
Journal of Computational Mathematis, Vol.17, No.1, 1999, 73{88.
CONVERGENCE OF CHORIN-MARSDEN FORMULA FOR THENAVIER-STOKES EQUATIONS ON CONVEX DOMAINS�Lung-an Ying(Researh Institute for Mathematial Sienes, Kyoto University, Japan;Department of Mathematis, Peking University, Beijing 100871, China)AbstratWe prove the onvergene of the Chorin-Marsden produt formula for solv-ing the initial-boundary value problems of the Navier-Stokes equations on onvexdomains. As a partiular ase we onsider the ase of the half plane.Key words: Navier Stokes equation, Vortex method, Frational step method, Con-vergene 1. IntrodutionDi�erent kinds of frational step methods have been applied to solve the initial-boundary value problems of the Navier-Stokes equations for visous inompressibleow. The vortex method developed in [5℄ by Chorin is a sheme with three intermediatesteps where the e�ets of onvetion and visosity are separated, and vortex sheets arereated along the boundary. A set of vortex blobs is introdued to approximate thevortiity �eld. These vortex blobs move along the partile trajetories in the onvetionstep, and they move randomly in the di�usion step. The onvergene of the sheme isan interesting problem whih has alled the attention of many authors.Related to this sheme, the splitting of the initial-boundary value problems of theNavier-Stokes equations to the orresponding problems of the Euler equations and theStokes equations has been extensively studied, see [2℄ [3℄ [7℄ [9℄ [10℄ [11℄ [12℄ [13℄ [14℄and the referenes therein. By the results a simple splitting onverges in Lp; p < 1,and in Hs; s < 52 , and if the vortex sheets are smeared out suh that the vortiity issmooth, then the sheme with some modi�ation still onverges.Marsden gave one mathematial formulation of Chorin's sheme whih is a produtof three operators, uk(ik) = (Hk Æ � ÆEk)iu0;where u0 is the initial data, Ek is the loal ow de�ned by the Euler equations withtemporal step k, � is the \vortiity reation operator", and Hk is the solver of theheat equation with step k. This formula is known as the Chorin-Marsden formula[6℄.It involves a further approximation beyond the splitting. In [6℄ the veloity �eld isextended oddly to the exterior of the domain and the Cauhy problem of the heat� Reeived July 10, 1996.



74 L.A. YINGequation for the veloity is solved in the di�usion step rather than the initial-boundaryvalue problem of the Stokes equation . This approximation is onsistent to the randomwalk proedure. Convergene of the linear problems was proved in [6℄. Benfatto andPulvirenti studied the Chorin-Marsden formula in the ase of the half plane for theNavier-Stokes equations and proved the onvergene[4℄. The sheme in [4℄ is di�erentfrom that in [6℄ by two respets: The tangential omponent of the veloity is alsoextended oddly but the normal omponent is extended evenly, and an expliit Eulersheme is applied in the onvetion step rather than using the partile method. The�rst modi�ation bears the advantage that the veloity �eld keeps inompressible afterthe extension.The purpose of this paper is to prove the onvergene of the Chorin-Marsden for-mula for arbitrary two dimensional onvex domains. In the onvetion step we usethe veloity of the previous step to slove the partile trajetories, making the step infat linear. In the di�usion step we use a modi�ed approah to extend the veloity.Partiularly if the domain is the half plane then the extension here is the same as thatin [6℄.In setion 2 we state the sheme in details and introdue some notations. In setion3 we prove the onvergene of the sheme for onvex domains, where for simpliity weassume that the domains are bounded. In setion 4 we apply our approah to the ase ofthe half plane, and we will show that both approahes of extension, by Chorin-Marsdenand by Benfatto and Pulvirenti, yield the results of onvergene.2. ShemeLet 
 � R2 be a domain with suÆiently smooth boundary �
 and x = (x1; x2) bethe points in R2. We onsider the following initial-boundary value problems,�u�t + (u � r)u+ 1�rp = � 4 u+ f; (1)r � u = 0; (2)uj�
 = 0; (3)ujt=0 = u0; (4)where u = (u1; u2) is the veloity, p is the pressure, f is the external fore, � is theonstant density, � is the onstant kinemati visosity, and r = ( ��x1 ; ��x2 ). We intro-due the vortiity ! = �r^ u and the stream funtion  suh that u = r^  , wherer^ = ( ��x2 ;� ��x1 ), then the vortiity-stream funtion formulation of the problems is�!�t + u � r! = � 4 ! + F; (5)�4 = !;  j�
 = 0; � �n �����
 = 0; (6)u = r^  ; (7)!jt=0 = !0; (8)



Convergene of Chorin-Marsden Formula for the Navier-Stokes Equations on Convex Domains 75where F = �r ^ f , !0 = �r ^ u0, and n is the unit exterior normal vetor on theboundary.Following [6℄ we de�ne a mapping � from the interior of 
 to the exterior. We takea positive onstant d, then onsider the set of all straight line segments through �
and normal to it, the length of eah segment is d inside and d outside. The union ofline segments is a tubular neighborhood of �
, denoted by S. � : S ! S is the mapwhih reets aross the boundary relative to these line segments, then � is a smoothmapping. Let J(x) be the Jaobian of � at point x.The three steps sheme is the following: Let k > 0 be the length of temporal steps,t = 0; k; � � � ; ik; � � �. If the approximate solutions !k, uk, ~!k, ~uk are already known fort 2 [0; ik), then on [ik; (i + 1)k) the approximate solutions are solved by:Step 1. Extension. De�ne an extension operator E asu�k(x; ik) = E~uk(x; ik � 0) = 8><>: ~uk(x; ik � 0); x 2 �
;�jJ(x)j~uk(�(x); ik � 0); x 2 S n �
;0; x =2 SS
:Then we set !k(x; ik) = �r^u�k(x; ik). In general ~uk does not vanish on the boundary,so !�k(x; ik) is a distribution omposed by a pieewise smooth funtion and a vortexsheet.Step 2. Di�usion. Solve the heat equation�!k�t = � 4 !kon R2 � [ik; (i + 1)k) with the initial data !k(x; ik). The veloity uk is obtained by�4 k = !k; x 2 
; kj�
 = 0;uk = r^  k:Step 3. Convetion. Solve the following problem�~!k�t + uk � r~!k = Fk;�4 ~ k = ~!k;~ kjx2�
 = 0;~uk = r^ ~ k;~!k(x; ik) = !k(x; (i+ 1)k � 0)on 
� [ik; (i + 1)k), where Fk is the approximate right hand side to be de�ned later.Then repeat the proedure. ~uk(�0) is understood as u0.In fat the above sheme is a semi-disretization sheme. The vortiities !k and ~!kan be further approximated by linear ombinations of vortex blobs, then the partilemethod and the random walk proedure an be applied.



76 L.A. YINGTo meet the need of our onvergene proof, we derive an equivalent form of the abovesheme. As usual we de�ne a subspae of (L2(
))2 as X = fu 2 (L2(
))2;r �u = 0; u �nj�
 = 0g. The Helmholtz operator P is an orthogonal projetion P : (L2(
))2 ! X.At the seond step we solve the heat equation for the veloity,�u�k�t = � 4 u�k; (9)with the initial data u�k(x; ik). Applying the operator �r^ to (9) we �nd that !k =�r^ u�k. Sine u�k and uk orrespond to the same vortiity !k, we have uk = Pu�k. Inthe veloity-pressure form, Step 3 an be written as�~uk�t + (Pu�k � r)~uk + 1�r~pk = f; (10)r � ~uk = 0; (11)~uk � nj�
 = 0; (12)~ukjt=ik = Pu�k(x; (i+ 1)k � 0): (13)Then we set u�kjt=(i+1)k = E~uk(x; (i+ 1)k � 0) (14)and repeat the frational step proedure at the next temporal step. From (10) it isdedued that Fk = F � ���� �(uk)1�x1 �(~uk)1�x1k ~k ���� ;where k = �(uk)1�x2 + �(uk)2�x1 ; ~k = �(~uk)1�x2 + �(~uk)2�x1are the veloities of shear strain and ( )1 and ( )2 are the omponents in the x1 and x2diretion. We will prove the onvergene of the sheme (9){(14).If (10) is replaed by the Euler equation�~uk�t + (~uk � r)~uk + 1�r~pk = f; (15)then aordingly we have �~!k�t + ~uk � r~!k = F (16)in the onvetion step. We will prove that for the ase of the half plane the sheme (9)(15) (11){(14) also onverges.3. Convergene for Bounded DomainsIn this setion we �rst prove some estimates for the approximate solutions, thenprove the onvergene. The usual notations of the Sobolev spaes Hs(
) are appliedthroughout the paper, and the norms and seminorms are denoted by k � ks;
 and j � js;
respetively. We will always denote by C a generi onstant. For simpliity we assume



Convergene of Chorin-Marsden Formula for the Navier-Stokes Equations on Convex Domains 77that 
 is bounded. For notational onveniene sometimes we omit the spatial variableand simply write the solutions as u�k(t), ~uk(t); � � �. To study the property of the funtionsu�k, we onsider an auxiliary problem�h�t = � 4 h; x 2 R2; t > 0; (17)hjt=0 = Eh0; (18)where E is the extension operator de�ned in the previous setion.Lemma 1. If h0 2 L2(
) and h0 � 0, then there exists T � > 0, suh thath � 0; �h�n � 0on �
� (0; T �℄, where h is the solution to the problem (17) (18).Proof. By the hange of variables we haveh(x; t) = Z 14�t� e� jx��j24t� Eh0(�) d�= Z
nS 14�t� e� jx��j24t� h0(�) d�+ Z
\S 14�t� �e� jx��j24t� � e� jx��(�)j24t� �h0(�) d�: (19)Sine 
 is onvex, jx � �(�)j � jx � �j for x 2 �
 and � 2 
. The integrants arepositive, hene hjx2�
 � 0.It is easy to see that the normal derivative of the �rst term of (19) is non-positive.Let us onsider the seond term and set'(r) = e� r24t� ;then '0(r) = � r2t� '(r); (20)We intend to prove� x� �jx� �j'0(jx� �j)� x� �(�)jx� �(�)j'0(jx� �(�)j)� � n � 0; x 2 �
:By (20) it is((x� �)'(jx� �j)� (x��(�))'(jx � �(�)j)) � n � 0; x 2 �
: (21)We take an arbitrary o 2 �
 and onstrut loal oordinates (o; �1; �2) with the origino and the �2 oordinate axis pointing to the interior normal diretion. Loally theboundary �
 an be expressed in terms of a funtion �2 = f(�1), a < �1 < b, a < 0,b > 0. Sine the domain is onvex, f 00 � 0. We assume that there is a onstant Æ > 0suh that jf 0(a)j > Æ; jf 0(b)j > Æ; (22)



78 L.A. YINGotherwise we an expand the interval (a; b) to ahieve it. Denote by �
1 the subset of�
 lying in (a; b), then we set �
2 = �
n�
1. Let � be on the �2-axis, then � = (0; �2)and �(�) = (0;��2).We onsider �
2 �rst. Let x 2 �
2, then we have���2 � '(jx� �j)'(jx� �(�)j)� = ���2 �e� jx��j24t� + jx��(�)j24t� �=x2t� e� jx��j24t� + jx��(�)j24t� ;hene '(jx� �j)'(jx� �(�)j) � 1 + x2t� �2: (23)We may assume that (x� �(�)) � n � 0, otherwise (21) is obvious, then we have(x� �(�)) � n(x� �) � n = 1 + (� � �(�)) � n(x� �) � n = 1 + (0; 2�2) � n(x� �) � n:The inequality (22) implies 1(x� �) � n � C;onsequently (x� �(�)) � n(x� �) � n � 1 + C�2: (24)We take T � small enough suh that x2t� � C for all x 2 �
2 and t 2 (0; T �℄, then (23)and (24) imply (21).Next let us onsider �
1. Let n1 = (f 0(x1);�1) for x 2 �
1, then n = n1jn1j . Wehave (x� �) � n = (x1f 0(x1)� (x2 � �2))=jn1j= (x1f 0(x1)� f(x1) + �2)=jn1j;and (x� �(�)) � n = (x1f 0(x1)� f(x1)� �2)=jn1j:Therefore (x� �) � n � (x� �(�)) � n:Besides '(jx � �j) � '(jx � �(�)j):So (21) holds.Lemma 2. If h0 2 L2(
), and h is the solution to the problem (17) (18), thenkh(t)k20;
 + � Z t0 jh(�)j21;
 d� � kh(0)k20;
; t 2 (0; T �℄;where T � is given in Lemma 1.



Convergene of Chorin-Marsden Formula for the Navier-Stokes Equations on Convex Domains 79Proof. Let h+0 = max(0; h0), h�0 = max(0;�h0), then h0 = h+0 � h�0 . The solutionswith initial data Eh+0 and Eh�0 are denoted by h+ and h� respetively, then h =h+ � h�. We have h+�h+�t = h+� 4 h+:Taking integration we obtain12kh+(t)k20 � 12kh+(0)k20 + � Z t0 jh+(�)j21 d� = � Z t0 Z�
 h+�h+�n dsd�:By Lemma 1 we have12kh+(t)k20 � 12kh+(0)k20 + � Z t0 jh+(�)j21 d� � 0:Analogously 12kh�(t)k20 � 12kh�(0)k20 + � Z t0 jh�(�)j21 d� � 0:Thus we obtain the estimate for h,kh(t)k20 + � Z t0 jh(�)j21 d� = kh+(t)� h�(t)k20 + � Z t0 jh+(�)� h�(�)j21 d�= Z
(h+(t)� h�(t))2 dx+ � Z t0 Z
 jrh+(�)�rh�(�)j2 dxd�� Z
(h+(t))2 dx+ Z
(h�(t))2 dx+ 2� Z t0 Z
(jrh+(�)j2 + jrh�(�)j2) dxd�� Z
(h+(0))2 dx+ Z
(h�(0))2 dx = kh(0)k20:We turn now to estimate the solutions of the sheme (9){(14).Lemma 3. If u0 2 X, f 2 L1(0; T ;X), and k � T �, then the following estimateshold for t 2 [0; T ℄: k~uk(t)k0;
 � C; (25)ku�k(t)k0;
 � C; (26)Z t0 ju�k(�)j21;
 d� � C; (27)Z t0 jPu�k(�)j21;
 d� � C; (28)where the onstant C is independent of k.Proof. Multiplying (10) by ~uk and taking integration we get12 ddtk~ukk20:
 = Z
 ~uk � f dx � k~ukk0;
 � kfk0;
;whih gives ddtk~ukk0:
 � kfk0;
;



80 L.A. YINGhene k~uk(t)k0;
 � k~uk(ik)k0;
 + Z tik kf(�)k0;
 d�; t 2 [ik; (i + 1)k): (29)Sine P is an orthogonal operator, we havek~uk(ik)k0;
 � ku�k((i + 1)k � 0)k0;
 (30)by (13). We apply Lemma 2 to the omponents of u�k, and getku�k(t)k20;
 + � Z tik ju�k(�)j21;
 d� � ku�k(ik)k20;
; t 2 [ik; (i + 1)k) (31)by (9) (14), whih impliesku�k(t)k0;
 � k~uk(ik � 0)k0;
; t 2 [ik; (i + 1)k): (32)The ombination of (29) (30) (32) givesk~uk(t)k0;
 � k~uk(ik � 0)k0;
 + Z tik kf(�)k0;
 d�; t 2 [ik; (i + 1)k):By indution we obtaink~uk(t)k0;
 � ku0k0;
 + Z t0 kf(�)k0;
 d�; (33)thus (25) is proved. Then (32) implies (26). By (29) we havek~uk(t)k20;
 � k~uk(ik)k20;
 � (k~uk(t)k0;
 + k~uk(ik)k0;
) Z tik kf(�)k0;
 d�� C Z tik kf(�)k0;
 d�;together with (31) (13) (14) whih gives� Z (i+1)kik ju�k(�)j21;
 d� � k~uk((i� 1)k)k20;
 + C Z ik(i�1)k kf(�)k0;
 d� � k~uk(ik)k20;
:Summing them up with respet to i, we obtain� Z (i+1)k0 ju�k(�)j21;
 d� � 2ku0k20;
 � k~uk(ik)k20;
 + C Z ik0 kf(�)k0;
 d� � C;whih gives (27). (27) implies (28) sine P is bounded in H1(
).[8℄Applying the above estimates we obtain the following results of onvergene.Lemma 4. If u0 2 X, f 2 L2(0; T ;X), then for a sequene of approximate so-lutions with k ! 0, there exixts a subsequene, suh that ~uk, u�k and uk onverge inL1(0; T ; (L2(
))2) weak *, ~uk onverges in L2(0; T ; (H(
))2);  < 0, strongly, u�k anduk onverge in L2(0; T ; (Hs(
))2); s < 1, strongly and in L2(0; T ; (H1(
))2) weakly.The limits of them are equal, and are the weak solution to the equations (1) (2).



Convergene of Chorin-Marsden Formula for the Navier-Stokes Equations on Convex Domains 81Proof. Sine uk are uniformly bounded in L2(0; T ; (H1(
))2), uk and ~uk are uni-formly bounded in L1(0; T ; (L2(
))2), we an extrat subsequenes suh that theyonverge weakly and weak * respetively. Let u and ~u be the limits. We de�nevk(t) = ( uk(t� ik); t 2 [2ik; (2i + 1)k);~uk(t� (i+ 1)k); t 2 [(2i + 1)k; 2(i + 1)k); i = 0; 1; � � � ;then vk 2 C([0; 2T ℄; (L2(
))2). By Lemma 3 vk are uniformly bounded in L1(0; 2T ; (L2(
))2).Let us estimate v0k = �vk�t . The Stokes operator A is de�ned as A = �P4 with domainfu 2 (H2(
))2 \ (H10 (
))2; r � u = 0g. Let � 2 (1; 32), we set W = D(A�2 ), thenD = fu 2 (C10 (
))2; r�u = 0g is dense inW . Let � 2 D be an arbitrary test funtion,then by (10) we haveZ
 �~uk�t � �dx+ Z
(uk � r)~uk � �dx = Z
 f � �dx: (34)Let us estimate the terms of (34) as the following:����Z
 f � �dx���� � kfk0k�k0 � kfk0k�k� ;����Z
(uk � r)~uk � �dx���� = ����Z
(uk � r)� � ~uk dx����� Ck~ukk0kukk0; 2��1 kr�k0; 22�� � Ck~ukk0kukk1k�k� � Ckukk1k�k� ;where we have applied the imbedding theorem[1℄ and Lemma 3. It follows from (34)that �~uk�t W 0 � C(kfk0 + kukk1): (35)We apply the operator P to the equation (9) and get�uk�t = �P 4 u�k;hene �uk�t W 0 � C �uk�t �1 � Cku�kk1: (36)By Lemma 3 we get the upper bound of the right hand sides of (35) and (36), whihyields Z 2T0 �vk�t 2W 0 dt � C:Thus v0k is uniformly bounded in L2(0; 2T ;W 0). We de�ne the H�older spae C 12 ([0; 2T ℄;W 0) equipped with the normkvk = maxt2[0;2T ℄ kv(t)kW 0 + supt;�2[0;2T ℄ jt� � j� 12 kv(t)� v(�)kW 0 ;



82 L.A. YINGthen by the Shwarz inequalitykvk(t)� vk(�)kW 0 = Z t� �vk�t dtW 0 � Z t� �vk�t W 0 dt� Z t� �vk�t 2W 0 dt! 12 (t� �)12 ; t > �; (37)so vk is uniformly bounded in C 12 ([0; 2T ℄;W 0). We extrat a onvergent subsequene inC([0; 2T ℄;W 0), still denoted by fvkg. Let us onsider the funtions uk and ~uk on [0; T ℄.For two di�erent temporal steps k and k0 we havekuk(t)� uk0(t)kW 0 = vk �� tk� k + t�� vk0 �� tk0 � k0 + t�W 0� vk �� tk� k + t�� vk0 �� tk� k + t�W 0 + Cmax(k 12 ; k0 12 ):Therefore uk(t) onverges in the norm k � kW 0 uniformly with respet to t 2 [0; T ℄. Ingeneral uk is not ontinuous in t, so uk onverges in L1(0; T ;W 0). The same is truefor ~uk. By the interpolation inequality we have for  2 (�1; 0) thatZ T0 k~u� ~ukk2 dt �C Z T0 k~u� ~ukk 2(�+)�0 k~u� ~ukk� 2�W 0 dt�C  Z T0 k~u� ~ukk20 dt!�+�  Z T0 k~u� ~ukk2W 0 dt!� � ;onsequently ~uk onverges in L2(0; T ; (H(
))2). Beause uk is bounded in L2(0; T ;(H1(
))2), by the same reason uk onverges in L2(0; T ; (Hs(
))2) for s < 1.We notie that (37) implies kuk(t)� ~uk(t)kW 0 � Ck 12 , so u = ~u.To study the onvergene of u�k, we derive an analogue of (37) from the equation(9) that ku�k(t)� u�k(ik)kW 0 � Cjt� ikj 12 ; t 2 [ik; (i + 1)k):Applying the interpolation inequality we getku�k(t)� u�k(ik)k � Cku�k(t)� u�k(ik)k� �W 0 ku�k(t)� u�k(ik)k�+�0� C(t� ik)� � :We notie that u�k(ik) = uk(ik), heneku�k(t)� uk(t)k � Ck� � :Therefore u�k also onverges to u in L2(0; T ; (H(
))2). Following the same lines wean prove that u�k possesses the same onvergent property as uk.Finally let us prove that u is a solution to the equations (1) (2). We take � 2 D,then we have ddt Z
 u�k � �dx = � Z
 u�k � 4�dx;



Convergene of Chorin-Marsden Formula for the Navier-Stokes Equations on Convex Domains 83whih givesZ
(u�k(t)� u�k(�)) � �dx = � Z t� Z
 u�k � 4�dxdt; t; � 2 [ik; (i + 1)k):AnalogouslyZ
(~uk(t)� ~uk(�)) � �dx� Z t� Z
(uk � r)� � ~uk dxdt = Z t� Z
 ~uk � f dxdt:Taking the initial onditions (13) (14) into aount, we get for t > �; t; � 2 [0; T ℄, thatZ
(u�k(t)� u�k(�)) � �dx� Z [ tk ℄k[ �k ℄k Z
(uk � r)� � ~uk dxdt= � Z t� Z
 u�k � 4�dxdt+ Z [ tk ℄k[ �k ℄k Z
 ~uk � f dxdt:Letting k ! 0, we obtainZ
(u(t)� u(�)) � �dx� Z t� Z
(u � r)� � u dxdt=� Z t� Z
 u � 4�dxdt+ Z t� Z
 u � f dxdt;whih is the weak form of (1) in the sense of Leray. It is lear that (2) holds, beauseboth uk and ~uk satisfy this equation.We turn now to prove that u satis�es the boundary ondition (3).Lemma 5. Under the onditions of Lemma 4 the limit funtion u belongs toL2(0; T ; (H10 (
))2).Proof. We use the formula (19) for u�k,u�k(x; t) = Z
nS 14��� e� jx��j24�� u�k(�; ik) d�+ Z
\S 14��� �e� jx��j24�� � e� jx��(�)j24�� �u�k(�; ik) d�; (38)where � = t � ik, t 2 (ik; (i + 1)k). Let x 2 �
 be an arbitrary point and " > 0 be asmall positive onstant. We onstrut a dis 
1 with enter x and radius ", thenZ
\S = Z(
\S)n
1 + Z
\
1 :If � =2 
1, then jx� �j � ", jx��(�)j � ". Therefore if k is small enough, then we have�����Z
nS�����+ �����Z(
\S)n
1 ����� < "for � < k. It remains to onsider the integral on 
\
1. Let � 2 
\
1. We onstrutthe same loal oordinates as in the proof of Lemma 1, thenjx� �(�)j2 � jx� �j2 = (x21 + (x2 + �2)2)� (x21 + (x2 � �2)2)



84 L.A. YING= 4x2�2 = 4f(x1)�2 � Cjx� �j2";hene 0 � e� jx��j24�� � e� jx��(�)j24�� � Cjx� �j2"4�� e� jx��j24�� :We take an arbitrary � 2 C1(�
), then we haveI = ����Z�
 �(x) dx Z
\
1 14��� �e� jx��j24�� � e� jx��(�)j24�� �u�k(�; ik) d������ Z�
 j�(x)j dx Z
\
1 Cjx� �j2"16��2�2 e� jx��j24�� ju�k(�; ik)j d�:We extend u�k(�; ik) by zero to the exterior of 
, still denoted by u�k(�; ik). We notiethat r � u�k(�; ik) = 0. By the hange of variables � = x+p�� we haveI � Z�
 j�(x)j dx Zj�j� 1p� C"j�j2e� j�j24� ju�k(x+p��; ik)j d�= Zj�j� 1p� C"j�j2e� j�j24� d� Z�
 j�(x)j � ju�k(x+p��; ik)j dx� Zj�j� 1p� C"j�j2e� j�j24� k�k 12 ;�
ku�k(�+p��; ik)k� 12 ;�
 d��k�k 12 ;�
ku�k(�; ik)k0;
 Zj�j� 1p� C"j�j2e� j�j24� d� � C"k�k 12 ;�
ku�k(�; ik)k0;
:Due to Lemma 3 we have����Z�
 �(x)u�k(x; t) dx���� < C"; 8� 2 C1(�
);where the onstant C depends on �. Consequentlylimk!0 ����Z�
 �(x)u�k(x; t) dx���� < C":But " is arbitrary, thereforelimk!0 Z�
 �(x)u�k(x; t) dx = 0; 8� 2 C1(�
); (39)whih implies u�k tends to zero on the boundary �
 in the sense of distributions. ByLemma 4 u�k onverges to u in L2(0; T ; (Hs(
))2) strongly, s < 1. We take s > 12and extrat a subsequene suh that u�k(t) onverges to u(t) in (Hs(
))2 for almost allt 2 [0; T ℄. By the trae theorem u�k(t)j�
 onverges to u(t)j�
 in (Hs� 12 (�
))2. (37)implies the limit is zero. Therefore u(t) 2 (Hs0(
))2 for almost all t 2 [0; T ℄. Butu 2 L2(o; T ; (H1(
))2), so u 2 L2(o; T ; (H10 (
))2).The onlusions of the above lemmas lead to the following theorem.



Convergene of Chorin-Marsden Formula for the Navier-Stokes Equations on Convex Domains 85Theorem 1. If u0 2 X, f 2 L2(0; T ;X), then the weak solution u 2 L2(0; T ;(H10 (
))2)TL1 (0; T ;X) to the problem (1){(4) in the sense of Leray is the limit of~uk, uk, u�k in the sense ofuk; ~uk �* u; (L1(0; T ;X));u�k �* u; (L1(0; T ; (L2(
))2));uk; u�k * u; (L2(0; T ; (H1(
))2));~uk ! u; (L2(0; T ; (H(
))2);  < 0);uk; u�k ! u; (L2(0; T ; (Hs(
))2); s < 1):Proof. We have already proved that there exists a subsequene whih onvergesto u in the above sense. The weak solution to (1){(4) is unique, therefore the aboveresults of onvergene hold for the whole k ! 0.4. Convergene for the Half PlaneIf 
 is the half plane fx;x2 > 0g, then the absolute value of the Jaobian jJ(x)j = 1.The extension operator E is the same as that in [6℄. Sine u�k is an odd funtion withrespet to x2, it is not only the solution to the Cauhy problem of (9), but also thesolution to the initial-boundary value problem with the Dirihlet boundary onditionu�kj�
 = 0: (40)We notie that (40) does not imply uk = u�k, beause generally speaking r � u�k 6= 0.However, Lemma 1 and Lemma 2 beome trivial at this ase. Lemma 3 holds withoutany hange. Sine the domain is unbounded, the results of strong onvergene inLemma 4 should be hanged to be loally. By (40) Lemma 5 is also trivial. We havethe following theorem by analogy to Theorem 1.Theorem 2. If 
 = fx;x2 > 0g, u0 2 X, f 2 L2(0; T ;X), then the weak solutionu 2 L2(0; T ; (H10 (
))2)TL1(0; T ;X) to the problem (1)-(4) in the sense of Leray isthe limit of ~uk, uk, u�k in the sense ofuk; ~uk �* u; (L1(0; T ;X));u�k �* u; (L1(0; T ; (L2(
))2));uk; u�k * u; (L2(0; T ; (H1(
))2));~uk ! u; (L2(0; T ; (Hlo(
))2);  < 0);uk; u�k ! u; (L2(0; T ; (Hslo(
))2); s < 1):We turn now to study the extension given in [4℄,(u�k)1(x; ik) = ( (~uk)1(x; ik � 0); x 2 �
;�(~uk)1(�x; ik � 0); x =2 
; (41)(u�k)2(x; ik) = ( (~uk)2(x; ik � 0); x 2 �
;(~uk)2(�x; ik � 0); x =2 
: (42)



86 L.A. YINGThe orresponding boundary onditions are(u�k)1j�
 = 0; �(u�k)2�n �����
 = 0: (43)Sine r�u�k = 0, u�k are not only the solutions to (9) but also the solutions to the Stokesequation �u�k�t + 1�rp�k = � 4 u�k;r � u�k = 0:The results of Lemma 2 still hold, beause we an use the boundary ondition (43)to get the energy estimates for (u�k)1 and (u�k)2 respetively. The remarks for Lemma3 and Lemma 4 are the same as the previous ase. Lemma 5 is also trivial beauseby (43) we get u1j�
 = 0 and by (uk)2j�
 = 0 we get u2j�
 = 0. Therefore for theextension (41) (42) the result of omvergene also holds.Theorem 3. Under the extension (41) (42) the onlusion of Theorem 2 holds.Finally let us study the sheme (9) (15) (11)-(14). From the proof in setion 3 wesee that we need an estimate of ~uk in the form of (27).Lemma 6. If u0 2 X, f 2 L2(0; T ;H1(
)). k � T �, and if 
0 is a ompatsubdomain of �
, then for the sheme (9) (15) (11)-(14) the following estimate holds for(i+ 1)k � T : Z (i+1)kik j~uk(�)j21;
0 d� � C Z (i+1)kik ju�k(�)j21;
 d� + Ck; (44)where the onstant C depends on 
0.Proof. Taking the inner produt of (9) with 4u�k we obtain�12 ddt Z
 jru�kj2 dx = � Z
 j 4 u�kj2 dx � 0;whih gives Z
 jru�k(x; (i + 1)k � 0)j2 dx � 1k Z (i+1)kik d� Z
 jru�k(x; �)j2 dx: (45)Multiplying (16) by ~!k and taking integration we get12 ddt Z
 j~!kj2 dx = Z
 ~!kF dx;whih gives ddtk~!k(t)k0;
 � kF (t)k0;
;therefore k~!k(t)k0;
 � k~!k(ik)k0;
 + Z tik kF (�)k0;
 d�; t 2 [ik; (i + 1)k);



Convergene of Chorin-Marsden Formula for the Navier-Stokes Equations on Convex Domains 87onsequentlyZ (i+1)kik k~!k(�)k20;
 d� � 2kk~!k(ik)k20;
 + 2k Z (i+1)kik kF (�)k20;
 d�= 2kk!k((i+ 1)k � 0)k20;
 + 2k Z (i+1)kik kF (�)k20;
 d�� 2kkru�k((i+ 1)k � 0)k20;
 + 2k Z (i+1)kik kF (�)k20;
 d�:By (45)Z (i+1)kik k~!k(�)k20;
 d� � 2 Z (i+1)kik ju�k(�)j21;
 d� + 2k Z (i+1)kik kF (�)k20;
 d�: (46)We take 
0 suh that 
0 �� 
00 �� �
. Noting the de�nition of the stream funtion ~ kand the estimate (25), by virtue of the Friedrihs inequality we getk ~ kk0;
00 � C: (47)Then applying the interior estimate of ellipti equations we havej~ukj1;
0 � Cfk ~ kk0;
00 + k~!kk0;
g;whih together with (46) (47) yields (44).Following the same lines as setion 3 we get the onvergene theorem as follows.Theorem 4. If 
 = fx;x2 > 0g, u0 2 X, f 2 L2(0; T ;H1(
)), then the solutionsto the sheme (9) (15) (11){(14) onverge to u in the sense ofuk; ~uk �* u; (L1(0; T ;X));u�k �* u; (L1(0; T ; (L2(
))2));uk; u�k * u; (L2(0; T ; (H1(
))2));uk; u�k; ~uk ! u; (L2(0; T ; (Hslo(
))2); s < 1):Remark For the extension (41) (42) we an obtain the same result. Sine theargument is just the same, it is omitted here.Aknowledgement This work was aomplished when the author visited the Re-searh Institute for Mathematial Sienes of Kyoto University as a visiting professor.The author is grateful to the institute and Professor Okamoto for their hospitality.Referenes[1℄ R.A. Adams, Sobolev Spaes, Aademi Press, 1975.[2℄ G. Alessandrini, A. Douglis, E. Fabes, An approximate layering method for the Navier-Stokes equations in bounded ylinders, Ann. Mat. Pura Appl., 135 (1983), 329{347.[3℄ J.T. Beale, C. Greengard, Convergene of Euler-Stokes splitting of the Navier-Stokes equa-tions, Comm. Pure Appl. Math., 47 (1994), 1083{1115.



88 L.A. YING[4℄ G. Benfatto, M. Pulvirenti, Convergene of Chorin-Marsden produt formula in the half-plane, Comm. Math. Phys., 106 (1986), 427{458.[5℄ A.J. Chorin, Numerial study of slightly visous ow, J. Fluid Meh., 57 (1973), 785{796.[6℄ A.J. Chorin, T.J.R. Hughes, M.F. MCraken, J.E. Marsden, Produt formulas and numer-ial algorithms, Comm. Pure Appl. Math., 31 (1978), 205{256.[7℄ R. Rautmann, Eine konvergente produkt formel f�ur linearisierte Navier-Stokes probleme,ZAMM Z. angew. Math. Meh., 69 (1989), T.181{T.183.[8℄ R. Temam, Navier-Stokes equations, Theory and Numerial Analysis, 3rd ed., North Hol-land, 1984.[9℄ L.-a. Ying, Convergene study for visous splitting in bounded domains, Leture Notes inMathematis, Springer-Verlag, 1297 (1987), 184{202.[10℄ L.-a. Ying, On the visosity splitting method for initial boundary value problems of theNavier-Stokes equations, Chin. Ann. of Math., 10B (1989), 487{512.[11℄ L.-a. Ying, Visous splitting for the unbounded problem of the Navier-Stokes equations,Math. Comp., 55 (1990), 89{113.[12℄ L.-a. Ying, Visosity splitting sheme for the Navier-Stokes equations, Numer. Meth. PDE,7 (1991), 317{338.[13℄ P. Zhang, A sharp estimate of simpli�ed visosity splitting sheme, J. Comput. Math., 11(1993), 205{210.[14℄ Q. Zheng, M. Huang, A simpli�ed visosity splitting method for solving the initial boundaryvalue problems of Navier-Stokes equation, J. Comput. Math., 10 (1992), 39{56.


