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Abstract

In transport theory, the convergence of the inner iteration scheme to the spherical
neutron transport equation has been an open problem. In this paper, the inner iteration
for a positive step function scheme is considered and its convergence in spherical geometry
is proved.
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1. Introduction

In 1968, Carlson and Lathrop [1, p. 261] pointed out, there were some unsolved problems in
neutron transport theory. One of them is the convergence of inner and outer iteration process.
Perhaps investigations of these problems lead to procedures for accelerating convergence. Since
then considerable progress has been made in convergence of inner iterations in slab geometry.
For example, Menon and Sahni [2] estimated the spectral radius of the iteration matrix and
proved the convergence theorem under the assumption of “non-regenerative” in slab geometry.
Nelson [3] proved that the similar conclusion under the hypothesis of “weak non-multiplying”.
Recently Yuan et al[4] proved the convergence under a weaker condition on known data and
more general boundary conditions.

Due to the appearance of the angular derivative in curvilinear geometry, the formalism of
such inner iterations scheme are more complex and there is not any known convergent result by
now. In this paper, we will establish the convergence of inner iterations to the spherical neutron
transport equation. The means employed here is the Perron-Frobenius theory for non-negative
matrix, but the argument method of Nelson’s proof [3] is improved, just like that in [4] so as
to handle complicated process. Although the result is concluded for a positive step scheme, it
can be extended to some other positive schemes.

Consider the following neutron transport equation

µ
∂ψ

∂r
+

1 − µ2

r

∂ψ

∂µ
+ σ(r)ψ =

1

2
c(r)

∫ 1

−1

ψ(r, µ′)dµ′ + f(r), (1)

where r ∈ [0, R], µ ∈ [−1, 1], ψ is angular flux with subject to vacuum boundary condition

ψ(R, µ) = 0, µ < 0. (2)

Here σ(r) ≥ c(r) ≥ 0 are the total and the scattering cross section respectively, f(r) is the
non-negative external source.
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Eq.(1) is usually expressed the following conservative form too,
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∫ 1

−1

ψ(r, µ′)dµ′ + f(r). (1′)

Consider a spatial and angular net with mesh points 0 = r 1
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] for

k = 1, 2, · · · ,K. Suppose that in the interior of each Ck, σ(r) and c(r) are constants σk and ck
respectively, then the standard inner iteration schemes are as follows [5, pp. 230 or 9, pp. 141]:
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Boundary conditions are
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The symmetry conditions at the center of the sphere are
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In order to complete the differencing procedure, we need two auxiliary relationships
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where 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, k = 1, · · · ,K;m = 1, · · · , N .
The starting direction equation (µ = −1) is given by
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k = 1, 2, · · · ,K.

The boundary condition for the starting equation (8) is
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It is useful to illustrate solving procedure. On the space-angle mesh beginning with ψ
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6, 7) until all of the angular fluxes for µm < 0 are obtained. Next we calculate the starting
fluxes at k = 1

2 for m > N/2 from Eq. (5), then we march outward (increasing k ) using Eqs.
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scalar flux ψ
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km , k = 1, 2, · · · ,K;m = 1, 2, · · · , N to update the scattering source S
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k for the

next iteration.
Formally, by letting n→ ∞ in (3) and (8) we get
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Remark 1. Eq. (11) is a discrete scheme for Eq. (1’) obtained by finite volume method,
although µk+ 1

2

, k = 1, · · · ,K − 1 are not given explicitly. Eq. (12) corresponds to (1’) in the

case of µ = −1. By now we still do not see the strict convergence proof of the scheme (11) to Eq.
(1) in literature, but some properties in similar scheme to slab geometrical neutron transport
equation [8] have been investigated. We guess the solution of (11) is convergent under some
conditions.
Remark 2. Eqs. (6) and (7) describe approximate relations among boundary fluxes ψk± 1

2
,m,

ψk,m±
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2

and scalar flux ψkm. For a = b = 1
2 , schemes (3)-(10) are the so-called diamond

difference ones. The diamond method is more accurate than that choosing other parameters a
and b, but cannot guarantee positive solutions to (3) and (8). If a, b are chosen

a = 1, b = 1, µm > 0; (13)

a = 0, b = 1, µm < 0, (14)

the schemes are called step function ones, which are non-negative.
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Ψ1 denotes the fluxes in starting direction (µ = −1) and Ψ2 describes the rest ones. Hi,j

and Si,j are block matrix elements, and detailed form can be deduced by Eqs. (3) (17) (18).
We want to point out that even if not concrete structure of such matrixes, there exists H−1,
because all fluxes can be explicitly obtained from the above solving procedure.

The purpose of this paper is to prove that the iterative solution of step function schemes
(3)–(10) convergent to that of discrete ordinate equations (11) and (12).
Theorem 1. Suppose that 0 ≤ ck ≤ σk , fk > 0, for k = 1, 2, · · · ,K, then the sequence Ψ(n)

defined by schemes (3)-(10) with step function relationships (13) and (14) converge as n→ ∞,
and the limit is independent of initial value Ψ(0).

2. Convergence of Inner Iterations Scheme

Before proving the Theorem 1, we state the following auxiliary lemmas:
Lemma 1 (See Theorem 2.7 in [6, pp. 46] or Corollary 5.2 in [7, pp. 37]). If
A ∈ Rn×n is real and non-negative matrix, then spectral radius ρ(A) is an eigenvalue of A,
and there exists a non-negative eigenvector of A associated with ρ(A).
Lemma 2 (see Theorem 1.4 in [6, pp. 13] or Theorem 1.1 in [7, pp. 113]). Consider
the stationary iterative method

ψ(n+1) = Aψ(n) + f , (15)

where A ∈ Rn×n, f ∈ Rn. Then the method (15) is convergent if and only if ρ(A) < 1.
Proof of Theorem 1.

For µm = −1, substituting (9) into (8), we have
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> 0, k = 1, 2, · · · ,K − 1, by the vacuum boundary condition (10).

Similarly, for µm < 0, substituting (6) and (7) into (3), we have
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For µm > 0,
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Under the given boundary and symmetry conditions (4)-(5), we can draw a conclusion

ψ
(n+1)
km ≥ 0. By (6) and (7) the iterative operation H−1S is non-negative one.

Suppose that the iterative process is not convergent. From Lemmas 1 and 2, the matrix
spectral radius ρ ≥ 1 is an eigenvalue of solution operator H−1S, and the eigenvector is non-
negative. Let λ = 1/ρ ≤ 1, then there is a non-negative vector ψkm, ψk+ 1
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satisfy the relations (4)-(10) with fk = 0.

Multiplying (19) by ωm, and summing over 1 ≤ m ≤ N and 1 ≤ k ≤ K, we have
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Here we have used the fact that µm are even Gaussian sets, ωm = ωN−m+1, µm = −µN−m+1

for m = 1, 2, · · · , N
2 and αN+ 1
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= 0. Considering the vacuum boundary conditions (4)

and symmetrical conditions (5) with respect to m = 1, 2, · · · , N/2, there is
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Since σk ≥ ck, there is
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From the step function relations (13), there are

ψK,m = 0, m = N/2 + 1, · · · , N.

By use of non-negative feature of (19), (6)-(10) and (13)(14), we can obtain

ψk,m = 0, k = 1, · · · ,K; m = 1, · · · , N
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2
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2
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} is an eigenvector.
The proof of the theorem is completed.
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