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Abstract. In the present work, both computational and experimental methods are em-
ployed to study the two-phase flow occurring in a model pump sump. The two-
fluid model of the two-phase flow has been applied to the simulation of the three-
dimensional cavitating flow. The governing equations of the two-phase cavitating flow
are derived from the kinetic theory based on the Boltzmann equation. The isotropic
RNG k−ǫ−kca turbulence model of two-phase flows in the form of cavity number in-
stead of the form of cavity phase volume fraction is developed. The RNG k−ǫ−kca tur-
bulence model, that is the RNG k−ǫ turbulence model for the liquid phase combined
with the kca model for the cavity phase, is employed to close the governing turbulent
equations of the two-phase flow. The computation of the cavitating flow through a
model pump sump has been carried out with this model in three-dimensional spaces.
The calculated results have been compared with the data of the PIV experiment. Good
qualitative agreement has been achieved which exhibits the reliability of the numerical
simulation model.
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1 Introduction

Cavitating flow is a type of two-phase flow with liquid phase and vapor phase. In some
cases, cavitating flow is turbulent, highly dynamic and highly unstable. There is not only
momentum transfer between the liquid phase and cavity phase, but also mass transfer,
that is, the vaporizing process and the liquidizing process. Because of these mentioned
complexties, there are many difficulties in the numerical simulation of cavitating flow
compared to the normal silt-liquid and particulate-gas two-phase flow simulation.

In recent years, there has been much progress in cavitating flow simulation. Simula-
tion methods have been developed from inviscid flow calculation to viscous flow calcu-
lation, from two-dimensional computation to three-dimensional computation, and from
single-phase flow simulation to two-phase flow simulation.

Beginning in the 1960s and 1970s, many cavitating flow models have been established
based on the ideal fluid assumption and the singularity method. Yamaguchi and Kato [1]
proposed a cavitating flow model, which was used widely in calculation. Brewer and
Kinnas [2] used this model to calculate the flow around two-dimensional (2D) and three-
dimensional (3D) hydrofoils, and Pellone and Peallat [3] used it to predict the local bub-
bles near the hydrofoil surface. De Lange and De Bruin [4] numerically simulated the
periodic variation of bubbles.

As turbulent flow simulation has developed, it has been extended to the analysis
of cavitating flow. Up to now, the most widely used method for this cavitating flow
analysis is the single-phase flow model, even though the cavitating flow is actually a two-
phase flow consisting of a cavity phase and a liquid phase. This single-phase cavitating
flow model numerically models the flow through direct computation of the single-phase
Navier-Stokes equations. A possible simplification of this type of complex flow is to
assume the gas-liquid flow is a virtual single-phase, with a sharp density change as long
as the pressure drops below some critical pressure (Kubota et al. [5]; Song et al. [6]).

The single-phase cavitating flow model is mainly used in fixed bubble flow calcula-
tion because the position of a fixed bubble is rather stable from the point view of direct
observation. Actually, the time averaged results with this method is rather stable. The
bubbles in the flow have variations in their shape, size and length over time. The liquid
flow around bubbles is the main flow area, with much greater velocity than that of vapor
in bubbles. Thus, in the model, the surfaces of bubbles can be assumed to be solid walls,
on which the pressure is equal to the vaporizing pressure at a certain temperature.

In the single-phase simulation, the algorithm first simulates the whole flow field with-
out bubbles; and then judges areas with pressure less than the vaporizing pressure; third,
treats these areas as bubble areas; and finally, recalculates the whole flow field again. This
procedure is repeated until the iteration is converged.

The single-phase simulation for cavitating flow is simple and easy, because the single
turbulent simulation model and numerical method have been well developed nowadays.
But its application is limited to fixed-bubble cavitating flow. For other types of cavitat-
ing flow, for example, dissociative bubble flow and bubble cloud, it may be difficult to
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achieve an accurate simulation, because the single-phase calculation ignores the momen-
tum and mass transfer between bubbles and the liquid.

It should be noted that some attractive results were obtained through a barotropic
model (Arndt et al. [7]; Qin et al. [8]) to capture the main physics of complex cavitation
wake flows. The simulation methodology was based on large eddy simulation (LES),
using a barotropic phase model to couple the continuity and momentum equations.

The cavitating flow is actually a two-phase (cavity-liquid) flow, in which there exists
mass and momentum transfer between the liquid phase and cavity phase. In contrast
with the single-phase flow, there is a continuous phase (liquid phase) as well as a dis-
persed phase (cavity phase) in a cavitating flow. The cavities are distributed in the liquid
flow in the form of dispersion.

The calculation of the two-phase flow requires simulation of both the continuous
phase and the dispersed phase. According to the different simulating models of each
phase, two-phase simulation models have different schemes with different combinations
of each phase model. Unlike the single-phase model, the two-phase simulation should
consider interaction and the mass and momentum transfers between the continuous and
the dispersed phases, as well as the mass and momentum properties’ jumps on the in-
terfaces between the two phases. In two-phase simulation, the numbers of physical vari-
ables for describing the two-phase flow are doubled comparing with that for single-phase
flow. For these reasons, two-phase flow simulation is much more complex (Chen and
Heister [9], Deshpande et al. [10]).

For the two-phase simulation, two models can be chosen: the two-fluid model and
the mixture model.

In the mixture model, it is assumed that there is a dynamic balance in both the liquid
phase and cavity phase in the cavitating flow. The mixture model eliminates the difficult
mutual interaction forces of the two-fluid model by summing up the momentum equa-
tions. The ”lost information” is substituted via a slip relation, usually in the form of an
algebraic equation. The mixture density is a function of position and time as the vapor
fraction is a function of space and time. Moreover, the individual phase still has its own
”density”.

Chen and Heister [9] simulated the cavitating flow around an axis-symmetrical body
by using the Marker and Cell method. Ventikos and Tzabiras [11] calculated the cavi-
tation of flow around a hydrofoil and considered the temperature variation in the flow
by the pressure correction method. However, these two calculations did not include the
effect of turbulence in cavitating flow.

Other researchers simulated turbulent cavitating flow using N-S equations and an
additional equation of the cavity (or liquid) volume (or mass) fraction. Singhal et al. [12]
and Merkle et al. [13] used the mass fraction equation and k−ε turbulence model to sim-
ulate a cavitating flow around a foil. Kunz et al. [14] and Brewer and Kinnas [2] used
a multiple species approach with additional establishment of a mass transfer law be-
tween liquid and vapor in their relevant works. This model can be applied to the cases
in which the relative motion between phases should be taken into account. Senocak
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and Shyy [15] used the mass fraction equation and the k−ε turbulence model, as well
as the pseudo-compressibility method to simulate the three-dimensional (3D) and axis-
symmetrical cavitating flows.

In the mixture model, the governing equations include the continuity and the momen-
tum equations for the mixture, the continuity equation for the cavity as well the volume
fraction equation of the cavity for the purpose of simulating the mixture of the cavitating
flow.

In the two-fluid model, the dispersed phase is treated as a pseudo-fluid. In the Eule-
rian approach, the flow of the dispersed phase is described by the conservation equations
of the mass, momentum and energy in continuous mechanics. This model includes not
only the slip of parameters between the carrier fluid and the dispersed phase, but also
reflects the differences in the diffusion for the carrier fluid and the dispersed phase. For
example, the diffusion of the cavity phase is different from liquid diffusion. Therefore,
the two fluid model can contain more information on the turbulent flow transport in two-
phase cavitating flow. Rieger [16] first introduced the two-fluid model for cavitating flow
simulation. Grogger and Alajbegovic [17] introduced the calculation for a cavitating flow
in a Venturi tube. The disadvantages for this model are that the computation takes more
time to get convergence and the iteration procedure is not stable.

In the two-fluid model, the ”single-pressure” description for the continuous phase
is widely used in computation, which fails to account for the cavity rebounding effect
by walls and cavity collision with each other. In order to involve these effects in the
frame of the two-fluid model the dispersed phase pressure and the internal transport
should be considered to the dispersed phase with the dense volumetric fraction based on
the kinetic theory of heterogeneous media. The problems arisen in the implementation of
the two-fluid model proposes challenge to the investigators to develop two-stage discrete
approaches.

In the cavitating flow, the volumetric fraction of the cavity phase varies extensively
with the space and the time. In most area of the flow field, the fraction is very low, but at
the cavitation area, it is high. Thus, it is necessary to use the two-fluid model to analyze
the cavitating flow in the whole flow field in order to predict the behaviour of the flow
field. On the bases of the theory of the two-fluids model for multiphase flows, the cavity
phase, which can be assumed to be a pseudo-fluid, occupies a certain fraction volume in
the whole flow domain shared with the continuum phase.

In this study, the three-dimensional cavity-liquid two-phase turbulent flows through
a model pump sump are simulated under the frame of the two-fluid model. In the cavity
phase, the RNG k−ε−kca turbulence model is employed, while the RNG k−ε turbulent
model is used in the liquid phase. The program is developed in the non-orthogonal body-
fitted coordinate (BFC) system for three-dimensional spaces. The governing equations of
the two-phase cavitating flow have been deduced from the kinetic theory based on the
Boltzmann equation. The calculated results have been compared with a PIV experiment.
Good agreement exhibits the reliability of the present model and the present numerical
simulation.
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2 Governing equations of cavitating two-phase flow in two-fluid

model

Several researchers have obtained the governing equations of the cavitating flow in terms
of the macroscopic continuous mechanics theory. As the fluid vaporizes (gasificates) if
the local pressure in the flow is lower than the vapor pressure of the fluid, and the gas
quickly condensates if the pressure is higher than vapor pressure, the diameters of the
cavity vary with the local pressure, which results in the mass and momentum transfers.
These can hardly be described by the governing equations from macroscopic model. For
this reason, other models based on the microscopic kinetic theory should be introduced.

The derivation of the governing equations of dense particle-liquid two-phase flows
was briefly discussed by Tang and Wu [18]. In the present work, based on Boltzmann
equation, governing equations for two-phase cavitating flow are developed, in which the
terms in the equations for mass and momentum transfers can be obtained. The feature
in this study is that the cavity number is employed instead of the cavity phase volume
fraction. The advantage of the present formulations is that it can predict the variations
of both the cavity diameter and the cavity number in a unit volume. In such a way, the
model developed in the present study can predict the cavitation clouds.

The starting point is the microscopic Boltzmann equation. By weighting the Boltz-
mann equation of each phase by property parameters and integrating over the velocity
space, the continuity and momentum equations are derived. The derivation details and
glossary of symbols are discussed in Appendix. The results are summarized here.

Let αl and αca be the volume fractions of the liquid and cavity phases respectively,
and αca+αl =1. The governing equations (continuity and the momentum equations) for
the liquid-phase are (see Appendix A and B),

∂αlρl

∂t
+

∂

∂xj
(αlρlulj)=Sl, (2.1a)

∂(αlρluli)

∂t
+

∂

∂xj
(αlρluliulj)=αlρl gli−

∂(αl p)

∂xi
+αl

∂τlij

∂xj
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αlρl
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where u is the mean velocity in the liquid phase or cavity phase from a macroscopic view.
And
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The governing equations for the cavity-phase are

∂αcaρca

∂t
+

∂

∂xj
(αcaρcaucaj)=Sca, (2.3a)

∂(αcaρcaucai)

∂t
+

∂

∂xj
(αcaρcaucaiucaj)=αcaρcagcai−

∂(αca p)

∂xi
+

αcaρca

τrca
(uli−ucai)

+ucaiSca. (2.3b)

3 RNG k−ε−kca turbulence model of cavitating two-phase

turbulent flow

In the present work, the RNG k−ε−kca turbulence model, that is RNG k−ε model in the
liquid phase and kca model in the cavity phase, is used to close the equations.

The k and ε equations of the RNG k−ε model for liquid phase are as follows:

ρl
Dk

Dt
=

∂

∂xj

(

σkµe f f
∂k

∂xj

)

+Gk+Gp+GR−ρlε, (3.1a)

ρl
Dε

Dt
=

∂

∂xj

(
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∂ε

∂xj

)

+
ε

k

[
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]

−R, (3.1b)
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)∂uli

∂xj
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[
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p

√

kkca)
]

, GR=2kD, (3.1c)

where

D=(2DijDij)
1
2 and Dij=

1

2
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∂uli
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)

.

The effective viscosity can be obtained from this formula:

d
( ρk2

√
εµ

)

=1.72
µ̂

√

µ̂3−1+CV

dµ̂, (3.2)

where µ̂=µe f f /µ and CV ≈100

R=
Cµρη3(1−η/ηo)

1+βη3

ε2

k
,

where

η=D
k

ε
, ηo =4.38, Cµ=0.0845, β=0.012,

Cε1=1.42, Cε2=1.68, σk =1.0, σε =0.769.
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And the k equation in the kca turbulence model for cavity phase is:

∂

∂t
(αcakca)+

∂

∂xj
(αcaucajkca)=

∂

∂xj

(

αca
νca

σp
· ∂kca

∂xj

)

+Gkca+Gpca−αcaεca, (3.3a)
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(∂ucaj

∂xj
+

∂ucai

∂xj

)∂ucai

∂xj
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σp
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)

, (3.3b)

εca =− 1

τrca

[

2(Ck
p

√

kkca−kca)+
ucai

αca
· νca

σp
· ∂αca

∂xi

]

, (3.3c)

where σp=1.5, Ck
p=0.11.

In the numerical procedure, one of the SIMPLE algorithms, named as SIMPLEC, is
used to solve the equations in both liquid and cavity phases.

4 Numerical procedure of the simulation

4.1 Computational domain and parameters of the model pump sump

Pump sumps are widely used in various installations like cooling water systems. Mod-
ern industrial devices require demand of pump sumps of very large capacities with good
performances. The flow conditions in the pump suction sump are very complicated, es-
pecially, in the surrounding of the pump bell (Fig. 1), where there are various types of
vortexes and in some cases these vortexes induce cavitation, which result in vibration.
These effects reduce the performance of the pump station and may result in the break-
down of the device.

The 3D cavitating two-phase turbulent flow calculations are based on a closed pump
sump, for which the experimental data is available. The configuration of the test pump
sump is shown in Fig. 1. The main section is divided into two identical channels (A and
B) vertically by clapboard. The pipe bell with special structure is manufactured using
Plexiglas material. The experimental data are obtained by PIV technology.

The flow rates in two channels are 0.965m3/min (A) and 0.64m3/min (B) respectively.
In the calculation, the whole flow area is modeled in computation, and some represen-

Figure 1: Pump sump model configuration.
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Figure 2: Positions of measuring planes.

tative planes are chosen here to show the results. The sketch of measurement planes is
shown in Fig. 2 and Table 1.

Here, Planes X2, Y1 and Y3 are tangent with the bell edge; Plane X1 is near the back
wall; Planes X3 and Y2 are on the center of pipe bell; Planes Z1, Z2 and Z3 are below,
tangent with and above the bell inlet.

With the method described above, the computation of three-dimensional two-phase
cavitating flow through a model pump sump has been carried out. Simulation results are
shown below, and are compared with a PIV experiment.

Table 1: The parameters of water and vapor at the inlet of the pump sump test.

temperature Density (kg/m3) Viscosity (Pa×s) vaporizing pressure (kPa) volume fraction at inlet

Water 20◦ C 0.998203 1.0087×10−3

Vapour 20◦ C 0.017313 9.669×10−6 2.3388 10−5

4.2 Numerical treatments

The governing equations are discretized in the Cartesian coordinates using the finite vol-
ume method with structured hexahedral and unstructured tetrahedral meshes. The sec-
ond order central difference scheme is used to discretize the diffusion term and the sec-
ond order upstream difference is used to discretize the convective term. Finally, the dis-
cretization of the governing equations in the whole domain forms a system of algebraic
equations at each time step.

In the present computation, the iterative procedure between the liquid phase flow
and the cavity flow is necessary based on each phase flow computation. In order to get
the convergent solution of the two phase flows, the interaction between the two phases
should be considered. In the procedure, the calculation algorithm of liquid phase is the
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same as that for single phase flow computation. By using one of the SIMPLE algorithms
or the SIMPLEC, one can get the solution of the velocity field and the pressure field of the
liquid phase. Then the solver for the cavity phase will start based on the first solution of
liquid phase and the initial condition of the cavity phase. In the cavity computation, the
volumetric fraction of cavity will be obtained through solving the continuous equation
and the Rayleigh equation, and at the same time, the velocity of cavity will be solved
out through the numerical solution of the momentum equation. Then the convergent
solution for the cavity phase will be achieved after the interactive computation for each
phase. In the solution, the velocity of cavity flow is much lower comparing with the
liquid velocity. The volumetric fraction of cavity phase is one of the main results of the
solution of cavity phase.

In the computation, the maximum error in satisfying the momentum equations at
convergence was smaller than 10−5 and, the maximum error in satisfying the continuity
equation was of the order of 10−4. These are in the range expected of a second-order
method with proper grid spacing. That is to say, the computation does not have a large
error. The experimental uncertainty is about 5% to 10%. The large difference at the peak
value of the velocity components is mainly induced by the turbulence model. The k−ε
turbulence model can not simulate large eddy in fluid flow, which usual occurs in cavi-
tating flows.

The computational solved domain is shown as in Fig. 1. The domain’s grids are com-
posed of unstructured hexahedron elements. In order to make y+ small enough to 40-50,
wall of the outlet pipe boundary has 4 layers and there are local refinements on both sides
of the outlet pipe in the sump. The total mesh numbers of the domain are 2364746. The
initial conditions of inlet velocity components and static pressures at inlet branches were
given according to the test data.

4.3 Boundary conditions

• Inlet condition: The first type of boundary conditions is given at the inlet.

• Outlet condition: The derivatives of velocity components uj and k, ε are zero along
the normal of the boundaries, that is,

∂uj

∂n
=0, (j=1,2,3),

∂k

∂n
=0,

∂ε

∂n
=0. (4.1)

• Wall conditions: Near solid walls, the logarithmic velocity profile was used to cal-
culate the velocity and k, ε. Supposing that the distance from the nearest station P
to the wall is yp, then the values of up, kp, εp can be defined as:

up

uτ
=

1

κ
ln(Ey+p ), kp =

u2
τ

√

Cµ
, εp=

u3
τ

κyp
, (4.2)
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where

y+p =
ρuτyp

µ
=

ρc
1
4
µ k

1
2
p yp

µ
, µτ =

√

τw

ρ f
. (4.3)

• Pressure conditions: The normal derivatives of pressure on all boundaries is zero.
And the inlet pressure which was obtained through experiment is given as the ref-
erence pressure.

The inlet conditions of velocity and volumetric fraction are given according to the liquid
phase. Outlet condition and the wall condition is the second type, and the derivatives
along the normal to boundaries are zero

∂vi

∂n

∣

∣

∣

y=0
=0, (i=1,2,3). (4.4)

5 Experimental description

The pump suction sump and pump bell used in the experiments are different from the
general ones.

5.1 Experimental system

The main component of the laboratory model is an approximately rectangular pump
sump. The configuration of the pump sump model is shown in Fig. 1, and the positions
of measuring planes are shown in Fig. 2. The structure of the pump suction sump is
sketched in Fig. 3. The inlet of the sump is divided vertically into two identical channels
by the clapboard, which has a special requirement on size. From the view of the inlet, in-
let A is on the left side and inlet B is on the right side. The purpose of using two inlets is
to allow the creation of asymmetric flow surrounding the pump bell, which makes the ex-
perimental set-up more general, and allows simulation of more typical conditions. Trash

Figure 3: Structure of the pump suction sump.
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racks are placed in front of each inlet to stabilize the flow. The verges of the pump suction
sump near the bell are designed with a smooth shape to optimize the flow conditions.

The pump bell in this experiment was manufactured on a numerically controlled lathe
using organic glass material. The inlet of the pump bell is also specially designed to
optimize the flow in the pipe. The pump bell connects with the upper wall of the pump
sump. On the top of the bell, there is a vertical pipe, and the water is pumped through it
upwards from the bell.

5.2 PIV system arrangement

The PIV system, purchased from TSI Inc., consists of a two 2-pulsed Nd:Yag laser, a CCD
camera, a synchronizer, and a data analysis system. The output power of the laser is
120mJ/Puls, which is sufficiently high for the experiment. The interval of the second
exposure was longer than that of the first. The interval of the two pulses was chosen
according to the velocity values. The lower the measured velocity, the larger the interval
used. The CCD camera was used to obtain digital images with 1300×1000 pixels, and can
capture 3. 75 images in one second. The particles used in these experiments are hollow
glass particles with diameters of 10 ∼ 20µm. Fig. 4 shows a sketch of the PIV system
arrangement in the measurement.

Figure 4: PIV system arrangement in the measurement.

5.3 PIV measurement uncertainty

In general, the uncertainty in the mean velocity components in the channel measured by
ADV was estimated to be about 6%. The LDV system measured the turbulence intensity
in the streamwise direction within 1%. The uncertainty in the instantaneous velocities
measured by PIV was estimated at 5% of the maximum velocity.

We have made detailed measurement to determine the uncertainty in the measure-
ment of velocity in a channel, as shown in Fig. 5. This figure indicates the velocity com-
ponent on the measuring plane at two sampling points. PIV measurement uncertainty of
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Figure 5: Measuring uncertainty at speed variation condition.

velocity is defined as follows:

y= |ūN |−|ū250|=
1

N

N

∑
i=1

ui−
1

250

250

∑
i=1

ui,

where ui is velocity sample at i time of measurement. N is sampling number. Nmax=250
in this experiment.

It can be seen from Fig. 5 that if the times of measurement are larger than 200, the
uncertainty of measuring velocity is less than ±0.03m/s, i.e., the error of this velocity
measurement is less than ±4%.

6 Comparisons of simulation results with experiments

In this study, simulation results on certain planes of the model pump sump are compared
with the experimental results. From the numerical simulation and the PIV experiment,
flow characters can be obtained respectively. The parameters of water and vapor at the
inlet of the pump sump test are shown in Table 2. Comparisons of the simulation results
with experiments are as follows.

Table 2: Detailed positions of measuring planes.

Planes Positions Coordinates
X1 Near the back wall x=40mm
X2 Tangent with bell edge x=120mm
X3 Center of pipe x=200mm
Y1 Tangent with bell edge y=40mm
Y2 Center of pipe y=120mm
Y3 Tangent with bell edge y=200mm
Z1 Below the bell inlet z=50mm
Z2 Tangent with bell inlet z=80mm
Z3 Above the bell inlet z=120mm
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Figs. 6 to 14 show the comparisons of the two dimensional velocity distributions on
planes Y1, Y2 and Y3 (parallel to the side walls), planes of X1, X2 and X3 (parallel to the
back wall of the sump) and Z1, Z2 and Z3 (parallel to the bottom wall) respectively, in
which figures on the left side, named as (a) are experiment results, and others (b) are
simulation ones. Figs. 15 to 23 show the streamlines on these planes.

Figs. 24(a) to (d) indicate the volume fraction of cavity phase on planes X2, Y2, Z1 and
Z2 planes from computational results. The volume fraction of cavity is induced by the
vortex cavitation on the central area of the suction pipe in the sump. In other areas in
the sump there is not any cavitation occurrence to be observed in the experiment. Fig. 25
shows an experimental result of the cavity below bell inlet as an example.

Figs. 26(a) and (b) show the velocity components U and V distributions on the central
line parallel to the side wall. Figs. 27(a) and (b) show the velocity components U and V
distributions on the central line parallel to the back wall below the bell inlet at a distance
of 50mm from the sump bottom surface.

For a quantitative comparison between computational results and experimental data,
the difference between computational results and experimental data can be found in
Figs. 26(a) to 27(b). The maximum difference is located at the peak values of the ve-
locity components distributions. The relative maximum difference is about 19% at the
peak areas. And the numerical values at these areas are a little less than the experimental
data.

6.1 Velocity magnitude distribution

Figs. 6, 7 and 8 show the velocity distribution on planes Y1, Y2 and Y3. Plane Y1 is located
in the channel B, and the velocity value with the maximum of 0.429m/s (from the experi-
mental data) on this plane is slightly smaller than those on plane Y3. The maximum value
of velocity on plane Y3 is 0.643m/s, because the flow rate in channel A is 1.5 times of that

(a) Experiment (b) Simulation

Figure 6: Velocity distribution on Y1 plane (velocity unit: m/s).
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(a) Experiment (b) Simulation

Figure 7: Velocity distribution on Y2 plane (velocity unit: m/s).

(a) Experiment (b) Simulation

Figure 8: Velocity distribution on Y3 plane (velocity unit: m/s).

in channel B. On the central plane Y2 in Fig. 7, the velocity values of both measured and
simulated results are nearly equal below the bell inlet, which are about o.6 to 1.2m/s.
The simulated results can give the velocity distribution in the suction pipe of the pump,
which show the maximum velocity on the planes is about 0.417m/s near the bell throat.

Velocity distribution on the central plane X3 parallel to back wall in Fig. 11 is similar
as that on the central plane Y2 parallel to side wall in Fig. 7. Velocity distribution on plane
X1 in Fig. 9 is smaller than that on plane X2 in Fig. 10, because this plane X1 is close to the
back wall. Both velocities from the experiment and the simulation on plane X2 agree with
each other in Fig. 10. But on plane X1, the value from experimental results in Fig. 9(b) is
smaller than that from the simulated data in Fig. 9(b).

Velocity distributions from both experiment (a) and simulation (b) on planes Z1, Z2

and Z3 agree well with each other.
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(a) Experiment (b) Simulation

Figure 9: Velocity distribution on X1 plane (velocity unit: m/s).

(a) Experiment (b) Simulation

Figure 10: Velocity distribution on X2 plane (velocity unit: m/s).

(a) Experiment (b) Simulation

Figure 11: Velocity distribution on X3 plane (velocity unit: m/s).
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(a) Experiment (b) Simulation

Figure 12: Velocity distribution on Z1 plane (velocity unit: m/s).

(a) Experiment (b) Simulation

Figure 13: Velocity distribution on Z2 plane (velocity unit: m/s).

(a) Experiment (b) Simulation

Figure 14: Velocity distribution on Z3 plane (velocity unit: m/s).
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6.2 Streamline and velocity vector

Streamline distributions from both the experiment and the simulation in Fig. 15 to Fig. 23
show the similar results, which verify the validity of the simulation of velocity distribu-
tions on these planes.

Figs. 21, 22 and 23 show the streamlines on Plane z1, z2 and z3. Due to the flow
asymmetry at the inlet, a vortex is observed near the pipe-bell center. Since the flow rate
in channel A is larger than that in channel B, it is understandable that the vortex rotates
in the direction from A to B. There is another vortex observed in the corner based on the
results on plane z3 (Fig. 23). It rotates in the same direction of the center vortex.

6.3 Volume fraction of the cavity phase

Figs. 24(a) to 25 show the distribution of the volume fraction of vapor. Figs. 24(a) to (d)
are the simulation results and Fig. 25 is the photo of experimental result below the bell
inlet. From these figures, it can be seen that in the closed pump sump, there is a strong

(a) Experiment (b) Simulation

Figure 15: Streamlines and velocity vectors on Y1 plane.

(a) Experiment (b) Simulation

Figure 16: Streamlines and velocity vectors on Y2 plane.
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(a) Experiment (b) Simulation

Figure 17: Streamlines and velocity vectors on Y3 plane.

(a) Experiment (b) Simulation

Figure 18: Streamlines and velocity vectors on X1 plane.

(a) Experiment (b) Simulation

Figure 19: Streamlines and velocity vectors on X2 plane.
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(a) Experiment (b) Simulation

Figure 20: Streamlines and velocity vectors on X3 plane.

(a) Experiment (b) Simulation

Figure 21: Streamlines and velocity vectors on Z1 plane.

(a) Experiment (b) Simulation

Figure 22: Streamlines and velocity vectors on Z2 plane.
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(a) Experiment (b) Simulation

Figure 23: Streamlines and velocity vectors on Z3 plane.

(a) (b)

(c) (d)

Figure 24: Volume fraction of cavity on (a) Y2 plane; (b) on X3 plane; (c) on Z1 plane; (d) on Z2 plane.

vortex below the bell inlet and vortex inducing cavitation occurs, which can be described
by the value of the volume fraction of vapor. In this PIV experiment, limited by the
experiment conditions, the volume fraction of vapor cannot be obtained and cavitation
was recorded by taking photos of the position of the air core. From qualitative analysis,
it can be seen that the simulation results show reasonable agreement with experimental
results.
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Figure 25: Experimental result of the cavity below bell inlet.

6.4 Velocity components on the central line parallel to back wall

The calculated results have been compared with a PIV experiment, and good agreement
of velocity distribution on the central lines below the bell inlet has been obtained which
can be observed from Fig. 26(a) to Fig. 27(b). These results exhibit the reliability of the
numerical simulation model.

7 Conclusions

In the two-phase cavitating flow, the volume fraction of the cavity changes extensively
in space and time. In order to capture the cavitation development in various flows, it
is necessary to use the two-fluid model to analyze the complex cavitating flow. In this
work, the governing equations of the two-phase cavitating flow have been developed
from the kinetic theory based on the Boltzmann equation. In this cavitation model, the

(a) (b)

Figure 26: Velocity distribution on the central line parallel to side wall on intersectional line between Z1-Y2
plane. (a) U; (b) V.
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(a) (b)

Figure 27: Velocity component distribution on central line parallel to back wall on intersectional line between
Z1-X3 plane. (a) U; (b) V.

mass transfer is obtained by considering the radius change of bubbles in cavity phase,
and the interaction term is obtained by considering the interaction between the cavity
and liquid. The feature of the proposed model is that the cavity number is employed
instead of the cavity phase volume fraction. It can predict the variations of both the cavity
diameter and the cavity number in a unit volume. In such a way, the model developed
in present study can predict the cavitation clouds.

For calculating the turbulence, the RNG k−ε−kca turbulence model for cavitating
flow, which is the RNG k−ε turbulent model for liquid phase combined with the kca

model for cavity phase, is used to close the Reynolds time-averaged governing equations.
The proposed two-fluid model has been successfully used to simulate the cavitating

flow in a 3D closed pump sump. After comparing the simulation results with the PIV ex-
perimental data for the 3D case, it is concluded that the present two-fluid model derived
in this study is valid to reproduce all the properties of cavitations.

Appendix A: Derivation of the governining equations in

two-phase flow by the Boltzmann equation

Firstly assuming that: (1) There is only translation motion and no rotation in cavity-
phase; (2) The volume unit dRk is much smaller than macro space, but much larger than
every micro cavity volume, that is to say, it includes numerous micro cavities. Therefore,
statistical approach can be applied to the cavity-phase, where Rk is the vector radius of
micro cavity in geometric space.

A.1 Definition of variables

The molecular kinetic theory is currently used to deal with the micro cavities or particles
in two-phase flow. In molecular kinetic theory, c is the velocity of molecules of the liquid
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phase or cavity phase, u is the mean velocity in the liquid phase or cavity phase from
a macroscopic view; that is, the mean molecule velocity, c′, is the relative velocity of
molecules to the mean macroscopic velocity, that is

c=u+c′ and u= 〈c〉, (A.1)

where 〈〉 indicates a statistical averaged value.
In statistical mechanics, the phase space includes the radius space of molecules r, the

temperature space θ, the velocity space c(x1,x2,x3) and the geometrical space R(x1,x2,x3)
of the flow. At the time moment t, the temperature is in the θ→ θ+dθ range, the radius
is in the r→ r+dr range, the geometric position is R→R+dR, and the mean velocity of
micro molecules is c→ c+dc. Then, the micro molecule number at the moment is:

dN= f (R,c,r,θ,t)dRdcdθdr, (A.2)

where dR= dx1dx2dx3 indicates the volume of an element in the geometric space, dc=
dc1dc2dc3 is the ”volume” of an element in the velocity space, and f is the micro molecular
velocity distribution function in the phase space consisting of R and c. Using these,
we can express the moving characteristics of a micro liquid. And any variation of the
function will induce the change of macromovement characteristics of the flow. The micro
molecules’ number density is:

n=
∫ +∞

−∞
f dcdθdr =n(R,θ,r,t), (A.3)

where Φ represents a physical variable depending upon the velocity of the micro molecules,
and its statistical mean value is:

〈Φ〉=
∫ +∞

−∞
Φ f dcdθdr

∫ +∞

−∞
f dcdθdr

=

∫ +∞

−∞
Φ f dcdθdr

n
. (A.4)

So the macro mean velocity of a fluid u is

u= 〈c〉=
∫ +∞

−∞
c f dcdθdr

n
. (A.5)

A.2 Boltzmann equations for cavitating two-phase flow

Based on the application of the gas kinetic theory, the Boltzmann equation that describes
the velocity distribution function. fk of the k phase in the cavitating two-phase flow is as
follows (X. L. Tang and J. Wu [18]):

∂ fk

∂t
+

∂ fk

∂Rk

dRk

dt
+

∂ fk

∂ck

dck

dt
+

∂ fk

∂θk

dθk

dt
+

∂ fk

∂rk

drk

dt
=
(∂ fk

∂t

)

kc
+
(∂ fk

∂t

)

k′c
, (A.6)
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where the subscripts k=l and ca represent the liquid phase and cavity phase in cavitating
flow respectively; drk/dt is the rate of radius change of micro cavities in the cavity phase.
And

dRk

dt
= ck,

dck

dt
=

Fk

mk
,

where Fk is the mass force of the k phase fluid, and mk is the cavity mass or liquid mass
of the k phase flow. If k′ = l,ca, and k′ 6= k; then (∂ fk/∂t)kc and (∂ fk/∂t)k′c are the terms
for the collision of vapor molecules or liquid molecules in the same phase and between
vapor molecules and liquid molecules of two different phases. The subscript c denotes
the collision effect.

For cavitating two-phase flow, it is assumed that the temperature of the cavity and liq-
uid does not change, so that the fourth term on the left-hand side of Eq. (A.6) is ignored.
But the collision between liquid molecules and vapor molecules can not be neglected;
thus the right-hand side of Eq. (A.6) is not equal to zero.

Integrate Eq. (A.6) after multiplying its two sides by any variable Φk, and the follow-
ing integrated equation can be obtained:

∫

Φk
∂ fk

∂t
dck+

∫

Φkck ·
∂ fk

∂Rk
dck+

∫

Φk
Fk

mk
· ∂ fk

∂ck
dck+

∫

Φ
k

∂ fk

∂rk

drk

dt
dck

=
∫

Φk(
∂ fk

∂t

)

kc
dck+

∫

Φk

(∂ fk

∂t

)

k′c
dck. (A.7)

Because variables t, ck and Rk are independent of each other, the four terms on the left-
hand side of Eq. (A.7) can be expressed as (Chen [19]):

∫

Φκ
∂ fk

∂t
dck =

∂

∂t

∫

Φκ fkdck =
∂

∂t

(

nk〈Φκ〉
)

, (A.8a)

∫

Φκck ·
∂ fk

∂Rk
dck =

∂

∂Rk
·
∫

Φκck fkdck =
∂

∂Rk
·
(

nk

〈

Φκck

〉

)

, (A.8b)

∫

Φκ
Fk

mk
· ∂ fk

∂ck
dck =

∫

Fk

mk
·
[∂(Φκ fk)

∂ck
− fk

∂Φκ

∂ck

]

dck =− Fk

mk
·
(

nk〈
∂Φκ

∂ck

〉

)

, (A.8c)

∫

Φk
∂ fk

∂rk

drk

dt
dck =

rk0−rk

σ2

drk

dt

∫

Φk fkdck =
rk0−rk

σ2

drk

dt

(

nk〈Φk〉
)

, (A.8d)

where nk is the cavity or liquid molecule number in a unit volume. Eq. (A.8d) can be
obtained in the following Eqs. (A.9) to (A.11).

The transportation equations of cavity- and liquid-phase macro variables can be ex-
pressed as following.

The distribution function fk is given in the following form:

fk(R,c,θ,r,t)=K(R,c,θ,t)
( 1

2πσ2

)

1
2

exp
(

− (rk−rk0)
2

2σ2

)

, (A.9)
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where rk0 is the initial value of rk.
With a series of deduction, macro-variables’ (statistical averaged variables) trans-

portation equation can be finally written as follows:

∂

∂t

(

nk〈Φ〉
)

+
∂

∂xki

(

nk〈Φcki〉
)

− 1

mk
Fki

∂

∂cki

(

nk〈Φ〉
)

+
rk0−rk

σ2

drk

dt

(

nk〈Φk〉
)

=
∫

Φ
[(∂ fk

∂t

)

kc
+
(∂ fk

∂t

)

k′ c

]

d3ckj. (A.10)

Rayleigh gave the solution of the spherical micro cavity based on the Rayleigh equa-
tion in cavity dynamics (Brennen [20]), and Plesset obtained the modified solution, which
is

drk

dt
=±

√

2|p−pv |
3ρl

, (A.11)

where pv is the vapor pressure of liquid.

A.3 Continuous equations of cavity- and liquid-phase’s macro-variables

Assuming that collision causes no mass transportation between and inside the phases,
and let Φk =mk in transportation equation, the k-phase continuous equation can be ob-
tained as:

∂αkρk

∂t
+

∂

∂xj
(αkρkukj)=Sk, (A.12)

where Sk is the mass transportation caused by the variation of the cavity diameter

Sk =− rk0−rk

σ2

drk

dt
(nkmk)=− rk0−rk

σ2

drk

dt
(αkρk). (A.13)

Introducing the cavity mass fraction fca and its relation with volume fraction α is

αca= fca
ρ

ρv
, (A.14)

where ρca is the vapor density, and ρ=αcaρca+αlρl and the mass transfer expression is as
follows:

Sk =(n4π)
1
3 (3αk)

2
3

ρcaρl

ρ

[2

3

( pv−p

ρl

)]

1
2

, (A.15)

where n is the cavity number if a unit volume and is determined by the initial conditions
of cavity. For example, the initial cavity phase mass fraction fca =1−77mg/m3 and r0 =
3−10µm and then can get n, the cavity number in one unit volume.
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A.4 Momentum equations of cavity- and liquid-phase’s macro-variables

When Φ = mkcki in the transportation equation, k-phase’s momentum equation can be
obtained. Since ρk〈ckickj〉= ρk〈(uki+c

′
ki)(ukj+c

′
kj)〉= ρkukiukj+Tkij, Fki = mkgki, we can

obtain,

∂

∂t

(

ρk〈ckj〉
)

+
∂

∂xki

(

ρk〈ckickj〉
)

−nkFki
∂

∂cki
〈ckj〉=

∫

mkckj

[(∂ fk

∂t

)

kc
+
(∂ fk

∂t

)

k′ c

]

d3ckj, (A.16)

where Fki is the k-phase mass force. The k-phase stress tensor is

Tkij = 〈c′
kic

′
kj〉=

∫

(cki−uki)(ckj−ukj) fkd3ckj = pkδij−τkij. (A.17)

In above equation, the k-phase’s partial pressure is pk = (Tk11Tk22+Tk33)/3; and τkij is
viscosity stress tensor.

Given that collision inside the phases experiences no energy losses and obeys the
conversation law, the first collision term on the equation’s right side in Eq. (A.16) equals
zero. The second term describes the collision between cavity phase and liquid phase, that
is, the interaction force between phases. The formula to expreee the interaction force can
be given as:

F=
∫

mkckj

(∂ fk

∂t

)

k′c
d3ckj =

ρk

τrca
(ucaj−ulj), (A.18)

where

τrca =
d2

caρca

18µl

(

1+
Re

2
3
ca

6

)

−1

, Reca= |uca−ul|
dca

νl
, (A.19)

where dca is diameter of cavity in liquid, which is determined by the cavity phase volume
fraction and the initiate number n in one fraction volume of the phase.

Let αl and αca be the volume fractions of the liquid and cavity phases respectively,
and αca+αl =1. The governing equations (continuity and the momentum equations) for
the liquid-phase are

∂αlρl

∂t
+

∂

∂xj
(αlρlulj)=Sl, (A.20a)

∂(αlρluli)

∂t
+

∂

∂xj
(αlρluliulj)=αlρl gli−

∂(αl p)

∂xi
+αl

∂τlij

∂xj

+
αlρl

τrca

(

ucai−uli

)

+uliSl, (A.20b)

where u is the mean velocity in the liquid phase or cavity phase from a macroscopic view.
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Appendix B: The k−ε−kca turbulence model of liquid-cavity two-

phase flows

The basic equations of two phase turbulent flows have been developed by Ishii [21], and
further developed on the area of gas particle two phase flows by Zhou [22]. The k−ε−
kca turbulence model is proposed in this particular cavity-liquid two phase flow in the
present simulation. This model is similar to the turbulence model in liquid particle flow
proposed by Wu [23].

The k−ε−kca turbulence model of two-phase flows has the isotropic characteristics
and may be applied at the conditions of small circulation flows and the flows with small
buoyancy forces. This model is actually the combination between the standard k−ε tur-
bulence model for liquid phase and the kca turbulence model for cavity phase, in which
the Boussinesq expressions are used to indicate the second order correlation terms in
transporting equations.

The turbulence model for liquid phase in the k−ε−kca turbulence model can be ob-
tained from the basic equation of two-phase turbulent flow equations reported from ref-
erences [21–23]. By using the Boussinesq expressions, the following correlation terms can
be simplified in the following equations:

−u′
iu′

j =νT

(∂uj

∂xi
+

∂ui

∂xj

)

+
2

3
kδij, −ρu′

ku′
iu′

j=
µe

σk
· ∂k

∂xk
,

Dε,ij=
∂

∂xk

(µe

σε
· ∂ε

∂xk

)

, −n′
cau′

cai =
νca

σpa
· ∂nca

∂xi
,

−n′
cau′

caj=
νca

σca
· ∂nca

∂xj
, −n′

cau′
cak =

νca

σca
· ∂nca

∂xk
,

where σk =1.0 and σca =1.5.
The continuity equations and the momentum equations of liquid phase then can be

deduced in this turbulence model:

∂ρ

∂t
+

∂

∂xj
(ρuj)=S=−∑ncaṁca, (B.1a)

∂

∂t
(ρui)+

∂

∂xj
(ρujui)=− ∂P

∂xi
+

∂

∂xj

[

µe

(∂ui

∂xj
+

∂uj

∂xi

)]

+∑
ncamca

τrca
(ucai−ui)

+∑
mca

τrca

( νca

σca
· ∂nca

∂xi

)

. (B.1b)

And the turbulent kinetic energy k equation and the turbulent energy dissipation rate ε
equation for liquid phase are as follows:

∂

∂t
(ρk)+

∂

∂xj
(ρujk)=

∂

∂xj

(µe

σk
· ∂k

∂xj

)

+Gk+Gp+GR−ρε, (B.2a)
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∂

∂t
(ρε)+

∂

∂xj
(ρujε)=

∂

∂xj

(µe

σε
· ∂ε

∂xj

)

+
ε

k

[

CεI(Gk+Gp)−Cε2ρε
]

, (B.2b)

where

µe =µ+µT , µT =Cµρk2/ε,

Gk =µT

(∂ui

∂xj
+

∂uj

∂xi

)∂ui

∂xj
, Gca=−∑

ncamca

τrca

[

2(k−Ck
ca

√

kkca)
]

,

where Cµ=0.09, σk =1.0, σca=1.3, Cε1=1.44 and Cε2=1.9.
By using the Boussinesq expressions, the following correlation terms of cavity phase

can be simplified in the following equations:

−u′
caiu′

caj =vca

(∂ucai

∂xj
+

∂ucaj

∂xi

)

, −u′
caku′

cai=vca

(∂ucak

∂xi
+

∂ucai

∂xk

)

,

−n′
cau′

cai=
vca

σca
· ∂nca

∂xi
, −n′

cau′
caj=

vca

σca
· ∂nca

∂xj
,

−n′
cau′

ck =
vca

σca
· ∂nca

∂xk
, −u′

caku′
caiu′

caj =
vca

σca
· ∂kca

∂xk
,

where σca=1.5 and Ck
ca=0.11.

The continuity equations and the momentum equations of cavity phase then can be
deduced in this turbulence model:

∂nca

∂t
+

∂

∂xj
(ncaucaj)=

∂

∂xj

(vca

σca
· ∂nca

∂xj

)

, (B.3a)

∂

∂t
(ncaucai)+

∂

∂xj
(ncaucajucai)=

∂

∂xj

[

ncavca

(∂ucai

∂xj
+

∂ucaj

∂xi

)]

+
mca+ṁcaτrca

mcaτrca
nca(ui−ucai)

+
∂

∂xj

(

ucj
vca

σca
· ∂nca

∂xi
+ucai

vca

σca
· ∂nca

∂xj

)

−mca+ṁcaτrca

mcaτrcca
· vca

σca
· ∂nca

∂xi
+

∂

∂t

(vca

σca
· ∂nca

∂xi

)

. (B.3b)

And the turbulent kinetic energy kca transporting equation and for cavity phase is as
follows:

∂

∂t
(ncakca)+

∂

∂xj
(ncaucajkca)=

∂

∂xj

(

nca
vca

σca
· ∂kca

∂xj

)

+Gkca+Gpca−ncaεca, (B.4)

where

Gkca=ncavca

(∂ucaj

∂xj
+

∂ucai

∂xj

)∂ucai

∂xj
, Gpca=

vca

σca

(∂nca

∂xi
· ∂ucai

∂xj

)

,

εca =−mca+ṁcaτrca

mcaτrca

[

2(Ck
ca

√

kkca−kca)+
ui

nca
· vca

σca
· ∂nca

∂xi

]

,
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where σca =1.5 and Ck
ca=0.11.

Eqs. (B.1) to (B.4) form the isotropic k−ε−kca turbulence model of two-phase flows
by expression in the form of cavity number instead of the form of cavity phase volume
fraction. This model is similar to the equations of two fluid flow model for the silt laden
flow by Tang and Wu [18] and Wu [23].

From Eqs. (B.1a), (B.1b), (B.3a) and (B.3b) can form the basic equations of the mixed
flow model for the liquid cavity flow [19]. The mixed flow model for the liquid cavity
flow has been used for the cavitating flow computation now [12] and [24], in which there
is the mass transfer term to be considered. And in two fluid model both the momen-
tum transfer term and the mass transfer term are considered. For example, the widely
used software of CFD, Fluent and CFX have adopted the mixed model to calculate the
cavitating flows in Engineering application.

The advantage using the cavity number instead of the cavity phase volume fraction
is explained as follows.

In two-phase flow, the calculation of the density can be expressed as

ρm =ρl+ρca =ρl+ncamca=ρl+ ρ̄canca
πd3

ca

6
, (B.5)

where ρm is the density of mixture, ρl is the fluid bulk density, ρca is the cavity bulk
density, ρ̄ca is the cavity material density, and nca is the cavity number in the unit volume.

The volume fractions of the fluid phase Cl and the cavity phase Cca are defined as:

Cca=
ρca

ρ̄ca
, (B.6a)

Cl =
ρl

ρ̄l
=1−Cca=1− ρca

ρ̄ca
. (B.6b)

From the relations between deferent density determinations of multiphase flows, the
forgoing governing equations (B.3a)-(B.4) can be also transformed into the equation ex-
pressed in the volume fraction, like in most application of the equations in the mixed
model.

Although, some researchers through their experiments observed that the cavity clouds
had a concentrated vorticity region at the clouds center and contained clusters of many
small cavitation bubbles (many cavities). This phenomenon prediction would be beyond
the ability of the present CFD cavitating simulations of the mixture model based on the
homogeneous flow treatment [25]. In the mixture model, it is assumed that the cavity
number in the unit volume of mixture is not changed in the cavity phase transfer, and
the cavity volume change is caused only by the cavity diameter variation from the solu-
tion of the Rayleigh-Plesset equation. The foregoing Eqs. (B.3a)-(B.4) have the possibility
to predict the variations both of cavity diameter and cavity number in a unit volume.
Therefore, the model developed in present study can predict the cavitation clouds.
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Nomenclature

c velocity of molecules of the liquid phase or cavity phase
c′ relative velocity of molecules to the mean macroscopic velocity
d cavity diameter
E, k constants
Fk mass force of the k phase fluid
f velocity distribution function
g gravity acceleration
k turbulent kinetic energy
m the cavity mass or liquid mass
N micro molecule number
n bubble or micro molecules’ number density, normal
p pressure
S mass transfer term
Re Reynolds number
R geometrical space
Rk vector radius of micro cavity
r radius space of molecules
t time
u mean velocity in the liquid phase or cavity phase
uj velocity component
u, v, w velocity components along X, Y, Z in sump
X, Y, Z ordinates in sump
xj Cartesian ordinate
α volume fraction (VF)
ε turbulent kinetic energy dispassion rate
µ viscosity
ν kinetic viscosity
ρ density
τ stress
θ temperature
Φ a physical variable
σ standards difference
〈〉 statistical mean value
ca cavity phase
l liquid phase
p point near wall
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