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(Dpto. de Matemática, Facultad de Ciencias (FACYT), Universidad de Carabobo, Valencia,

Venezuela)

Marcos Raydan
(Dpto. de Computación, Universidad Central de Venezuela, Ap. 47002, Caracas 1041-A, Venezuela)

Abstract

The spectral gradient method has proved to be effective for solving large-scale uncon-
strained optimization problems. It has been recently extended and combined with the
projected gradient method for solving optimization problems on convex sets. This combi-
nation includes the use of nonmonotone line search techniques to preserve the fast local
convergence. In this work we further extend the spectral choice of steplength to accept pre-
conditioned directions when a good preconditioner is available. We present an algorithm
that combines the spectral projected gradient method with preconditioning strategies to
increase the local speed of convergence while keeping the global properties. We discuss
implementation details for solving large-scale problems.
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1. Introduction

We consider the optimization problem

minimize {f(x) : x ∈ Ω},

where Ω is a nonempty closed and convex set in <n, n is large, f is continuously differentiable,
g(x) = ∇f(x) is available, and G(x) ≈ ∇2f(x) is also available and will be considered as a
preconditioner. Our main objective is to develop a preconditioned and projected extension of
the spectral gradient method to solve this problem.

Spectral gradient methods are nonmonotone schemes that have recently received consider-
able attention in the numerical analysis and optimization literature. They were introduced by
Barzilai and Borwein [1], the convergence for quadratics was established by Raydan [17], and
more recently, a proof of the R-linear rate of convergence for convex quadratics was given by
Dai and Liao [10]. A complete review is presented by Fletcher [11], and the asymptotic behavior
is studied by Dai and Fletcher [9].

The spectral gradient methods have been applied succesfully to find local minimizers of
large scale problems ([4, 5, 7, 8, 12, 18, 20]), to solve box-constrained quadratic optimization
(Bielschowsky et al. [2]), and also to minimize general smooth functions on convex sets [6].
Preconditioned spectral gradient versions have also been developed ([16, 13, 15]). However, the
combination of preconditioning techniques to accelerate the process and projected techniques
on convex sets, for robustness and regularity, has not been studied.
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The paper is divided into sections as follows. In Section 2 we describe briefly the precondi-
tioned spectral gradient method, and we recall some of the important aspects of the spectral
projected gradient method on convex sets. In Section 3 we present the new algorithm that
combines both ideas taking into account the difficult cases. In Section 4 we present preliminary
and encouraging numerical results, and some final remarks.

2. Previous Extensions

We describe briefly the most important properties of the preconditioned spectral gradient
method and the spectral projected gradient method on convex sets.

2.1 Preconditioned spectral gradient method

The iterates of the Preconditioned Spectral Gradient (PSG) method presented by Glunt,
Hayden, and Raydan [13] are defined by

xk+1 = xk − α−1

k zk ,

where zk = G−1

k gk, Gk is a nonsingular approximation to the Hessian of f at xk and the scalar
αk is given by

αk = (−αk−1)
zt

k−1
yk−1

zt
k−1

gk−1

,

where x0 and α0 are given initial data (see also [16]).
The PSG method requires no line search during the process but does not guarantee mono-

tonic descent in the objective function. As a consequence, Raydan [18] proposed a globalization
scheme for the spectral gradient algorithm that fits nicely with the nonmonotone behavior of
this family of methods. Roughly speaking, the algorithm forces the step to satisfy this weak
condition:

f(xk+1) ≤ max
0≤j≤M

f(xk−j) + γgt
k(xk+1 − xk) ,

where M is a nonnegative integer and γ is a small positive number. When M > 0 this con-
dition allows the objective function to increase at some iterations and still guarantees global
convergence. This globalization strategy is based on the nonmonotone line search technique of
Grippo, Lampariello and Lucidi [14].

A direct combination of the PSG method and the nonmonotone globalization strategy de-
scribed above produces an algorithm fully described in Luengo et. al. [15].

2.2 Spectral projected gradient method

There have been many different variations of the projected gradient method that can be
viewed as the constrained extensions of the optimal gradient method for unconstrained min-
imization. They all have the common property of maintaining feasibility of the iterates by
frequently projecting trial steps on the feasible convex set. In particular, Birgin et al. [6, 3]
combine the projected gradient method with recently developed ingredients in optimization, as
follows. The algorithm starts with x0 ∈ <

n and is based on the spectral projected gradient

direction dk = P (xk − αkg(xk))− xk, where αk is the spectral choice of steplength 〈sk−1,sk−1〉
〈sk−1,yk−1〉

,

and for z ∈ <n, P (z) is the projection on Ω. In the case of rejection of the first trial point,
xk + dk, the next ones are computed along the same direction, i.e., x+ = xk + λdk, using a
nonmonotone line search to force the following condition

f(x+) ≤ max
0≤j≤ min {k,M−1}

f(xk−j) + γλ〈dk, g(xk)〉,

where M ≥ 1 is a given integer. As a consequence, the projection operation must be performed
only once per iteration. More details can be found in [6] and [3].
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3. New Algorithm

We combine both versions, preconditioned and projected, to obtain a new algorithm. How-
ever, the combination cannot be obtained by simply connecting both ideas. The most important
difficulty is that the preconditioned direction, even if it is a descent direction, might not be a
descent direction after being projected on Ω. Therefore, additional controls need to be included
to produce a robust and well-defined algorithm. In the rest of this document the notation ‖z‖
represents the Euclidean norm of the vector z.

PSPG: Preconditioned Spectral Projected Gradient Algorithm
Given x0 ∈ Ω , M > 0, α0 ∈ [ε, 1/ε], γ ∈ (0, 1), 0 < σ1 < σ2 < 1, a small tolerance tol > 0 for
the stopping criterion and a tolerance tolpre for activating the preconditioner; 0 < ε < 1 and
0 < c < 1.

Set k ← 0,d̂0 = P (x0 − α0g(x0))− x0 and precond=off

while (‖d̂k‖ > tol)

if (‖d̂k‖ ≤ tolpre) then (precond=on)

end if

if (precond=on) choose Gk and

solve Gkdk = gk for dk,

else dk = gk

end if

set dk = P (xk − αkdk)− xk,

if (precond=on) and (dt
kgk > −ε max(‖dk‖ ‖d̂k‖, ‖dk‖

2, ‖gk‖
2)), then

precond=off, tolpre = tolpre ∗ c and dk = d̂k

end if

set λ← 1 and set x+ = xk + dk

while (f(x+) > max0≤j≤min{k,m−1}{f(xk−j)}+ γλ〈dk , g(xk)〉)
choose σ ∈ [σ1, σ2], set λ = σλ and set x+ = xk + λdk

endwhile

set xk+1 ← x+, set sk = xk+1 − xk, set λk = λ,

set yk = g(xk+1)− g(xk) and set bk = 〈dk , yk〉.

If (bk ≤ ε) then set αk+1 = 1

ε

else, set ak = st
kgk and set αk+1 = min{ 1

ε
, max{ε, ak

bk

}}.
end if

set k ← k + 1 and d̂k = P (xk − αkgk)− xk

endwhile

set x∗ ← xk.

Remarks.

1) Notice that if Ω = <n then the PSPG algorithm reduces to the PSG algorithm in [6]; and if
Gk = I for all k then it reduces to the SPG method described in [15].
2) The preconditioner should be activated when the iterations are “close” to a solution ([15]).
In general, depending on the specific application, this information is supplied by the user. In
the PSPG algorithm we use a default criterion, i.e., ‖d̂k‖ ≤ tolpre, where tolpre is given by the
user. Notice that we do not impose any conditions on the matrix Gk.
3) In order to save computations involved by invoking the preconditioner too early and often,
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we suggest that when the preconditioner is turned off by the above criterion, then the strictness
of the local test be increased, for example by lowering the parameter tolpre by the factor c, as
indicated in the algorithm.
4) If the search direction dk does not satisfy the sufficient decrease condition

dt
kgk ≤ −ε max(‖dk‖ ‖d̂k‖, ‖dk‖

2, ‖gk‖
2), (1)

then we use d̂k as a search direction, that is also used for the stopping criterion, and so this
choice does not represent an additional computational cost.
Theorem 3.1. Assume that Ω0 = {x ∈ Ω : f(x) ≤ f(x0)} is a bounded set. Then Algorithm

PSPG is well defined, and either d̂j = 0 for some finite j or any accumulation point of the

sequence {xk} that it generates is a constrained stationary point.

Proof. In Algorithm PSPG the search direction is either dk = P (xk − αkG−1

k gk) − xk or

d̂k = P (xk−αkgk)−xk . When the preconditioner is activated we try dk, but if it does not satisfy

the sufficient decrease condition (1), then we use d̂k. If the preconditioner is not activated we

also use d̂k. Since we force αk ∈ [ε, 1/ε] for all k, then by Lemma 2.1 in [6], when using d̂k the
sufficient decrease condition (1) is satisfied. Therefore, for all k the search direction satisfies
(1), and the nonmonotone line search procedure terminates in a finite number of trials, which
implies that the algorithm is well defined.

Now, we make use of the first part of the proof of the convergence theorem in [14, p. 709].
Let us define m(k) = min(k, M). Clearly, m(0) = 0 and

0 ≤ m(k) ≤ min(m(k − 1) + 1, M) for k ≥ 1 .

Using the fact that all search directions dk satisfies (1),then we can obtain positive numbers c1

and c2 such that they satisfy gt
kdk ≤ −c1‖gk‖

2, and ‖dk‖ ≤ c2‖gk‖ for all k. In fact, from (1)
we have dt

kgk ≤ −ε‖gk‖
2 for all k, and c1 = ε. Once again using (1) we obtain dt

kgk ≤ −ε‖dk‖
2,

and by the Cauchy-Schwarz inequality it follows that

ε ‖dk‖
2 ≤ |dt

kgk| ≤ ‖dk‖ ‖gk‖,

which implies that

‖dk‖ ≤
1

ε
‖gk‖,

and hence c2 = 1/ε. Finally, in our algorithm the trial steps are all constant (a = 1). Therefore,
repeating the same arguments in [14, p. 710-711] we obtain:

lim
k→∞

λk(gt
kdk) = 0. (2)

Let x̄ ∈ Ω be an accumulation point of {xk}, relabel {xk} a subsequence converging to

x̄, and {λk}, {dk}, and {d̂k} the corresponding subsequences generated in the algorithm. We
consider two cases:

Case 1. Assume that inf λk = 0. Suppose, by contradiction, that x̄ is not a constrained
stationary point. Hence, by continuity and compactness, there exists δ > 0 such that

‖P (x̄− αg(x̄))− x̄‖ >
δ

ε
> 0 for all α ∈ [ε,

1

ε
].

Since the condition (1) is satisfied by all iterates of algorithm PSPG, then

〈g(xk),
dk

‖dk‖
〉 < −ε‖d̂k‖ < −

δ

2
for all α ∈ [ε,

1

ε
], (3)

and k large enough on the subsequence that converges to x̄.
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Since inf λk = 0, there exists a subsequence {xk}K such that

lim
k∈K

λk = 0.

In that case, from the way λk is chosen in the nonmonotone line search, there exists an index
k̄ sufficiently large such that for all k ≥ k̄, k ∈ K, there exists ρk, 0 < σ1 ≤ ρk ≤ σ2, for which
λk/ρk > 0 fails to satisfy the nonmonotone line search condition, i.e.,

f(xk +
λk

ρk

dk) > max
0≤j≤M−1

f(xk−j) + γ
λk

ρk

〈g(xk), dk〉 ≥ f(xk) + γ
λk

ρk

〈g(xk), dk〉.

Hence,
f(xk + λk

ρk

dk)− f(xk)

λk/ρk

> γ〈g(xk), dk〉.

By the mean value theorem, this relation can be written as

〈g(xk + tkdk), dk〉 > γ〈g(xk), dk〉, for all k ∈ K, k ≥ k̄, (4)

where tk is a scalar in the interval [0, λk/ρk] that goes to zero as k ∈ K goes to infinity.
Taking a convenient subsequence such that dk/‖dk‖ is convergent to d, and taking limits

in (4) we deduce that (1− γ)〈g(x̄), d〉 ≥ 0. (In fact, observe that {‖dk‖}K is bounded and so
tk‖dk‖ → 0.) Since (1− γ) > 0 and 〈g(xk), dk〉 < 0 for all k, then 〈g(x̄), d〉 = 0.
By continuity and the definition of dk this implies that for k large enough on that subsequence
we have that

〈g(xk),
dk

‖dk‖
〉 > −δ/2,

which contradicts (3).
Case 2. Assume that inf λk ≥ ρ > 0. Hence, by (2) we obtain

lim
k→∞

gt
kdk = 0,

which implies, using (1), that limk→∞ gk = 0. Therefore, g(x̄) = 0, and

‖P (x̄− αg(x̄))− x̄‖ = 0 for all α ∈ [ε,
1

ε
],

which implies that x̄ is a constrained stationary point.

4. Numerical Experiments

We compare the Spectral Projected Gradient Method (SPG) and the Preconditioned Spec-
tral Projected Gradient Method (PSPG) on 8 standard test problems that can be found in the
literature. A description of the functions and the starting points can be found in [18] and ref-
erences therein. All the experiments were run on a PC Pentium III, 800 MHz and 256 Mbytes
RAM, Fortran 77 (double precision), we used γ = 10−4, M = 10, σ1 = 0.1, σ2 = 0.6, ε = 10−20,

α0 = 1/‖g0‖ and we stop when ‖d̂k‖ ≤ 10−6. For the PSPG we used the tridiagonal part of
the Hessian as a preconditioner. In this case, solving the preconditioned linear system requires
O(n) flops and the storage for the matrix Gk is only 2 n-dimensional vectors. The precondi-
tioner is activated (“local test”) whenever ‖PΩ(xk − αkgk) − xk‖ ≤ tolpre, where tolpre is a
tolerance factor. If the preconditioning strategy is deactivated (precond = off), then we set
tolpre = tolpre ∗ 10−1. In our particular experiments, Ω is a box, i.e.,

Ω = {x : l ≤ x ≤ u}
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where the vectors l and u are given and they can have infinite values in some of the positions.
Table 1 lists the 8 functions and the structure of their Hessians. However, due to space restric-
tions, we only report three cases from this table. We report the best case, the worst case, and
an average case that we observed in our experiments. In all the experiments we verified that
the two methods converged to the same point. We report in tables 2,3, and 4 the numerical
results for the three functions. In particular, we report the dimension of the problem (n), the
tolerance factor for the “local test” (tolpre), the number of times that the preconditioner was
activated (Precond(t)) where t is the iteration at which it was activated for the last time, the
number of iterations required for convergence (iter), the number of function evaluations (F) the
number of gradient evaluations (G), the vectors (l) and (u), the required CPU time in seconds
(Time), and whether the unconstrained solution x∗ is in Ω or not.

We observe that the global PSPG method is a robust method to find local minimizers
of nonquadratic functions subject to bound constraints. It outperforms the SPG method in
number of iterations and computational work.

For the Strictly Convex 2 function the preconditioning matrix is the exact Hessian (diagonal)
and so the global PSPG method shows superlinear convergence in the last few iterations. This
fact explains the excellent behavior of the PSPG for that particular test problem. For the
Penalty 1 function, that is not convex, is highly nonlinear, and the exact Hessian is dense, the
tridiagonal part of the Hessian is not a very accurate preconditioner. As a consequence, we
observe the worst behavior of the PSPG method when compared with the SPG method on
the 8 standard test problems. Even in that case, the PSPG method is competitive in number
of iterations and computational work. Finally, for the Extended Powell Singular function we
oberved what we have called the average behavior. In that case, the PSPG method converges
in fewer number of iterations and less computational work than the SPG method. Indeed, in
the average, when the solution is in Ω the PSPG method is approximately six time faster than
the SPG method, and when the solution is not in Ω, it is approximately twice as fast as the
SPG method.

In general, we observe that it is important to activate the preconditioner at the right iteration
by using correctly the parameter tolpre, which plays an important role during the convergence
process. Of course, in order to establish definite conclusions it is necessary to run experiments
on real and larger problems, using more realistic preconditioners. These are all interesting
topics that deserve further investigation in the near future.

In summary, our preliminary numerical results indicate that the PSPG method combines in
a suitable way the preconditioning technique and the projected scheme to produce a promising
idea that accelerates the convergence while adding robustness and regularity to the process, in
the sense of [19].

Table 1: Standard test functions.

Function Name Hessian

1 Brown Almost Linear dense
2 Broyden Tridiagonal tridiagonal
3 Oren’s Power dense
4 Penalty 1 dense
5 Extended Powell Singular pentadiagonal
6 Extended Rosenbrock tridiagonal
7 Variably Dimensioned dense
8 Strictly Convex 2 diagonal
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Table 2: PSPG with and without preconditioning for Strictly Convex 2 (x∗ = 0) for different values
of n and different values of l and u.

n tolpre Precond(t) iter F G l u Time x∗ ∈ Ω
100 1.0d-20 off 83 99 84 -10 10 0.23 yes
100 1.0d+10 1(1) 7 8 8 -10 10 0.01 yes
500 1.0d-20 off 214 286 215 −∞ 0.5 0.93 yes
500 1.0d+10 1(1) 6 7 7 −∞ 0.5 0.01 yes
1000 1.0d-20 off 366 549 367 −∞ 0.5 2.12 yes
1000 1.0d+10 1(1) 6 7 7 −∞ 0.5 0.02 yes
100 1.0d-20 off 78 82 79 -40 10(u1 = −3,un = 6) 0.17 no
100 1.0d+10 1(1) 7 8 8 -40 10(u1 = −3,un = 6) 0.02 no
1000 1.0d-20 off 347 475 348 -40 10(u1 = −3,un = 6) 1.92 no
1000 1.0d+10 1(1) 7 8 8 -40 10(u1 = −3,un = 6) 0.06 no
10000 1.0d-20 off 1466 2253 1467 -40 10(u1 = −3,un = 6) 57.07 no
10000 1.0d+10 1(1) 7 8 8 -40 10(u1 = −3,un = 6) 0.21 no

Table 3: PSPG with and without preconditioning for Penalty 1 (x∗ ≈ 0.02) for different values of n

and different values of l and u.

n tolpre Precond(t) iter F G l u Time x∗ ∈ Ω
100 1.0d-20 off 154 398 155 -10 10 0.33 yes
100 1.0d-2 4(65) 78 133 79 -10 10 0.19 yes
500 1.0d-20 off 50 69 51 -10 10 0.20 yes
500 1.0d-3 3(51) 56 86 57 -10 10 0.25 yes
100 1.0d-20 off 75 373 76 -10(l1 = 5) 10 0.20 no
100 1.0d-2 1(26) 39 41 40 -10(l1 = 5) 10 0.13 no
100 1.0d-20 off 69 71 70 -100(l1 = 5) 100(un = 10) 0.08 no
100 1.0d-3 2(56) 58 114 59 -100(l1 = 5) 100(un = 10) 0.11 no
1000 1.0d-20 off 43 93 44 -10(l1 = 5) 10 0.23 no
1000 1.0d-4 1(36) 40 42 41 -10(l1 = 5) 10 0.18 no
10000 1.0d-20 off 83 85 84 -100(l1 = 5) 100(un = 10) 1.7 no
10000 1.0d-5 1(55) 77 127 78 -100(l1 = 5) 100(un = 10) 2.37 no

Table 4: PSPG with and without preconditioning for Extended Powell Singular (−0.5 < x
∗

i < 0.5 for
all i) for different values of n and different values of l and u.

n tolpre Precond(t) iter F G l u Time x∗ ∈ Ω
100 1.0d-20 off 336 566 337 -1(l1 = −10) 1000(u1 = 30) 0.14 yes
100 1.0d-1 1(31) 46 49 47 -1(l1 = −10) 1000(u1 = 30) 0.02 yes
1000 1.0d-20 off 322 581 323 -1(l1 = −10) 1000(u1 = 30) 0.95 yes
1000 1.0d-1 1(31) 46 49 47 -1(l1 = −10) 1000(u1 = 30) 0.12 yes
10000 1.0d-20 off 206 356 207 -1(l1 = −10) 1000(u1 = 30) 6.83 yes
10000 1.0d-1 1(31) 46 49 47 -1(l1 = −10) 1000(u1 = 30) 1.46 yes
100 1.0d-20 off 274 337 275 −∞ 0 0.09 no
100 1.0d-3 1(143) 157 222 158 −∞ 0 0.07 no
1000 1.0d-20 off 269 335 270 −∞ 0 0.66 no
1000 1.0d-3 1(142) 157 223 158 −∞ 0 0.41 no
10000 1.0d-20 off 269 335 270 −∞ 0 7.33 no
10000 1.0d-3 1(142) 157 222 158 −∞ 0 4.52 no
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