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Abstract

For a model elliptic boundary value problem we will prove that on strongly regular
families of uniform tetrahedral partitions of a pohyhedral domain, the gradient of the
quadratic finite element approximation is superclose to the gradient of the quadratic La-
grange interpolant of the exact solution. This supercloseness will be used to construct
a post-processing that increases the order of approximation to the gradient in the global
L%-norm.
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1. Introduction

The topic of this paper is supercloseness and superconvergence of a finite element that is
frequently used in practical applications: the tetrahedral quadratic element. As a matter of
fact, in the engineering society, it is even more popular than the linear element, in spite of
the fact that the latter has been studied in much more detail. Before we discuss our results
in Section 1.2, we will introduce the term superconvergence and put it in its historical context
in Section 1.1. In particular, we comment on work by other authors having direct links to our
results.

1.1. Overview

Superconvergence of standard and mixed finite elements is a well-known and practically
useful topic in finite element analysis. Usually, a finite element method is called superconver-
gent, if at special points (or on special lines) the rate of convergence is higher than what is
globally possible (cf. [11, 13, 23, 27, 28]). Oganesjan and Ruhovets [24] proved that for linear
triangular elements on uniform partitions the gradient of the finite element approximation is
a higher order perturbation of the gradient of a local interpolant of the exact solution. This
property, which lies also at the basis of the papers (cf. [4, 9, 10, 12, 19, 22, 29]), is often called
supercloseness. In both cases, one can usually construct, without too much additional compu-
tational effort, approximations that are globally better than the original one. This procedure
is called post-processing. The difference between the original and the post-processed approx-
imation may then be used as an asymptotically exact error estimation. For some interesting
papers and an abundance of references, we refer to [21].
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Already in 1981, Zhu [30] proved superconvergence of the gradient of quadratic triangular
elements on uniform triangulations, so, in the two-dimensional case. In [31], he discusses
superconvergence at nodal points for this setting. Later, similar results were obtained by
Andreev in [1] and Andreev and Lazarov in [2], who proved that the tangential component of
the gradient is superconvergent at the two Gauss points at each edge of each triangle (see also
Goodsell and Whiteman [16, 17]). Recently, Brandts rederived some of these results in [5] as a
by-product of a superconvergence proof for one-but-lowest order Raviart-Thomas mixed finite
elements.

Superconvergence results for three-dimensional problems are relatively scarce, since not all
techniques for the two-dimensional case can be generalized. Typical difficulties with supercon-
vergence in IR® are surveyed in [6]. As far as we know, the Chinese were the first to prove
superconvergence for the gradient in a three-dimensional setting. In 1980, Chen considered
linear elements on tetrahedra in [7], which was followed in the second half of the eighties by
Kantchev and Lazarov with the paper [18]. A short note by Pehlivanov [25] reflects on the
quadratic case, but unfortunately without any (reference to a) proof. In 1994, Goodsell de-
rived, for the gradient, pointwise superconvergence results for linear tetrahedral elements in
[15]. Finally, results in [26, 27] imply superconvergence at nodal values for quadratic three-
dimensional elements on locally point-symmetric meshes. In fact, we will need a result from
[26] in our proofs. In the two-dimensional case [5], this was not necessary because of favor-
able properties of a mixed finite element Fortin interpolation, which do not generalize to the
three-dimensional case (see [6], p. 29).

1.2. Outline

The Poisson equation with homogeneous Dirichlet boundary conditions will be our model
elliptic problem. We employ regular family of uniform tetrahedral partitions of the domain. The
gradient of the standard quadratic finite element approximations will then be proved superclose
to the gradient of the nodal quadratic Lagrange interpolant of the exact solution. Once more
we stress that the Fortin-like interpolant that was used in the two-dimensional setting, has no
special advantages in 3D as in 2D. See [5] and [6] for details.

The outline of this paper is as follows. Section 2 contains some preliminaries. In Section 3, we
derive auxiliary results for so-called quadratic bubble functions, which will be used in the proofs
of our main results in Section 4. There we prove the supercloseness between the gradients of
the finite element approximation and the quadratic Lagrange interpolant of the exact solution.
A numerical test is presented for illustration. In Section 5, we discuss the generalization of
the results to other elliptic problems with varying coefficients, and the extension of a post-
processing scheme by Andreev and Lazarov [2], which will lead to a higher order approximation
of the gradient.

2. Preliminaries

Let Q be a bounded polyhedral domain in IR® with Lipschitz boundary. Denote by H* ()
the usual Sobolev spaces of functions having generalized partial derivatives up to order k in
L?() and their usual norm and seminorm by || - || and |- |, respectively. The subspace of
functions from H'(Q) with vanishing traces on 9 we denote by Hi(Q). Before turning to the
discrete spaces, we will elaborate on uniform partitions of the domain.

2.1. Uniform partitions of a domain into tetrahedra

A triangulation of a planar domain is called uniform if the union of any two triangles sharing
an entire edge forms a parallelogram. The feature of interest is, that a parallelogram is a set
that is invariant under reflection in its center of gravity. For brevity, we will refer to such
sets as “point-symmetric sets”. Since two tetrahedra having a face in common never form a
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point-symmetric set, the generalization of the concept of uniform partition to three dimensions
needs to be different. It turns out that “edge sharing” is the property of interest. Hence, we
will call a partition into tetrahedra uniform if it satisfies the following condition:

(U) For each internal edge e ¢ 99, the patch P, of tetrahedra sharing e is a point-symmetric
set with respect to the midpoint M, of e, by which we mean that x € P, & 2M,—x € P,
for all x € P..

There exist indeed partitions into tetrahedra satisfying (U). They are based on the so-called
Kuhn partition of the unit cube. The study of such partitions in arbitrary dimension, however,
traces back to Freudenthal [14].

Kuhn’s partition is the partition of the cube [0,1]? into six tetrahedra T, (o € X), where ¥
is the group of permutations of the numbers 1,2, and 3. Each T, is given by

T, = {(z1,22,23) € R® | 0 < zy(1) < ZTp(2) < To(z) < 1} (1)

One way to visualize this partition is by first cutting the cube into two prisms. Then, each prism
is cut into a pyramid and a tetrahedron. Finally, both pyramids are cut into two tetrahedra.
See Figure 1 below.

Figure 1. Kuhn’s partition of the unit cube
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Figure 2. Examples of patches around edges
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Let 7 be the partition of IR? into tetrahedra defined by translation over all z € Z3 of the
Kuhn-partitioned unit cube. Then each pair (B, w), where B is a non-singular 3 x 3 matrix and
w € IR?, yields a uniform partition 7(B,w) = {BT +w | T € T} of IR?, since it satisfies (U).
If B and w are such that T C Q or T C IR3\ Q for all T € T (B,w), then

Ta(B,w) ={T € T(B,w) | T C Q} (2)
is a uniform partition of Q. This is motivated by the obvious fact that each patch of tetra-
hedra that share an edge is point-symmetric, which is illustrated in Figure 2. Notice that in
Figure 2, the only two topologically different types of patches are depicted: two consisting of
six tetrahedra forming a parallelepiped, and two consisting of four tetrahedra (the union of two
pyramids).

We also remind the reader of the following terminology. A family of partitions into tetra-
hedra is called regular if there exists a C' > 0 such that for all elements from all partitions,
Vol T > Ch%., where hy is the diameter of T. We will denote families of uniform partitions of
Q by Ta(Bj,w;);. Their regularity clearly only depends on the matrices B;.

2.2. Discrete spaces and interpolation operators

Relative to a partition of the domain, let V}¥ be the space of continuous piecewise polynomials
of degree k, and set V& = VFNH(Q). Let Ly, : H*(2) — V}! be the linear Lagrange interpolant
on the vertices of the tetrahedra, and Qp : H*(Q) — V}? the quadratic Lagrange interpolant
on the vertices and midpoints of edges of the tetrahedra. It is well-known that the following a
priori bound holds.

Proposition 2.1. Let To(Bj,w;); be a regular family of uniform partitions of Q. Then there
exists a constant C > 0 such that for all elements T from all partitions and all v € H>(Q) we
have

[v— Qpvj1,T < Ch2|v|3,T. (3)

In Section 3, we will study the subspace B2, C Vg, of so-called quadratic bubble functions,
defined by

Bi, = {(I = Lu)vn | vn € Vgi}- (4)
This definition induces the following space-decomposition,
VOZh = VE)lh D th: (5)

which expresses that each v, € V&, can be uniquely written as £, + b, with £, € V), and
by € B3,. This decomposition will be frequently used in our main results.

Clearly, B3, is spanned by the basis 9;, (i = 1,..., M), where each v; € V, has value one at
the midpoint of the internal edge e;, and vanishes at all other edges.

Remark 2.2. The support S; of a bubble basis function v; equals the patch of elements that
share the edge e;. Recall that if the partition of the domain is uniform, each S; is point-
symmetric (see also Figure 2).

2.3. The tetrahedral quadratic finite element method

The tetrahedral quadratic finite element formulation for the Poisson equation —Au = f
with homogeneous Dirichlet boundary conditions results from discretizing the associated weak
formulation that aims to find v € H}(Q) such that (Vu, Vv) = (f,v) for all v € H}(Q). The
discrete problem consists of finding u, € Vi such that (Vup, Vup) = (f,vp) for all v, € V.
Note that subtraction gives the Galerkin orthogonality relation

Yo € Vi : (V(u —up), Vop) = 0. (6)
In the Section 4, we will study the difference between the Galerkin approximation u; of u and
the interpolant Qpu of u.
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Remark 2.3. It may seem restrictive to concentrate on the Poisson equation only, but all
arguments can be extended to the more general equation —div(AVu) = f as long as the
matrix A is uniformly positive definite with entries having derivatives in L>°(Q). We refer to
Section 5.1 for an outline.

3. Quadratic Bubble Functions

We will now derive some results that are needed in the proofs of our main theorems in
Section 4. The lemmas are generalizations of those in Section 3 of [5] to the three-dimensional
setting, but with simplified proofs based on similar results from [3].

Lemma 3.1. Let To(Bj,w;); be a regular family of uniform partitions of Q. Then there exists
a constant C > 0 such that for all j and all b, =", a;1); € B},

o 2o cdlbilt < Cloal (7)

Proof. Let j be given and b, = Y, a); € B3,. Let T € Tq(Bj,w;). Then there exists
aoc € X and a 27 € Z® such that Fj : # = B;(Z + zr) + w; maps T, onto some reference
tetrahedron T, from (1). In particular, F; gives rise to a one-to-one correspondence between
the bubble functions ; on T and the bubble functions 1&, on Ty, i.e., zﬁi = ijl(w). The usual
transformation rules between elements and reference elements (cf.[20], p. 40) tell us that there
exists a constant C independent of the mesh parameters such that

[Pz, < OBl det Bj|~*[wlir and [ilir < CIIB; ||| det By 2 [dlr,.  (8)
Using the rightmost rule from (8), we find that

6 6
_ 1 ~
Y adlgil} < CIIBj !l det Bj[= | D a?libil}- )
i=1 i=1
Now, there also exists a constant C', depending only on the reference tetrahedron T, such that

6 6
Yo ilir, <CIYaitili (10)
i=1 i=1

simply because the semi-norm on the right-hand side does not vanish unless all «; vanish, in
which case such C trivially exists. Using the left transformation rule from (8), we find that

6
1> aithilr, = |F; (bw) |z, < CIIBjll| det B;|~%|by1,r. (11)
J
=1

Combining (9), (10) and (11), we get

6
> a2yilz < C|IByI1B; [I1balr,r (12)
i=1
By the regularity of the family of uniform partitions, there exists a constant C' > 0 such that
for all j we have ||B]_1|| < Ch™! and ||B;|| < Ch. Finally, (7) is proved by summing over all T
in the partition.

Another result about the basis function ¢; for the bubble functions in B2, is the following.
In the proof for supercloseness in Section 4, it will enable the application of a Bramble-Hilbert
type argument to gain an additional factor h.

Lemma 3.2. Let To(B,w) be a uniform partition, e; an internal edge, and v; € th its
corresponding basis function. Then for all cubic polynomials p on the support S; of 1; we have,

(V(p — Qnp), Vipi)s, = 0. (13)
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Proof. Without loss of generality we may assume that S; is centered around the origin.
Since @, maps quadratic functions onto themselves, we only need to check the identity for the
ten cubic monomials. All these monomials are odd functions about the origin, and so are their
interpolants. Hence, V(p — Qnp) is even. Similarly, one sees that Vi; is odd. Hence, their
product has zero mean on S;.

Lemma 3.3. There exists a constant C > 0 such that for all j, T € To(Bj,w;) and quadratic
polynomials p,

|(I = Lp)pli,r < Clpli,T- (14)
Consequently, each vy, € Vg, having decomposition vy, = £y + by, with £, € Vg, and b, € B3,
satisfies

|bn[1 < Clona (15)
with the same constant as in (14).

Proof. Let o € ¥ be arbitrary and write L for linear Lagrange interpolation on T,,. Then
there exists a constant C' > 0 such that |(I—L)p|1,7, < C|p|1,r, for all quadratic polynomials p.
Indeed, if p is linear, the left-hand side vanishes, and if p is not linear, both terms are positive.
Using the transformation rules (8), the first statement follows for arbitrary T' € T (B, v) similar
as in Lemma, 3.1. The second statement follows from the first one by summing over all elements
in the partition and realizing that by, = (I — Lp,)vp,.

4. Supercloseness of u;, and Qnu

We will now prove an H'-bound for wp, = up, — Qru based on the decomposition

wp = Ap + Bn, with Ay € Volh and gy, € th. (16)
Galerkin orthogonality (6) and the Cauchy-Schwarz inequality give
lwli = (Vwn, VAR) + (V(un — Qnu), VB) < lwnlilAnlt + (VI — Qn)u, VB (17)

First consider the product of norms on the right-hand side of (17). To bound the right factor,
we make use of the fact that uy is superconvergent at the vertices, which follows from [27].

Theorem 4.1. Suppose u € H*(Q) and that To(Bj,w;); is a regular family of uniform tetra-
hedral partitions. Then

|Anl1 < C(u)h®. (18)

Proof. Since the family of uniform partitions is regular, we can use the discrete inverse
inequality [8], and then switch to the L* norm. This gives

Ault € CA 7Y Arlo < CR7H AR oo (19)

Since A is linear, its maximum value is attained at some vertex of the partition. Notice also

that Ay (N) = (u—up)(N) at all vertices N. Since by Schatz [26], p. 245 (see also [27]), at each
vertex N we have

|(u — un)(NV)] < Clu)h?, (20)
the statement is proved.

Theorem 4.2. Suppose u € HX(Q) and that To(Bj,w;); is a regular family of uniform tetra-
hedral partitions. Then for all by, € B3, ,

(VI — Qn)u, Vbg)| < Ch3|u|4|bp1- (21)

Proof. Let u be given and write by, = Y a;1);. Application of the triangle inequality, followed
by the Cauchy-Schwarz inequality and Lemma 3.1 results in

(VI — Qn)u, Vby)| < Z las |31 [(V (I — Qn)u, Vi )| |hi T
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2l (22)

< Clbahs \/Z (VT = Qn)u, Vibi)s,

where S; is the support of ;. By Lemma 3.2, the Cauchy-Schwarz inequality, the a priori
estimate (3) for Q, we have that for all p € P3(S;),

(VI = Qn)u, Vi)s,| = (VI = Qn)(u — p), Vebi)s,| < Ch’Ju— plas; il (23)
Taking the infimum over all p € P3(S;) gives, using interpolation theory in Sobolev spaces (cf.
[8]),
(VI = Qn)u, Vii)s;| < Ch?|ula,s, |91 (24)
Substituting this into (22) together with the fact that at most six tetrahedra in 7 share a given
edge, results in the statement.

Corollary 4.3. Under the same assumptions as in Theorem 4.2 we have that
lup, — Qrulr < C(u)h®. (25)

Proof. According to (17) and Theorems 4.2 and 4.1 we have
wlt < Anlilwnlt + Ch®lula| Bl
The rest follows from (15).

A numerical experiment

The supercloseness result (25) was numerically verified on the unit cube = (0, 1)® and with
right-hand side f(x1, T2, 73) = 372 sin(rx,) sin(7zy) sin(rz3), hence, u = —f/3w2. The finite
element approximation was computed on uniform grids with mesh sizes h = 277, j = 0,...,4,
meaning that Q was first subdivided into 237 congruent subcubes, after which each subcube
was partitioned into six tetrahedra according to Section 2.2. To evaluate the right-hand side
vector, f was replaced by Qpf, so in fact we solved

(Vip, Vor) = (Qnf,vn) instead of (Vup, Vor) = (f, o). (26)

Subtracting these two equations and applying the Cauchy-Schwarz inequality and the a priori
estimate (3) for Qp gives

lun — @nl; = (f — Qnfrun — @) < Ch®|flslun — nlo < CR®|fs|lup — Gal1, (27)

where the latter inequality is Friedrichs’. This shows that if 4y, is superclose to Qnu in the H!-

seminorm, then so is up. In the tabular below we present the relevant numbers. The reduction
factors of |4 — Qpul1 in the third column seem to confirm the predicted O(h®) behavior.

1/h | |an — Qpu|1 | reduction | nr. of dofs
1 5.278¢ —1 — 1
2 2.654e — 1 1.99 27

4 5.376e — 2 4.93 343 (28)
8 8.380e — 3 6.40 3375
16 1.149e — 3 7.29 29791

5. Further Issues

In this section, we will discuss how to generalize the results of Section 4 to elliptic equations
with varying coefficient, and how to post-process the finite element solution. Since both topics
do not essentially differ from the two-dimensional case, we will only give an outline and refer
the reader who needs a more detailed description to relevant papers.
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5.1. Elliptic equations with varying coefficients

Here we will sketch what happens when we consider the more general second order elliptic

problem
—div(AVu)=f inQ, u=0 on 9, (29)
in which A has Lipschitz continuous entries. By coercivity and continuity of the corresponding
bilinear form, there exist positive constants v, M such that
Ywnli < [(AVwr, V(An + Br))| < Mlwpl1|Anls + [(AV(I — Qn)u, VB1)I,

which is the analogue of (17). The first term on the right-hand side is exactly the same as
before apart from the factor M. The second term needs a slightly different treatment than in
Theorem 4.2. The main idea is that with m; the midpoint of the edge e; and A; = A(m;) we
have for the bubble basis function ; that

[(AV(I = Qn)u, Vipi)| < [((A = A) VI = @n)u, V)| + [(Ai V(T — Qn)u, Vii)|
< ChlAl1,00Ch?[uls,s; |9l + (A V(I — Qn)u, Vii)|.
Since (13) is also valid with a constant matrix in front of the left gradient, we skip the rest of

the adapted proof of the following theorem. See [4, 24], where similar techniques are applied in
more detail.

Theorem 5.1. The quadratic finite element approxzimation uy of (29) on a regular family of
uniform tetrahedral partitions satisfies
lup, — Qrulr < C(u)h®. (30)

5.2. Post-processing of the gradient approximation

Post-processing of Vuy will be done in two steps. First, we develop a post-processor for
VQnu with suitable properties. Then, using either supercloseness bound (25) or (30), we prove
that application of the same post-processor to Vuy yields a higher order approximation than
Vup. The two-dimensional version of the procedure described here originates from [2] and was
also described in detail in [16, 5]. The three-dimensional case is not more difficult, hence, we
refer also to [2, 16, 5] for all proofs of the statements below.

'

Figure 3. Sampling of three exact tangential derivatives at Gauss points to reconstruct the
exact tangential derivative of a cubic polynomial at a nodal point. Three linearly independent
reconstructed tangential derivatives at this node result in the exact gradient
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Let N be an internal vertex in a uniform partition, and P the union of tetrahedra for which
N is a vertex. Let e and e’ be edges in P that meet at N and lie in the same direction, and 7
a unit vector along e U e’. Denote differentiation in the direction 7 by D,. Define G1,G2 on
e as the unique (Gauss) points at which D, (p — Qpp) vanishes for all cubic p, and similarly,
define G| and G} on e'. Hence, supposing that we are given Qpp on P, we can reconstruct
the quadratic function D,p on eU €', and in particular at N by interpolation. This procedure
is illustrated in Figure 3 below. Since the reconstruction can be done at N for three linearly
independent directions, we are able to find Vp(V).

Suppose we are given Qnu on P for some u € H} (Q)NH*(Q). Naturally, it will be impossible
to reconstruct Vu (V) from these data, but by using the same sampling scheme and interpolation
as above, we may hope to reconstruct its “quadratic part”. Applying the scheme to all vertices
N, and then using, for instance, interpolation on those vertices to define values also on the
midpoints of edges, it is possible to define a vector quadratic approximation Ky VQpu of Vu
globally on 2, for which

|Vu — KpVQpulo < Ch®|uly. (31)
Since K}, satisfies | K Vuplo < C|Vup|o for all v, € Vi3, using the supercloseness (25), a simple
derivation based on the triangle inequality gives
|Vu — KhVuh|0 < |VU — KhVQhulo + |KhV(Qh’u, — uh)|0 < C(’u,)hg. (32)
If, in the context of the more general elliptic problem, (30) is used, then the dependence on u
in C'(u) in the right-hand side of (32) changes accordingly.
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