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Abstract. We propose a class of non-semisimple matrix loop algebras consisting of
3×3 block matrices, and form zero curvature equations from the presented loop alge-
bras to generate bi-integrable couplings. Applications are made for the AKNS soliton
hierarchy and Hamiltonian structures of the resulting integrable couplings are con-
structed by using the associated variational identities.
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1 Introduction

For a given integrable system, integrable couplings are non-trivial larger systems which
are still integrable and include the original integrable system as a sub-system. The con-
cept of integrable couplings was systematically introduced in 1996 (see [16] for details),
and since then it has been an attractive research topic of many publications (see, e.g., [7,8,
10,19,26–29,31,32]). A few methods of constructing integrable couplings have been devel-
oped, such as the perturbation method [8,15,16], enlarging spectral problems [10,11], and
constructing new matrix loop Lie algebras [5,30]. Recently, a new class of non-semisimple
matrix loop algebras was proposed in [21] for investigating nonlinear bi-integrable cou-
plings.

In this paper, we will introduce 10 new classes of Lie algebras of 3×3 block matrices
which can generate bi-integrable couplings.
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First, let us recall the problem of integrable couplings: for a given integrable system
of evolution equations:

ut=K(u), (1.1)

where u is in some manifold M and K is a suitable C∞ vector field on M, we look for
an enlarged non-trivial integrable system which includes the original system as a sub-
system. It is known that a change of the arrangement of equations in a system does not
lose integrability of the system, and therefore we study how to construct an enlarged
non-trivial system of evolution equations of the triangular form. Such a bi-integrable
coupling of the system (1.1) is defined as follows [21]:





ut=K(u),
u1,t=S1(u,u1),
u2,t=S2(u,u1,u2),

(1.2)

where u1 and u2 are new dependent variables, and S1 and S2 are vector fields depend-
ing on the indicated variables. We call this integrable system a nonlinear coupling if at
least one of S1(u,u1) and S2(u,u1,u2) is nonlinear with respect to the sub-vectors u1,u2 of
dependent variables.

In this paper, we will introduce new non-semisimple Lie algebras of 3×3 block ma-
trices in Section 2, and then in Section 3, we will describe a general scheme to construct
bi-integrable couplings associated with the newly presented Lie algebras. Section 4 is
devoted to applications to the AKNS hierarchy and mathematical structures that the re-
sulting bi-integrable couplings possess, such as infinitely many symmetries, infinitely
many conserved functionals, and bi-Hamiltonian structures.

2 Loop algebras of 3×3 block matrices

We seek for non-semisimple matrix Lie algebras, under which we can generate bi-
integrable couplings of an integrable system (1.1) by using the zero curvature equation.
First, we look for matrix algebras consisting of 3×3 block matrices of the form

M(A1,A2,A3)=




A1 A2 A3

0
3

∑
i=1

α1,iAi

3

∑
i=1

α2,iAi

0 0
3

∑
i=1

α3,iAi




,

where αi,j, 1≤ i, j ≤ 3 are constants to be determined. The reason why we choose these
triangular type block matrices is that Lax pair [6] matrices U and V of triangular types
will help generate bi-integrable couplings. Thus in the next step, we want to classify
classes of such matrices which form matrix Lie algebras under matrix commutator

[U,V] :=UV−VU. (2.1)
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As a result, we require that the Lie bracket

[M(A1,A2,A3),M(B1,B2,B3)]

of block matrices M(A1,A2,A3) and M(B1,B2,B3) must be of the form M(C1,C2,C3) for
certain square submatrices C1,C2,C3 of the same order as Ai and Bi, 1 ≤ i ≤ 3. It thus
follows that such square submatrices C1, C2 and C3 read





C1=[A1,B1],

C2=[A1,B2]+α1,1[A2,B1],

C3=[A1,B3]+α2,1[A2,B1]+α2,2[A2,B2]+α2,3[A2,B3]

+α3,1[A3,B1]+α3,2[A3,B2]+α3,3[A3,B3].

(2.2)

A direct Maple computation shows that there are many classes of non-semisimple Lie
algebras of such matrices. Here is a list of them:

Class1 =




A1 A2 A3

0 A1+αA2+βA3 0

0 0 A1+αA2+βA3


,

Class2 =




A1 A2 A3

0 A1+
β

α
A2 αA1+βA2

0 0 0


,

Class3 =




A1 A2 A3

0 A1+αA2 βA1+αA3

0 0 0


,

Class4 =




A1 A2 A3

0 A1+αA2 0

0 0 0


,

Class5 =




A1 A2 A3

0 A1+αA2 βA2+γA3

0 0 A1+γA2−
γ(α−γ)

β
A3


,

Class6 =




A1 A2 A3

0 A1+αA2 0

0 0 A1+βA3


,

Class7 =




A1 A2 A3

0 A1+αA2 αA3

0 0 A1


,

Class8 =




A1 A2 A3

0 A1+αA2 αA3

0 0 A1+αA2+βA3


,
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Class9 =




A1 A2 A3

0 0 αA1+α2βA2+αβA3

0 A1+αβA2+βA3


,

Class10=




A1 A2 A3

0 0 0

0 0 0


,

where α, β, γ are arbitrarily fixed constants.
We shall focus on one class of the presented non-semisimple Loop matrix Lie algebras

and construct bi-integrable couplings by using the enlarged zero curvature equation.
Moreover, the resulting bi-integrable couplings have infinitely many symmetries and
conserved functionals, which further indicates that they often possess bi-Hamiltonian
structures.

In what follows, we consider a class of triangular block matrices

M(A1,A2,A3)=




A1 A2 A3

0 A1 αA2+αβA3

0 0 A1+αβA2+αβ2 A3


, (2.3)

where A1, A2, A3 are square matrices of the same order and α,β are arbitrarily fixed
constants. This class of triangular block matrices is a special case of Class5, if we set α
in Class5 to be zero. Obviously, under the matrix Lie bracket [·,·] as defined in (2.1), all
block matrices M1, M2 as defined in (2.3) form a matrix Lie algebra, since for any square
matrices A1, A2, A3 and B1, B2, B3 of the same order, we have

[M(A1,A2,A3),M(B1,B2,B3)]=M(C1,C2,C3), (2.4)

with




C1=[A1,B1],

C2=[A1,B2]+[A2,B1],

C3=[A1,B3]+α[A2,B2]+αβ[A2,B3]+[A3,B1]+αβ[A3,B2]+αβ2[A3,B3].

Up to this point, we have not specified what the square matrices A1, A2, A3 will be taken.
In the next step, we will concentrate on this matrix Lie algebra and take its decomposition
as a semi-direct sum of two subalgebras.

We define two matrix loop Lie algebras

g1 =
{

M(A1,0,0)|entries of A1−Laurent series in λ
}

, (2.5)

and
g2=

{
M(0,A2,A3)|entries of A2,A3−Laurent series in λ

}
. (2.6)

Next, we take a semi-direct sum
ḡ= g1 A g2 (2.7)
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of these two Lie algebras g1 and g2 as introduced in (2.5) and (2.6) to get

ḡ=
{

M(A1,A2,A3)|entries of A1,A2,A3−Laurent series in λ
}

. (2.8)

It follows that ḡ is an infinite-dimensional Lie algebra. The notion of semi-direct sums
ḡ= g1 A g2 means that the two subalgebras g1 and g2 satisfy

[g1,g2]⊆ g2,

where [g1,g2]= {[M1,M2]|M1 ∈ g1, M2 ∈ g2}. Obviously, g2 is an ideal Lie sub-algebra of
ḡ. We also have the closure property between g1 and g2 under the matrix multiplication

g1g2,g2g1⊆ g2, (2.9)

where g1g2 = {AB|A∈ g1, B∈ g2}, g2g1 = {AB|A∈ g2, B∈ g1}, to guarantee that a zero
curvature equation over semi-direct sums of Lie algebras can generate discrete coupling
systems [11, 19–21].

Now we have constructed the non-semisimple Lie algebra, associated with which we
will formulate a scheme for constructing bi-integrable couplings.

3 A general scheme for constructing bi-integrable couplings

In order to take advantage of zero curvature equations associated with the semi-direct
sum of Lie algebras, we assume that the original integrable system

ut=K(u)

is determined by a zero curvature equation

Ut−Vx+[U,V]=0, (3.1)

where the Lax pair U=U(u,λ) and V=V(u,λ), with λ being the spectral parameter, are
square matrices belonging to some semisimple matrix Lie algebra [2].

Our goal is to construct bi-integrable couplings





ut=K(u),

u1,t=S1(u,u1),

u2,t=S2(u,u1,u2),

of the system (1.1), and therefore we enlarge the original spectral matrix U and define the
corresponding enlarged spectral matrix Ū as follows:

Ū= Ū(ū,λ)=M(U(u,λ),U1(u1,λ),U2(u2,λ))∈ ḡ= g1 A g2, (3.2)
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where ū=(uT,uT
1 ,uT

2 )
T. We also assume that its enlarged Lax matrix V̄ is in the form of

V̄= V̄(ū,λ)=M(V(u,λ),V1(u,u1,λ),V2(u,u1,u2,λ))∈ ḡ= g1 A g2. (3.3)

Apparently, the Lie bracket [Ū,V̄] of Ū and V̄ is in ḡ.
Consequently, the corresponding enlarged zero curvature equation

Ūt−V̄x+[Ū,V̄]=0 (3.4)

is equivalent to the following triangle system




Ut−Vx+[U,V]=0,

U1,t−V1,x+[U,V1]+[U1,V]=0,

U2,t−V2,x+[U,V2]+α[U1,V1]+αβ[U1,V2]+[U2,V]+αβ[U2,V1]+αβ2[U2,V2]=0.

(3.5)

The first equation above precisely gives the system (1.1), and the second and third equa-
tions give the sub-systems u1,t = S1(u,u1) and u2,t = S2(u,u1,u2), respectively. Thus, the
triangle system gives a bi-integrable coupling system (1.2). This shows a basic idea of
constructing bi-integrable couplings by using the semi-direct sum of Lie algebras in (2.5)
and (2.6).

We assume that we knew U, U1 and U2, and then we are going to seek for a polyno-
mial solution V̄ of (3.4) of degree m (hence we denote this V̄ by V̄ [m] and its corresponding
time variable by tm).

The constructing scheme is stated as follows.
The first step of formulation of the hierarchy is to construct a generating function W̄

by solving the corresponding enlarged stationary zero curvature equation

W̄x =[Ū,W̄], W̄=W̄(ū,λ), (3.6)

with the following form

W̄=M(W(u,λ),W1(u,u1,λ),W2(u,u1,u2,λ))∈ ḡ= g1 A g2. (3.7)

Plugging (3.7) into (3.6), we get the triangle system




Wx =[U,W],

W1,x =[U,W1]+[U1,W],

W2,x =[U,W2]+α[U1,W1]+αβ[U1,W2]+[U2,W]+αβ[U2,W1]+αβ2[U2,W2].

(3.8)

We assume that W, W1, W2 are in the form of

W=∑
i≥0

W0,iλ
−i, W1=∑

i≥0

W1,iλ
−i, W2=∑

i≥0

W2,iλ
−i. (3.9)

Then we define V̄ [m] by

V̄ [m]=M(V [m],V
[m]
1 ,V

[m]
2 )∈ ḡ= g1 A g2, (3.10)
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and

V [m]=(λm+1W)++∆m, V
[m]
i =(λm+1Wi)++∆m,i, i=1,2, m≥0, (3.11)

where (λm+1P)+ denotes the polynomial part of λm+1P in λ, and choose ∆m,i to make
sure that (3.4) with V̄ [m], m≥0, i.e.,

Ūtm−V̄
[m]
x +[Ū,V̄ [m]]=0, m≥0, (3.12)

generate a soliton hierarchy of bi-integrable coupling systems

ūtm = K̄m(ū), m≥0, (3.13)

where

ū=




u
u1

u2


, K̄m(ū)=




Km(u)
S1,m(u,u1)

S2,m(u,u1,u2)


, m≥0. (3.14)

We shall apply this scheme to the AKNS soliton hierarchy to construct its bi-integrable
couplings in the next section.

4 Applications to the AKNS hierarchy

4.1 The AKNS hierarchy

We consider the AKNS soliton hierarchy [1, 14]. Its spectral problem is given by

φx=Uφ, U=U(u,λ)=

[
−λ p
q λ

]
, u=

[
p
q

]
, φ=

[
φ1

φ2

]
. (4.1)

If we consider the stationary zero curvature equation

Wx =[U,W], (4.2)

and assume that a solution W solution to (4.2) is in the form of

W=

[
a b
c −a

]
=∑

i≥0

W0,iλ
−i =∑

i≥0

[
ai bi

ci −ai

]
λ−i. (4.3)

By plugging (4.3) in (4.2), we obtain





ax = pc−qb,

bx =−2λb−2pa,

cx =2qa+2λc.
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Comparing the coefficient of each λ−i, i≥0, we get





ai,x = pci−qbi,
bi,x=−2bi+1−2pai,
ci,x =2qai+2ci+1,

for i≥0, (4.4)

i.e., 



ai+1,x= pci+1−qbi+1,

bi+1=−
1

2
bi,x−pai,

ci+1=
1

2
ci,x−qai,

for i≥0. (4.5)

By the condition on the coefficient of λ, we assume

a0 =−1, b0= c0=0, (4.6)

and then the first three sequences can be obtained as follows:





b1= p, c1=q, a1=0,

b2=−
1

2
px, c2=

1

2
qx, a2 =

1

2
pq,

b3=
1

4
pxx−

1

2
p2q, c3=

1

4
qxx−

1

2
pq2, a3 =

1

4
(pqx−pxq).

We form the zero curvature equations

Utm−V
[m]
x +[U,V [m]]=0, V [m]=(λmW)+, m≥0, (4.7)

to generate the AKNS hierarchy of soliton equations:

utm =Km=

[
−2bm+1

2cm+1

]
=Φm

[
−2p
2q

]
= J

δHm

δu
, m≥0, (4.8)

with the Hamiltonian operator J, the hereditary recursion operator Φ and the Hamilto-
nian functionals being defined by

J=

[
0 −2
2 0

]
, Φ=




−
1

2
∂+p∂−1q p∂−1 p

−q∂−1q
1

2
∂−q∂−1 p


, ∂=

∂

∂x
, (4.9a)

Hm =
∫

2am+2

m+1
dx, m≥0. (4.9b)

We will enlarge the zero curvature equations to construct bi-integrable couplings in
the following subsection.
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4.2 Bi-integrable couplings

For the AKNS hierarchy spectral problem (4.1), using the matrix Lie algebra (2.8) we have
chosen in the last section, we define the corresponding enlarged spectral matrix by

Ū= Ū(ū,λ)=M(U,U1,U2)∈ ḡ= g1 A g2, (4.10a)

U1=U1(u1)=

[
0 r
s 0

]
, U2=U2(u2)=

[
0 v
w 0

]
, (4.10b)

where ū=(uT,uT
1 ,uT

2 )
T, u1=(r,s)T , u2=(v,w)T, and r, s, v, w are new dependent variables.

To solve the corresponding enlarged stationary zero curvature equation

W̄x =[Ū,W̄], (4.11)

we set a solution of the following form

W̄=M(W,W1,W2)∈ ḡ= g1 A g2, (4.12)

and assume that W as defined in (4.3),

W1,W2∈ s̃l(2,R)={A∈sl(2,R)| entries of A−Laurent series in λ}

are in the form of




W1 =W1(u,u1,λ)=

[
e f
g −e

]
=∑

i≥0

[
ei fi

gi −ei

]
λ−i,

W2 =W2(u,u1,u2,λ)=

[
e′ f ′

g′ −e′

]
=∑

i≥0

[
e′i f ′i
g′i −e′i

]
λ−i.

It now follows from the enlarged stationary zero curvature equation (4.11) that





Wx =[U,W],

W1,x =[U,W1]+[U1,W],

W2,x =[U,W2]+[U2,W]+α[U1,W1]+αβ[U1,W2]+αβ[U2,W1]+αβ2[U2,W2].

(4.13)

The above equation system equivalently leads to





ax =−2cλ+2qb,

bx =2qa−2cr,

cx =2aλ−2br,





ex = pg+rc−q f −sb,

fx =−2λ f −2pe−2ra,

gx =2qe+2λg+2sa,




e′x =−wb+vc−α(s+βw) f +α(r+βv)g−(q+αβs+αβ2 w)f ′+(p+αβr+αβ2v)g′,

f ′x =−2av−2α(r+βv)e−2(p+αβr+αβ2 v)e′−2λf ′,

g′x =2aw+2α(s+βw)e+2(q+αβs+αβ2 w)e′+2λg′.
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By assuming

e=∑
i≥0

eiλ
−i, f =∑

i≥0

fiλ
−i, g=∑

i≥0

giλ
−i, (4.14)

and

e′=∑
i≥0

e′iλ
−i, f ′=∑

i≥0

f ′i λ−i, g′=∑
i≥0

g′iλ
−i, (4.15)

and comparing the coefficient of each λ−i, i≥0, we obtain






fi+1=−
1

2
fix−pei−rai,

gi+1=
1

2
gix−qei−sai,

ei+1,x= pgi+1+rci+1−q fi+1−sbi+1,

for i≥0, (4.16a)





f ′i+1=−
1

2
f ′ix−(p+αβr+αβ2v)e′i−α(r+β)vei−vai,

g′i+1=
1

2
g′ix−(q+αβs+αβ2w)e′i−α(s+β)wei−wai,

e′i+1,x=−wbi+1+vci+1−α(s+βw) fi+1+α(r+βv)gi+1

−(q+αβs+αβ2w)f ′i+1+(p+αβr+αβ2v)g′i+1,

for i≥0. (4.16b)

Then the recursion relations (4.16a) and (4.16b) generate the sequences of {ei}i≥1, { fi}i≥1,
{gi}i≥1 and {e′i}i≥1, { f ′i }i≥1, {g′i}i≥1.

Upon introducing

e0= e′0=−1, f0= g0= f ′0= g′0 =0, (4.17)

to satisfy the conditions on the coefficients of λ in (4.2), we can compute the first few sets
as follows:





e1=0,
f1= p+r,
g1=q+s,

(4.18a)





e2=
1

2
pq+

1

2
sp+

1

2
rq,

f2=−
1

2
px−

1

2
rx,

g2=
1

2
qx+

1

2
sx ,

(4.18b)





e3=
1

4
pqx+

1

4
sx p−

1

4
qpx−

1

4
spx−

1

4
rxq+

1

4
rqx ,

f3=
1

4
pxx+

1

4
rxx−

1

2
p2q−

1

2
sp2−rpq,

g3=
1

4
qxx+

1

4
sxx−

1

2
q2 p−

1

2
rq2−spq,

(4.18c)
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and





e′1=0,

f ′1= p+α(1+β)r+(1+αβ+αβ2)v,

g′1=q+α(1+β)s+(1+αβ+αβ2)w,

(4.19a)






e′2=
1

2
pq+

1

2
α(1+β)ps+

1

2
(1+αβ+αβ2)

(
pw+rq+vq+αrs+αβrw+αβvs+αβ2vw

)
,

f ′2=−
1

2
px−

1

2
α(1+β)rx−

1

2
(1+αβ+αβ2)vx,

g′2=
1

2
qx+

1

2
α(1+β)sx+

1

2
(1+αβ+αβ2)wx,

(4.19b)





e′3=
1

4
(pqx−qpx)+

1

4
α(1+β)(psx−pxs+rqx−rxq)+

1

4
(1+αβ+αβ2)

[
(pwx−pxw)

+α(rsx−rxs+rwx−rxw−vxq+vqx+vsx−vxs+vwx−vxw)],

f ′3=
1

4
pxx−

1

2
p2q+α(1+β)

(1

4
rxx−

1

2
p2s−prq

)
+(1+αβ+αβ2)

[1

4
vxx−pvq

−
1

2
p2w−α

(
prs+

1

2
r2q

)
−αβ(prw+pvs+rvq)−αβ2

(
pvw+

1

2
v2q

)
−

1

2
α2βr2s

−α2β2
(

rvs+
1

2
r2w

)
−α2β3

(
rvw+

1

2
v2s

)
−

1

2
α2β4v2w

]
,

g′3=
1

4
qxx−

1

2
q2 p+α(1+β)

(1

4
sxx−

1

2
rq2−qps

)
+(1+αβ+αβ2)

[1

4
wxx−pqw−

1

2
vq2

−α
(

qrs+
1

2
s2 p

)
−αβ(qrw+qvs+spw)−αβ2

(1

2
w2 p+qvw

)
−

1

2
α2βs2r

−α2β2
(1

2
s2v+srw

)
−α2β3

(
svw+

1

2
w2r

)
−

1

2
α2β4w2v

]
.

(4.19c)

Let us now define

V̄ [m]=M(V [m],V
[m]
1 ,V

[m]
2 )∈ ḡ= g1 A g2, (4.20)

and {
V

[m]
1 =(λmV1)++∆m,1,

V
[m]
2 =(λmV2)++∆m,2,

m≥0, (4.21)

where V [m] is defined as in (4.7), and ∆m,i are chosen as the zero matrix. Then, the m-th
enlarged zero curvature equation

Ūtm = V̄
[m]
x −[Ū,V̄ [m]] (4.22)

gives rise to 



Utm =V
[m]
x −[U,V [m]],

U1,tm =V
[m]
1,x −[U,V

[m]
1 ]−[U1,V [m]],

U2,tm =V
[m]
2,x −[U,V

[m]
2 ]−[U2,V [m]]−α[U1,V

[m]
1 ]

−αβ[U1,V
[m]
2 ]−αβ[U2,V

[m]
1 ]−αβ2[U2,V

[m]
2 ].

(4.23)
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Thus, a hierarchy of coupling systems are generated for the AKNS hierarchy (4.7):

ūtm =




ptm

qtm

rtm

stm

vtm

wtm



= K̄m(ū)=




Km(u)
S1,m(u,u1)

S2,m(u,u1,u2)


=




−2bm+1

2cm+1

−2 fm+1

2gm+1

−2 f ′m+1

2g′m+1




, m≥0. (4.24)

This suggests that (4.24) provides a hierarchy of nonlinear bi-integrable couplings for the
AKNS hierarchy of soliton equations. The first nonlinear bi-integrable coupling system
reads 




pt2−
1

2
pxx+p2q,

qt2 =
1

2
qxx−pq2,

rt2 =−
1

2
pxx−

1

4
rxx+p2q+sp2+2rpq,

st2 =
1

2
qxx+

1

2
sxx−q2 p−rq2−2spq,

vt2 =−
1

2
pxx+p2q−2α(1+β)

(1

4
rxx−

1

2
p2s−prq

)

−2(1+αβ+αβ2)
[1

4
vxx−pvq−

1

2
p2w−α

(
prs+

1

2
r2q

)

−αβ(prw+pvs+rvq)−αβ2
(

pvw+
1

2
v2q

)
−

1

2
α2βr2s

−α2β2
(

rvs+
1

2
r2w

)
−α2β3

(
rvw+

1

2
v2s

)
−

1

2
α2β4v2w

]
,

wt2 =
1

2
qxx−q2 p+2α(1+β)

(1

4
sxx−

1

2
rq2−qps

)

+2(1+αβ+αβ2)
[1

4
wxx−pqw−

1

2
vq2−α

(
qrs+

1

2
s2 p

)

−αβ(qrw+qvs+spw)−αβ2
(1

2
w2 p+qvw

)
−

1

2
α2βs2r

−α2β2
(1

2
s2v+srw

)
−α2β3

(
svw+

1

2
w2r

)
−

1

2
α2β4w2v.

(4.25)

Refs. [8,9] formulated integrable couplings for given integrable systems by perturbations,
in which the second component of the enlarged system was just the linearized system of
the original system ut = K(u), while the bi-integrable couplings constructed above are
nonlinear, because the third sub-systems are nonlinear.

4.3 Hamiltonian structures

It is known that when acting on non-semisimple Lie algebras, the Killing form is always
degenerate, and, the trace identity (see [24, 25] for details) will not apply in this case. To
solve this problem, the variational identity was introduced in [12, 13] under more gen-
eral bilinear forms, which do not require the invariance property under an isomorphism
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of the Lie algebra. In this section, in order to generate Hamiltonian structures of the re-
sulting bi-integrable couplings on the presented non-semisimple Lie algebra, we use the
corresponding variational identity [13]:

δ

δū

∫
〈W̄,Ūλ〉dx=λ−γ ∂

∂λ
(λγ〈W̄,Ūū〉), (4.26)

where 〈·,·〉 is a required bilinear form, which is symmetric, non-degenerate, and invariant
under the Lie bracket.

Let us now construct general bilinear forms with the symmetric, invariant, and non-
degenerate properties 〈·,·〉 on ḡ. First, we transform the semi-direct sum ḡ into a vector
form via defining:

σ : ḡ→R
9, A 7→ (a1,··· ,a9)

T, (4.27)

where

A=A(a1,··· ,a9)=M(A1,A2,A3), Ai=

[
a3i−2 a3i−1

a3i −a3i−2

]
, 1≤ i≤3. (4.28)

This mapping σ induces a Lie algebraic structure on R
9, which is isomorphic to the matrix

loop algebra ḡ. Next we define the corresponding Lie bracket [·,·] on R
9 by

[a,b]T = aT R(b), (4.29)

for any a=(a1,··· ,a9)T, b=(b1,··· ,b9)T ∈R
9, and

R(b)=M(R1,R2,R3), (4.30)

where R1, R2, and R3 are the matrices defined by

Ri=




0 2b3i−1 −2b3i

b3i −2b3i−2 0
−b3i−1 0 2b3i−2


, for i=1,2,3.

This Lie algebra (R9,[·,·]) is isomorphic to the matrix Lie algebra ḡ, and the mapping σ,
defined by (4.27), is a Lie isomorphism between the two Lie algebras.

We then define a bilinear form on R
9 by

〈a,b〉= aT Fb, (4.31)

where F is a constant matrix. The symmetric property 〈a,b〉= 〈b,a〉 requires that

FT =F. (4.32)

Under this symmetric condition, the invariance property under the Lie bracket

〈a,[b,c]〉= 〈[a,b],c〉
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equivalently requires that

F(R(b))T =−R(b)F, b∈R
9. (4.33)

This matrix equation leads to a linear system of equations on the elements of F. Solving
the resulting system yields

F=




η1 η2 η3

η2 αη3 αβη3

η3 αβη3 αβ2η3


⊗




2 0 0
0 0 1
0 1 0


, (4.34)

where ηi, 1≤ i≤3, are arbitrary constants, and ⊗ is the Kronecker product.
Now, the corresponding bilinear form on the semi-direct sum ḡ of Lie algebras is

given by

〈A,B〉=〈A,B〉ḡ= 〈σ(A),σ(B)〉R9 =(a1,··· ,a9)F(b1,··· ,b9)
T

=(2a1b1+a2b3+a3b2)η1+(2a1b4+a2b6+a3b5+2a4b1+a5b3+a6b2)η2

+(2a1b7+a2b9+a3b8+2αa4b4+2αβa4b7+αa5b6+αβa5b9+αa6b5+αβa6b8

+2a7b1+2αβa7b4+2αβ2a7b7+a8b3+αβa8b6+αβ2a8b9+a9b2

+αβ2a9b8+αβa9b5)η3, (4.35)

where A=A(a1,··· ,a9), B=B(b1,··· ,b9)∈ ḡ are as defined in (4.28).
The bilinear form (4.35) is symmetric and invariant under the Lie bracket of the matrix

Lie algebra:
〈A,B〉= 〈B,A〉,〈A,[B,C]〉= 〈[A,B],C〉,

where A=A(a1,··· ,a9), B=B(b1,··· ,b9), C=C(c1,··· ,c9)∈ ḡ are as defined in (4.28). Obvi-
ously, this kind of bilinear forms is not of Killing type and is non-degenerate if and only
if the determinant of the matrix F is non-zero:

det(F)=8α3
(
η2β−η3

)6
η3

3 6=0.

Therefore we can choose η1, η2, and η3 such that det(F) is non-zero. Note that the two
parameters α and β are arbitrary constants associated with the new class of matrix Lie
algebras in (2.3), and they also should make det(F) non-zero to apply the variational
identity.

Now we can compute that

〈W̄,Ūλ〉=−2η1a−2η2e−2η3e′, (4.36)

and

〈W̄,Ūū〉=




cη1+gη2+g′η3

bη1+ f η2+f ′η3

cη2+(αg+αβg′)η3

bη2+(α f +αβf ′)η3

(c+αβg+αβ2g′)η3

(b+αβ f +αβ2f ′)η3




,
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and furthermore, we have

γ=−
λ

2

d

dλ
ln|〈W̄,W̄〉|=0.

Thus, by the previous variational identity (4.26), we have

δ

δū

∫ 2η1am+1+2η2em+1+2η3e′m+1

m
dx=




cmη1+gmη2+g′mη3

bmη1+ fmη2+f ′mη3

cmη2+(αgm+αβg′m)η3

bmη2+(α fm+αβf ′m)η3

(cm+αβgm+αβ2g′m)η3

(bm+αβ fm+αβ2f ′m)η3




, m≥1. (4.37)

Consequently, we obtain the following Hamiltonian structures for the hierarchy of bi-
integrable couplings (4.24):

ūtm = J̄
δH̄m

δū
, (4.38)

where the Hamiltonian functionals are

H̄m =
∫ 2η1am+2+2η2em+2+2η3e′m+2

m+1
dx, m≥0, (4.39)

and the Hamiltonian operator is

J̄=




η1 η2 η3

η2 αη3 αβη3

η3 αβη3 αβ2η3



−1

⊗ J, (4.40)

with matrix J being defined as in (4.9a).

4.4 Commutativity of symmetries and conserved functionals

The enlarged system (4.24) is also integrable in the sense that it possesses infinitely many
commuting symmetries {K̄m}∞

m=0.

It is easy to check that

K̄m= Φ̄K̄m−1, m≥1, (4.41)

where the hereditary recursion operator Φ̄ (see [23] for details) is defined by

Φ̄=




Φ 0 0
Φ1 Φ 0
Φ2 αΦ1+αβΦ2 Φ+αβΦ1+αβ2Φ2


=MT(Φ,Φ1,Φ2), (4.42)
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with MT being the transpose of matrix M in (2.3), Φ being given as in (4.9a), and

Φ1=

[
r∂−1q+p∂−1s r∂−1 p+p∂−1r

−s∂−1q−q∂−1s −s∂−1 p−q∂−1r

]
, (4.43a)

Φ2=

[
v∂−1q+θ1∂−1s+θ2∂−1w v∂−1 p+θ1∂−1r+θ2∂−1v

−w∂−1q−θ3∂−1s−θ4∂−1w −w∂−1p−θ3∂−1r−θ4∂−1v

]
, (4.43b)

in which {
θ1 :=αr+αβv, θ2 := p+αβr+αβ2v,

θ3 :=αs+αβw, θ4 :=q+αβs+αβ2w.
(4.44)

It is obvious that J̄ is skew symmetric and

J̄Φ̄∗= Φ̄ J̄, (4.45)

where Φ̄∗ denote the adjoint operator of Φ̄. Then we have J̄Φ̄∗ is also skew symmetric.
Furthermore, J̄ and M̄= Φ̄ J̄ form a Hamiltonian pair [4,22], and it follows that Φ̄= M̄J̄−1

is hereditary operator (see [3, 4]).
Consequently, there exist infinitely many commuting symmetries and conserved

functionals:

[K̄m,K̄n] := K̄′
m(ū)[K̄n]−K̄′

n(ū)[K̄m]=0, m,n≥0,

{H̄m,H̄n} :=
∫ ( δH̄m

δū

)T
J̄

δH̄n

δū
dx=0, m,n≥0.

It is easy to compute that for the n-th bi-integrable coupling system ūtn = J̄δH̄n/δū,

d

dtn
H̄m =

∫ (
δH̄m

δū

)T

ūtn dx=
∫ (

δH̄m

δū

)T

J̄
δH̄n

δū
dx=0, m≥0,

which implies that {H̄m}m≥0, are conserved, and each Hamiltonian coupling system has
infinitely many commuting conserved functionals {H̄m}m≥0. Moreover, the resulting bi-
integrable couplings possess the bi-Hamiltonian structure

ūtm = J̄
δH̄m

δū
= M̄

δH̄m−1

δū
, m≥1.

5 Conclusions and remarks

The semi-direct sum of Lie algebras shows the mathematical structures for obtaining
integrable couplings or multi-integrable couplings of given integrable systems.

The presented Lie algebras of 3×3 block matrices give a number of potential algebraic
structures in finding bi-integrable couplings. Based on those new classes of matrix Lie
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algebras, and following similar schemes, we can generate bi-integrable couplings of other
soliton hierarchies such as the KdV hierarchy and the Dirac hierarchy. We remark that
another way to obtain bi-integrable couplings is to choose different types of submatrices
Ui in the spectral matrix Ū defined in (3.2).

Among all 10 classes of non-semisimple Lie algebras presented in this paper, Class5

and Class8 are among the most interesting ones. They have more than one parameter,
and taking special reductions of the parameters, we can obtain interesting classes of Lie
algebras of block matrices, so as to obtain bi-integrable couplings





ut=K(u),

u1,t=S1(u,u1),

u2,t=S2(u,u1,u2).

Note that we don’t keep all the parameters, otherwise, the subsystems ut =K, u1,t = S1,
and u2,t =S2 might be independent of each other, so the enlarged integrable system will
be trivial bi-integrable couplings.

Some other classes, for example, Class1, Class6, and Class7, might not produce Hamil-
tonian structures. One example of Class6 has already been studied in [17], and the Lax
pair is in the form of

Ū=




U U1 U2

0 U 0
0 0 U


, V̄=




V V1 V2

0 V 0
0 0 V


.

However, it is difficult to determine whether integrable couplings generated by the above
type of non-semisimple Lie algebras possess Hamiltonian structures or not, since any
bilinear form satisfying the symmetric and invariant conditions of the variational identity
is degenerate. This is the case also for Class7. Our question is: for those non-semisimple
matrix Lie algebras of 3×3 bock matrices, can we reduce restrictions on bilinear forms in
the variational identity to find Hamiltonian structures?

Moreover, by using the Kronecker product of matrices [18], we can get new Lax pairs
and new zero curvature representations for bi-integrable couplings.

In conclusion, the subject of bi-integrable couplings, initiated more than one decade
ago, is rather interesting. We are going to explore more different classes of matrix Lie
algebras in the future.
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