2 = n} in
problem (NLP), and hence if x(1) is a global solution of problem (NLP), then the function value
f(x(1)) gives an upper bound on the max-cut value, that is,

w∗ ≤ f(x(1)) = (x(1))T Lx(1),

where w∗ denotes the max-cut value of the graph G(V, E). It follows from the KKT condition
of the problem (NLP) that there exists a Lagrangian multiplier λ∗ at the solution x(1) such
that

Lx(1) = λ∗x(1)

holds. That is, λ∗ is an eigenvalue of the matrix L and x(1) is the corresponding eigenvector.
This implies that eigenvectors of the matrix L are KKT points of problem (NLP). If x(1) is a
global solution of problem (NLP), then λ∗ is the largest eigenvalue λmax(L) of the matrix L

and we have
w∗ ≤ (x(1))T Lx(1) = nλmax(L).

The feasible direction method described in the next section is used to find the largest
eigenvalue and the corresponding eigenvector of the matrix L that satisfies the constraint in
problem (NLP). It can be observed that problem (NLP) is a special case of the problem (EMC)
with u = 0. Most of the existing algorithms (see [9],[7],[22]) attempt to find an upper bound of
a given max-cut problem and then generate an approximate solution to the max-cut from the
upper bound. The problem (NLP) will generate upper bounds not so good as that given by
the problem (EMC), but it greatly reduces the calculation cost to find an approximate solution
of the max-cut problem, and very efficient method can be designed to generate the solution of
problem (NLP).

Let x(1) be the solution of problem (NLP). In general the entries of the solution x(1) will
not exactly equal to 1 or -1, that is, x(1) is not feasible to problem (MC). The feasible point of
the max-cut problem that is closest to x(1) will be selected as an approximation to the max-cut
solution. It is the point x̂(1) = sign(x(1)) with x̂

(1)
i = sign(x(1)

i ), i = 1, 2, · · · , n.

3. The Feasible Direction Method for the Solution of Problem (NLP)

In this section, a feasible direction method without line searches is presented for the solution
of problem (NLP). The method employs only gradient evaluations of the objective function in
problem (NLP), and no calculations on any matrices and no line searches, thus greatly reduces
the calculation costs and increases the efficiency of the method. In the following it will be
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assumed that there exists no any isolated vertex or subgraph in a given graph G(N, E), that
is, the given undirected graph is connected.

Analysis in the previous section shows that optimal solutions of problem (NLP) can be
found from the eigenvectors of the matrix L that satisfy the constraint in problem (NLP). This
motivates the following iteration

x(k+1) =
√

n
g(k)

‖g(k)‖ =
√

n
Lx(k)

‖Lx(k)‖ , k = 1, 2, · · · (3.1)

to get an optimal solution of the equality constrained nonlinear programming problem (NLP).
The iteration (3.1) is very simple and has the following characteristics.
(1) No matrix calculations and no line searches are required and only one gradient evaluation
is needed to get the new iterate;
(2) The point x(k+1) is feasible to problem (NLP), that is, ‖x(k+1)‖2 = n.
(3) If the sequence {x(k)} converges to x∗, then x∗ is feasible to problem (NLP) , and we have

x∗ = lim
k→∞

x(k+1) = lim
k→∞

√
n

Lx(k)

‖Lx(k)‖ =
√

n
Lx∗

‖Lx∗‖ .

This indicates that x∗ is an eigenvector of the matrix L that satisfies the constraint in problem
(NLP).

Define

d(k) =
√

n
g(k)

‖g(k)‖ − x(k)

as a search direction. Then the iteration (3.1) can be written as

x(k+1) = x(k) + d(k). (3.2)

The following lemmas show that if dk = 0, then xk is a KKT point of problem (NLP), hence
an eigenvector of the Laplacian matrix L, and if dk 6= 0 , then xk + dk is feasible to problem
(NLP) and increases the function value.
Lemma 3.1. If d(k) = 0, then x(k) is an eigenvector of the matrix L that satisfies the constraint
in problem (NLP), that is, x(k) is a KKT point of (NLP).

Proof. It is clear that x(k) satisfies the constraint in problem (NLP). Since d(k) =
√

n g(k)

‖g(k)‖−
x(k) = 0 and ‖g(k)‖ = ‖2Lx(k)‖ 6= 0, we have Lx(k)− ‖g(k)‖

2
√

n
x(k) = 0. Thus, x(k) is an eigenvector

of the matrix L and satisfies the constraint in problem (NLP). This completes the proof of the
lemma.
Lemma 3.2. Suppose d(k) 6= 0, then x(k+1) = x(k) + d(k) is feasible to problem (NLP), and

‖g(k)‖‖d(k)‖+ λ1‖d(k)‖2 ≥ f(x(k+1))− f(x(k)) ≥ λn‖d(k)‖2 > 0,

where λn and λ1 denote the smallest and the largest eigenvalues of the matrix L.
Proof. The feasibility of the iterate x(k+1) directly comes from the definition (3.1). Using

the fact that ‖x(k)‖ =
√

n, we have

(g(k))T d(k) = (g(k))T (
√

n g(k)

‖g(k)‖ − x(k)) = ‖g(k)‖‖ x(k)‖ − (g(k))T x(k) ≥ 0.

Since
f(x(k+1)) = f(x(k) + d(k)) = f(x(k)) + (g(k))T d(k) + (d(k))T Ld(k),
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the conclusion comes from the positive definiteness of the matrix L.
Lemma 3.2 indicates that if d(k) 6= 0 for all k = 1, 2, · · · , then {f(x(k))} is a monotonically

increasing sequence, that is, the iteration (3.1) generates iterates with monotonically increasing
objective function values.

The following theorem gives the convergence of the feasible direction method to eigenvalues
of the matrix L that satisfies constraint in problem (NLP).
Theorem 3.3. Suppose d(k) → 0. Then any accumulation point x∗ of the sequence {x(k)} is
an eigenvector of the matrix L that satisfies the constraint of problem (NLP), that is, x∗ is a
KKT point of (NLP).

Proof. ‖d(k)‖ → 0 imply ‖x(k+1) − x(k)‖ → 0. Let x∗ be an accumulation point of the
sequence {x(k)}. Without loss of generality, we assume that x(k) → x∗, then x∗ is feasible
to problem (NLP). It follows from the definition of d(k), and the continuity of the gradient
g(x) = 2Lx, we have

lim
k→∞

d(k) = lim
k→∞

√
n

g(k)

‖g(k)‖ − x(k) =
√

n
g∗

‖g∗‖ − x∗ = 0.

That is,

Lx∗ − ‖g∗‖
2
√

n
x∗ = 0.

This shows that x∗ is an eigenvector of the matrix L satisfying the constraint of (NLP), and
the proof is completed.
Theorem 3.4. If d(k) 6= 0 for all k > 0, then ‖d(k)‖ → 0.

Prof. From Lemma 3.2 and monotonically increasing of the sequence {f(x(k))}, for any
K > 0 we have

K∑

k=0

‖d(k)‖2 ≤ 1
λn

K∑

k=0

(f(x(k+1))− f(x(k)))

=
1
λn

[f(x(K))− f(x(0))]

≤ 1
λn

(x(K))T Lx(K)

≤ λ1

λn
‖x(K)‖2

≤ λ1

λn
n,

where we use the fact ‖x(k)‖ =
√

n. This shows that
+∞∑
i=0

‖d(k)‖2 is convergent, and hence

‖d(k)‖ → 0 holds.
Based on the conclusion of Theorem 3.4, the condition ‖d(k)‖ ≤ ε and/or f(x(k+1)) −

f(x(k)) ≤ ε will be used to terminate the iteration in the implementation of the method.
Since the objective function in problem (NLP) is convex, there is no guarantee that the

solution generated from the feasible direction method is a global solution (largest eigenvalue) of
problem (NLP). A local search strategy (called neighborhood search) will be employed after a
solution is obtained with the attempt to improve the solution. Global strategies such as branch
and bound method will be further studied to generate a global solution. However, numerical
experiments in section 5 show that the proposed algorithm generates the global max-cut for all
small size test problems and satisfaction approximate solutions for large size test problems.
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4. Neighborhood Search

In this section, we will omit the superscript (k) in all the feasible point x(k) for convenience.
After a feasible point x̂ to the max-cut problem (MC) is obtained from the solution x of problem
(NLP), the neighborhood search strategy is employed to find weather x̂ is a local maximum or
not. A cut(S, S̄) with S̄ = V \S is said to be a local maximum in a neighborhood when

w(S, S̄) ≥ max{w(S
⋃
{i}, S̄\{i}), w(S\{i}, S̄

⋃
{i}), i = 1, 2, · · · , n}.

The neighborhood of the point x̂ consists of n points, and each point is obtained from x̂ by
changing its one variable value from x̂i to −x̂i and i = 1, 2, · · · , n. Let x̂(j) be the neighbor
point that is obtained by changing x̂j to −x̂j . Then the change of the function value from point
x̂ to point x̂(j) is

$(j) = x̂(j)T Lx̂(j)− x̂T Lx̂

=
n∑

i 6=j,k 6=j

x̂iLikx̂k − 2
n∑

i=1,i 6=j

x̂iLij x̂j −
n∑

i=1,k=1

x̂iLikx̂k

= −4
n∑

i=1,i 6=j

x̂iLij x̂j .

If $(j) > 0, it means changing the value of the variable from x̂j to −x̂j will increase the value
of the function, and x̂(j) is a point better than x̂ is. If $(j) ≤ 0 holds for all j = 1, 2, · · · , n,
then x̂ is the local maximizer and will be accepted as an approximation to the max-cut.

Let $(k) > 0 and x̂(k) is the best solution obtained at some stage of the neighborhood
search. In order to continue the neighborhood search, we need to update the values of $(j) for
all j = 1, 2, · · · , n. This can be done by

$(j) ⇐
{

$(j) + $(k)− 8x̂jLjkx̂k, j 6= k,

−$(j), j = k,
(4.1)

With the updated values of $(j), j = 1, 2, · · · , n, the neighborhood search can be continued at
the new point. The following is the neighborhood search procedure.
Neighborhood Search Method
Step 1: From given x̂, set f = f(x̂), and calculate $(j) for j = 1, 2, · · · , n;
Step 2: If $(j) ≤ 0 for all j = 1, 2, · · · , n, then x̄ = x̂ and stop; Otherwise select

k = argmax{$(j)|j = 1, 2, · · · , n};

Step 3: Set f = f + $(k), and update $(j), j = 1, 2, · · · , n as in (4.1), and
then go to Step 2;

Numerical experiments show that the local search is generally stopped at Step 2 of the first
round on most of the test problems, that is, the approximate feasible point x̂(k) obtained by
the proposed feasible direction method are the local maximums.

5. Implementation

In this section we present the implementation of the algorithm. The algorithm is pro-
grammed in Matlab 6.0, and experiments are implemented in PC Ienovo 3422 (Pentium 256M
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DDR). Since the algorithm attempts to find an approximate solution of the underlying graph
and experiments show that the value of ε in termination is not crucial, and hence the value
ε = 0.0001 is used in the conditions

‖dk‖ ≤ ε or f(xk+1)− f(xk) ≤ ε,

that are used to terminate the iteration of the feasible direction method. The value σ = 10 is
used to make sure L + σI is positive definite, but the objective function value at each iteration
point is still calculated as (xk)T Lxk in the implementation. The initial points for all test
problems are randomly generated by x0 = sign(rand(n, 1)) which satisfies ‖x0‖ =

√
n, and is

feasible to problem (NLP).

Test problems: The first set of test problems consists of five small size max-cut test
problems that are widely used in literature [3]. These are:
1. C5: an unweighted graph of 5-cycle with unit edge weights.
2. K5: a complete unweighted graph of 5 nodes with unit weights on all edges.
3. KA5: a complete graph of 5 nodes with weights given by the weight matrix

W (G3) =




0 1.52 1.52 1.52 0.16
1.52 0 1.60 1.60 1.52
1.52 1.60 0 1.60 1.52
1.52 1.60 1.60 0 1.52
0.16 1.52 1.52 1.52 0




.

4. AW2
9: the antiweb unweighted graph of 9 nodes with unit edge weights (see [1]).

5. BG: a graph of 12 nodes with weight matrix given by

W (G5) =




0 2 2 0 2 4 0 2 2 2 2 2
2 0 0 2 4 2 2 0 2 2 2 2
2 0 0 0 4 4 2 4 4 0 2 2
0 2 0 0 0 2 0 0 2 4 2 2
2 4 4 0 0 2 2 2 2 4 2 4
4 2 4 2 2 0 2 0 2 2 2 2
0 2 2 0 2 2 0 0 0 4 2 2
2 0 4 0 2 0 0 0 0 4 4 2
2 2 4 2 2 2 0 0 0 2 2 2
2 2 0 4 4 2 4 4 2 0 4 2
2 2 2 2 2 2 2 4 2 4 0 4
2 2 2 2 4 2 2 2 2 2 4 0




.

The second set of tests contains 15 randomly generated large size test problems with nodes
from 800 to 3000 and positive weights on all edges. These graphs are generated by the procedure
rudy, a machine independent graph generator written by G. Rinaldi (see [14]). Table 5.1
contains the information of these graphs, where Range of Weight indicates the value on each
edge of a given graph. 1 means it is an unweighted graph, that is, the weight on each edge is
1, and (-1,1) means the weight on each edge is randomly generated in the range (-1,1).
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Table 5.1 Details about test graphs in second group

problem No. of Nodes Density of Edges Type Range of Weight

G11 800(100× 8) 1600 Edges Toroidal-grid-2D (-1,1)

G12 800(50× 16) 1600 Edges Toroidal-grid-2D (-1,1)

G13 800(25× 32) 1600 Edges Toroidal-grid-2D (-1,1)

G14 800 4694 Edges Unweighted Planar 1

G15 800 4661 Edges Unweighted Planar 1

G22 2000 19990 Edges Unweighted 1

G23 2000 19990 Edges Unweighted 1

G24 2000 19990 Edges Unweighted 1

G32 2000(100× 20) 4000 Edges Toroidal-grid-2D (-1,1)

G33 2000(80× 25) 4000 Edges Toroidal-grid-2D (-1,1)

G34 2000(50× 40) 4000 Edges Toroidal-grid-2D (-1,1)

G38 2000 99% Unweighted Planar 1

G44 1000 2% Unweighted 1

G50 3000(25× 120) 6000 Edges Toroidal-grid-2D 1

G52 1000 100% Unweighted Planar 1

Results Table 5.2 gives the numerical results of the algorithm on the test problems in the
first set. We do not present the comparison of the proposed algorithm with the other existing
algorithms since most of the existing algorithms such as GW

Table 5.2 Computational Results for the first set

Problem µ∗ f∗ CPU (Sec)

C5 4 4 0.01

K5 6 6 0.001

KA5 9.28 9.28 0.001

AW2
9 12 12 0.01

BG 88 88 0.001

randomization algorithm [9], rank-two relaxation algorithm [7] and the eigenvalue upper bound
algorithm [22] can find the global solution and the calculation times are not serious for all these
small test problems. In the table the first column gives the problem names, µ∗ gives the max-
cut values of these test problems, f∗ the objective values of these test problems generated by
the proposed algorithm in this paper, CPU the CPU time of the algorithm implementation to
achieve the value f∗. It can be observed from table 5.2 that the proposed continuous algorithm
finds the global solution for all these five test problems with a little calculation costs. It has been
observed in the experiments that the sequence of objective function values {f (k)} monotonically
increases and converges to f∗, and the sequence ‖d(k)‖ converges to zero very quickly.

Table 5.3 gives the results and comparisons with the GW randomization algorithm [9] and
the rank-two algorithm [7] on 15 large size test problems in the second set. The results of the GW
and rank-two algorithms are reported in [7] while the results with star ∗ in WG-cut column are
reported in [2] since these results are not available in [7]. The GW randomized approximation
algorithm uses the dual-scaling interior point algorithm and an iterative linear equation solver
in a code DSDP [8]. It is currently one of the fastest interior-point codes for solving SDP
problems. The solution of the SDP problem gives an upper bound to the optimal value of the
test problem, denoted by SUB in the table. Then the randomization procedure generates an
approximate solution to the max-cut from the resulting solution of the SDP problem, which
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generates a lower bound on the optimal value of the max-cut. The rank-two algorithm uses
a subgradient method to minimize the resulting nonlinear programming problem (PMC), and
then a Procedure-Cut is used to generate an approximate solution from the resulting solution
of nonlinear programming. In the table, the columns headed with GW-Cut, RT-Cut and EC-
Cut present the approximate values to the max-cut generated by the GW algorithm, Rank-two
algorithm and the effective continuous algorithm, respectively. The columns headed with CPU
are implementation times used by these three algorithms to achieve the approximate solutions.
It is important to note that the timing for GW algorithm and the rank-two algorithm were
obtained on a HP 9000/785/C3600 machine with a 367 MHZ processor and a SGI Original2000
machine, respectively, while our results in timing are obtained on a personal computer Ienovo
3422. It can be understood that the PC Ienovo 3422 is not comparable with both the machines,
and we list the timing for these three algorithms to help understanding the efficiency of the
effective continuous algorithm. The following observations can be made based on the results in
the table.

Table 5.3 Comparisons on large size test problems
Problem Size SUB GW RT EC

GW-Cut CPU RT-Cut CPU EC-Cut CPU

G11 800 629 542 16.6 524 0.06 542 0.33

G12 800 624 540 17.7 512 0.06 532 0.34

G13 800 647 564 18.2 536 0.06 554 0.48

G14 800 3192 2922 35.2 3016 0.09 2941 1.33

G15 800 3172 2938 32.1 3011 0.09 2944 0.8

G22 2000 14136 12960 4123.3 13148 0.36 13148 1.74

G23 2000 14146 13006 3233.5 13197 0.37 13148 4.8230

G24 2000 14141 12933 3250.7 13195 0.30 13236 2.45

G32 2000 1568 1338 142.6 1306 0.18 1338 5.43

G33 2000 1544 1330 132.5 1290 0.14 1325 2.54

G34 2000 1547 1334 156.7 1276 0.12 1292 2.34

G38 2000 8015 7037* 7341 1.843

G44 1000 7028 6170* 6423 1.332

G50 3000 5988 5880 264.6 5748 0.17 5803 12.76

G52 1000 4009 3520* 3698 0.49

(1) The GW method is not effective for solving large size max-cut problems, especially for
problems with a large number of edges, since it increases the dimension of a problem from n to
n2, while both the rank-two and effective continuous algorithms remain the problem dimension
in n.
(2) Although, the timing of both the rank-two algorithm and the effective continuous algorithm
are not comparative because of large difference between machines implementing the calculation,
the results of the effective continuous algorithm indicate the efficiency of the algorithm for the
solution of large scale max-cut problems.
(3) The GW algorithm provides the currently best conclusion on its performance guarantee in
theory, but the approximate solutions obtained by the effective continuous algorithm and the
rank-two algorithm are better than the solutions generated by the GW algorithm in most cases.
The reason is that the upper bound obtained from the GW algorithm is closer to the value of
the max-cut than the upper bounds obtained in both the rank-two and effective continuous
algorithms. But better upper bounds do not imply better solutions.
(4) It is possible for both the rank-two and effective continuous algorithms to improve the
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approximate solutions for large scale max-cut problems by running the algorithm several times
starting from different initial points in a code, that is, to get better solutions by increasing
some calculation cost since the time to running the algorithm once takes less times, while this
procedure is not possible for GW algorithm because of its calculation cost of each time.

6. Conclusions and Extensions

An effective continuous algorithm is proposed to find approximate solutions of NP-hard
max-cut problems. The algorithm relaxes a max-cut problem into a continuous nonlinear pro-
gramming problem by using one single continuous constraint to replace the n discrete constraints
in the original problem. The nonlinear programming problem is to find the largest eigenvalue
of the Laplacian matrix of the underlying graph. Then an approximate solution to the max-
cut problem is generated from the eigenvector corresponding to the largest eigenvalue. An
feasible direction method is designed to solve the resulting nonlinear programming problem.
The method employs only the gradient evaluations of the objective function in the nonlinear
programming problem, and no any matrix calculations and no line searches are required. This
greatly reduces the calculation cost of the method to achieve the solution, and is suitable to the
solution of large size max-cut problems. The convergence properties of the proposed method
to a KKT point of the nonlinear programming are analyzed. If the solution obtained by the
proposed algorithm is a global solution of the nonlinear programming problem, the solution will
provide an upper bound on the max-cut value. The approximate solution generated from the
solution of the nonlinear programming provides a lower bound on the max-cut value. Numer-
ical experiments and comparisons with Goemans and Williamson’s randomization algorithm
and rank-2 algorithm on some max-cut test problems (small size and large size) are performed,
and the results show that the proposed algorithm is efficient to get the exact solutions for all
small test problems and well satisfied solutions for most of the large size test problems with less
calculation costs. This shows that the proposed algorithm is suitable for the solution of large
size max-cut problems.

Further researches on the proposed algorithm are required to refine the algorithm in theory
and in the implementation. Though the numerical results of the algorithm are good enough,
theoretical works are required to show the performance guarantee. We hope an acceptable
performance guarantee can be proved. Furthermore, since the solution generated may not be a
global solution of the max-cut, strategies need to be create to ensure a global solution. These
include branch-and-bound approaches and running the algorithm many times starting from
different initial points.
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