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THE FULL DISCRETE DISCONTINUOUS FINITE ELEMENTANALYSIS FOR FIRST{ORDER LINEAR HYPERBOLICEQUATION�1)Che Sun Shu-jie Qin(Department of Mathematis, Nankai University, Tianjin 300071, China)AbstratIn this paper, the full disrete disontinuous Galerkin �nite element methodto solove 2{dimensional �rst{order linear hyperboli problem is onsidered. Twopratial shemes, Euler sheme and Crank{Niolson sheme, are onstruted. Foreah of them, the stability and error estimation with optimal order approximationis established in the norm stronger than L2{norm.Key words: Hyperboli equation, Disontinous F.E.M., Euler sheme1. IntrodutionLet �
 be a bounded domain in R2 with pieewise smooth boundary �
, [0; T ℄ be atime interval. Consider the �rst-order hyperboli problem as following�u�t + �(x; t) � ru+ �(x; t)u = f(x; t); t 2 (0; T ℄; x 2 ~
(t); (1.0a)u(x; t) = g(x; t); t 2 [0; T ℄; x 2 �
�(t); (1.0b)u(x; t) = u0(x); x 2 
: (1.0)where ru = (�u�x ; �u�y ), �(x; t) = (�1(x; t); �2(x; t)), �
�(t) = fx 2 �
 : �(x; t) �  < 0g,(x) is the outward unit normal to �
; ~
(t) = �
n�
�(t). As usual, �
�(t) is referedto as inow boundary at time t, and �
+(t) = �
n�
�(t) is alled outow boundaryat time t.For simpliity in �nite element analysis, suppose that boundary �
�(t) is indepen-dent of t. Thus for all t 2 (0; T ℄ we an write�
�(t) � ��; �
+(t) � �+; ~
(t) = �
n�� � 
?and problem (1.0) an be written as�u�t + �(x; t) � ru+ �(x; t)u = f(x; t); (x; t) 2 
? � (0; T ℄; (1.1a)u(x; t) = g(x; t); (x; t) 2 �� � [0; T ℄; (1.1b)� Reeived Otober 17, 1996.1)The Projet was Supported by the National Natural Siene Foundation of China.



98 C. SUN AND S.J. QINu(x; 0) = u0(x); x 2 
: (1.1)We shall onsider the full disrete disontinuous Galerkin method for problem (1.1).Set D = 
 � (0; T ℄, Lp(0; T ;X) � Lp(X), p = 2;+1, where X is a Banahspae. Assume that �i 2 L1(C1(�
)), i = 1; 2; � 2 L1(L1(
)), f 2 L2(L2(
)),g 2 L2(L2(��)); u0 2 L2(
):Disontinuous Galerkin (DG) method is an explit method with good stability andsatisfatory auray, thus it has beome to be an eÆtive proedure to solve �rst-orderhyperboli problems. DG method was proposed by P. Lesaint and P.R. Raviart in 1978([1℄), then it was developed by C. Johnson, G.R. Rihart et al.[2�4℄. In priniple, wean use the DG method based on spae-time �nite element disretization for domain�
�[0; T ℄ to solve Problem (1.1), but in this ase, we must solve a series of disretizationproblems de�ned on 3{dimensional subdomain �
� [tn�1; tn℄, n = 1; 2; � � �; As omparedwith full disrete Galerkin method, the omputational sale of DG method is larger andthe omputing program is more omplex.In order to overome the weakness of DG method, we now present a simpli�edDG method for time-dependent Problem (1.1), full disrete disontinuous Galerkin(FDDG) method, that is, using DG disretization only in spae variables and using�nite di�erene disretization in time variable t.One an imagine that FDDG sheme possesses similar stability and onvergene re-sultes with the DG sheme (based on spae-time �nite element). In fat, the theoritialanalysis for FDDG sheme is more omplex than that of DG sheme beause of thenon-uniform proessing in time and spae variables. It seems to us so far that therehas been no paper to establish omplete analysis for FDDG sheme of Problem (1.1).In setion 2 two pratial FDDG shemes, Euler sheme and Crank{Niolson (C|N) sheme, are onstruted; In setion 3 the stability and error estimate for Eulersheme are derived; In setion 4 the theoretial results for Crank{Niolson sheme aregiven briey; Finally, a numerial example is given in setiom 5.Throughout ontext, we shall use letters C, Ci, ", "i to denote some positive on-stants independent of time-step 4t and �nite element mesh parameter h, whih havedi�erent values in di�erent inequalities.2. Full Disrete Disontinuous Galerkin ShemesFor onveniene, let �
 be a polygonal domain, Th = fkg is a quasi{uniform trian-gular partition of �
 with mesh parameter h(0 < h � h0 < 1), k is an element in Th.Let 4t = � be time{step, tn = n� , n = 0; 1; � � � ; N = [T=4t℄. Suppose that on all timelevels t = tn(n = 0; 1; � � � ; N), the same �nite element mesh Th for spae domain �
 isadopted. Denote Vh = fv 2 L2(
) : vjk 2 Pr(k);8k 2 Thg; (2.1)where Pr(k) is a set of polynomials with degree � r on k.I. Euler FDDG ShemeSet �n(x) = �(x; tn). For 8k 2 Th, let �k be the boundary of k whih onsist ofstraight line sides lj (j = 1; 2; 3) and (x) be the outward unit vetor normal to �k.



The Full Disrete Disontinuous Finite Element Analysis for First{Order Linear Hyperboli Equation99De�ne for 8k 2 Th on time level t = tn,��nj = 1jlj j Zlj �n(x) ds; j = 1; 2; 3; (jlj j is length of lj);��n(x) = ��nj ; for x 2 lj ; j = 1; 2; 3;�kn� = �x 2 �k; ��n(x) � (x) < 0	 ; �kn+ = �kn�kn�: (2.2)�kn� and �kn+ are alled inow and outow boundary of element k Respetively.Obviously, if lj � �� then lj � �kn� from the de�nition (2.2).Note that vj�k may be disontinuous for v 2 Vh. De�ne for v; w 2 Vh and x 2 �kon t = tn, vn+(x) = lims!0+ v(x+ s��n(x)); vn�(x) = lims!0� v(x+ s��n(x));[vn(x)℄ = vn+(x)� vn�(x);hv; wi�kn� = Z�kn� vwj��n � j ds; jvj2�kn� = hv; vi�kn� ; (2.3)hv; wi�n� = X�kn����hv; wi�kn� ; jvj2�n� = hv; vi�n� :Likewise, hv; wi�kn+ , jvj�kn+ , hv; wi�n+ , jvj�n+ an be de�ned.And also, denote(v; w)k = Zk vw dx; jjvjj2k = (v; v)k;(v; w) = Z
 vw dx; jjvjj2 = (v; v);(v; w)H1(
) = Xk2Th(v; w)H1(k); jjvjj21 = Xk2Th(v; v)H1(k):Denote qn(x) = q(x; tn) and 4tqn = qn�qn�1� . Problem (1.1) on time t = tn an bewritten as 4tun + �n � run + �nun = fn +En1 ; n = 1; 2; � � � ; N; (2.4a)un�j�� = gn; (2.4b)u0 = u0; x 2 
: (2.4)where En1 is trunation error En1 = 4tun � ��u�t �n: (2.5)Omitting En1 from (2.4a) and onsulting the de�nition of DG sheme[2℄, the EulerFDDG sheme of Problem (1.1) is de�ned as: Find Un 2 Vh, n = 0; 1; � � � ; N suh that,for eah k 2 Th,(4tUn + �n � rUn + �nUn; v)k + h[Un℄; v+i�kn� = (fn; v)k; 8v 2 Pr(k); (2.6a)



100 C. SUN AND S.J. QINUn�j�kn� = gn; on �kn� � ��; (2.6b)(U0 � u0; v)k = 0; 8v 2 Pr(k): (2.6)Initial-value funtion U0 2 Vh is determined by (2.6). We an use (2.6a) and (2.6b)to ompute Un element by element starting from those elements where �kn� � ��, whenUn�1 has been solved.Summing (2.6) for k 2 Th, we have(4tUn + �n � rUn + �nUn; v) + Xk2Thh[Un℄; v+i�kn� = (fn; v); 8v 2 Vh; (2.7a)Un�j�� = gn; (2.7b)(U0 � u0; v) = 0; 8v 2 Vh: (2.7)It is easy to see that Promble (2.6) is equivalent to Problem (2.7).II. Crank{Niolson FDDG ShemeSet tn = (tn�1 + tn)=2, qn(x) = q(x; tn), ~qn(x) = (qn�1 + qn)=2. Then on levelt = tn, (1.1a) an be written as4tun + �n � r~un + �n~un = fn +En2 ; n = 1; 2 � � � ; N; (2.8)where the trunation errorEn2 = 4tun � ��u�t �n � �n � r(un � ~un)� �n(un � ~un): (2.9)As the de�nition (2.2) introdued in Euler sheme (2.6), de�ne for 8k 2 Th withboundary lj(j = 1; 2; 3) on t = tn,��(j)n = 1jlj j Zlj �n(x) ds; j = 1; 2; 3;��n(x) = ��(j)n ; 8x 2 lj; j = 1; 2; 3;�kn� = �x 2 �k; ��n(x) � (x) < 0	 ; �kn+ = �kn�kn�: (2.10)And also, de�ne for v 2 Vh and x 2 �k on t = tn,vn�(x) = lims!0� v(x+ s��n(x)); [vn(x)℄ = vn+ � vn�:Omitting En2 from (2.8), the Crank{Niolson FDDG sheme of Promble (1.1) isde�ned as: Find Un 2 Vh (n = 0; 1; � � � ; N) suh that, for 8k 2 Th,(4tUn + �n � r ~Un + �n ~Un; v)k + h[ ~Un℄; v+i�kn� = (fn; v)k; 8v 2 Pr(k); (2.11a)Un�j�kn� = gn; on �kn� � ��; (2.11b)(U0 � u0; v)k = 0; 8v 2 Pr(k): (2.11)



The Full Disrete Disontinuous Finite Element Analysis for First{Order Linear Hyperboli Equation1013. The Analysis for Euler FDDG ShemeFor simpliity in notations, set P 4= Pk2Th and S 4= Sk2Th. On level t = tn, setQn� = S �kn�, Qn+ = S �kn+ and denotehv; wiQn� =Xhv; wi�kn� ; hv; wiQn+ =Xhv; wi�kn+ ;B(wn; v;wn�1) 4=X(4twn + �n � rwn + �nwn; v)k + h[wn℄; v+iQn� : (3.1)3.1 StabilityLemma 3.1. There exist onstants C? and C?? > 0 independent of k; h; n suhthat, for 8v 2 Pr(k),jjvjjL2(�k) � C?h�12 jjvjjk; 8k 2 Th; (3.2)��� Z�k v2(�n � ��n) �  ds��� � C??jjvjj2k; 8k 2 Th: (3.3)Proof. Estimate (3.2) an be derived from the quasi{uniformity of Th and the inverseestimation jjvjjL1(k) � M0h�1jjvjjk for Pr(k). The inequality (3.3) follows from (3.2)and the fat jj�n � ��njjL1(�k) �M1hjj�jjL1(C1(�
)).Lemma 3.2. There exists onstant C0 > 0 independent of �; h; n suh that, for8wn, wn�1 2 Vh and 8wn�j�� 2 L2(��),B(wn; wn;wn�1) + C0jjwnjj2 + 12 jwn�j2�n��12 h4tjjwnjj2 + � jj4twnjj2 + j[wn℄j2Qn� + jwn�j2�n+i (3.4)where 4tjjwnjj2 4= (jjwnjj2 � jjwn�1jj2)=� .Proof. By de�nition (3.1),B(wn; wn;wn�1) 4=X(4twn + �n � rwn + �nwn; wn)k + h[wn℄; wn+iQn� : (3.5)It's easy to see that(?1) (4twn; wn) = 12 (4tjjwnjj2 + � jj4twnjj2);(?2) (�n � rwn + �nwn; wn)k = ((�n � 12div�n)wn; wn)k + 12 R�k(wn)2�n �  ds;(?3) R�k(wn)2�n �  ds = R�k(wn)2 ��n �  ds+ R�k(wn)2(�n � ��n) �  ds;(?4) R�k(wn)2 ��n �  ds = R�kn+(wn�)2 ��n �  ds� R�kn�(wn+)2j��n � j ds:Substituting (?1)|(?4) into (3.5) we have(?5) B(wn; wn;wn�1) � 12(4tjjwnjj2 + � jj4twnjj2)� jj� � 12div�jjL1(L1(
)) � jjwnjj2+ 12hwn�; wn�iQn+ � 12 hwn+; wn+iQn� + h[wn℄; wn+iQn�� 12P��� Z�k(wn)2(�n � ��n) �  ds���:Noting that (wn�; wn�)Qn+ = hwn�; wn�iQn� � hwn�; wn�i�n� + hwn�; wn�i�n+ :



102 C. SUN AND S.J. QINApplying (3.3) to term R�k(wn)2(�n � ��n) �  ds and settingC0 = � � 12div�L1(L1(
)) + 12C??;then estimate (3.4) is obtained immediately from inequality (? 5).Theorem 3.1. For 4t(= �) small enough, Euler FDDG sheme (2:6) has a uniquesolution fUng and the following estimate is true:max0�n�N jjUnjj2 + NXn=1(j[Un℄j2Qn� + jUn�j2�n+ )� � Cfjjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2g;(3.6)where onstant C is independent of �; h.Proof. It is suÆient to show the estimation (3.6). In fat, from (2.7) we haveB(Un; Un;Un�1) = (fn; Un); n = 1; 2; � � � ; N:Applying Lemma 3.2 and (2.7b) to the right{side of above equality then using Gron-wall inequality and noting that jjU0jj � jju0jj, we an see that provided 4t(= �) issuÆiently small suh that 1� (C0 + 1)� � �0 > 0 andNXn=1 jjfnjj2� � 2jjf jj2L2(L2(
)); NXn=1 jjgnjj2L2(��)� � 2jjgjj2L2(L2(��))then(?6) jjUnjj2 +Pnl=1(j[U l℄j2Ql� + jU l�j2�l+)�� Cfjjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2g; n = 1; 2; � � � ; N;from whih the onlusion (3.6) is proved.If speifying Un+j�+ = 0 and un+j�+ = 0, setting Q 4= S �k = Qn�S�+ and denotingjjU jj24 4= max0�n�N jjUnjj2 + NXn=1 j[Un℄j2Q� (3.7)then estimation (3.6) an be written asjjU jj24 � Cfjjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2g: (3.8)In order to establish the stability of sheme (3.6) in that norm whih is strongerthan jj � jj4, it is neessary to make a more �ne analysis for sheme (2.6).Let Ok be the geometry entre of element k 2 Th and wn; wn�1 2 Vh. De�nepieewise funtions on Thwn? = 4twn + �n � rwn; 8k 2 Th; (3.9)wn = 4twn + �n(Ok) � rwn; 8k 2 Th; (3.10)then wn 2 Vh and it is easy to show thatjjwn � wn? jjk � Cjjwnjjk; (3.11)



The Full Disrete Disontinuous Finite Element Analysis for First{Order Linear Hyperboli Equation103jjwnjjk � C(jjwnjjk + jjwn? jjk); 8k 2 Th: (3.12)Lemma 3.3. There exists a onstant ~C0 > 0 suh that, for 8wn, wn�1 2 Vh and8wn�j�� 2 L2(��),B(wn; wn;wn�1) � 34 jjwn? jj2 � ~C0(jjwnjj2 + h�1j[wn℄j2Qn�): (3.13)Proof. By the de�nition (3.1) we haveB(wn; wn;wn�1) =Xf(wn? ; wn? )k + (�nwn; wn? )kg+ h[wn℄; wn+iQn�+Xf(wn? ; wn � wn? )k + (�nwn; wn � wn? )kg: (3.14)Set �1 = jj�jjL1(L1(
)) then(wn? ; wn? )k + (�nwn; wn? )k � (1� ")jjwn? jj2k � �214" jjwnjj2k; (0 < " < 1):It follows from (3.11), (3.12) and Lemma 3.1 that(wn? ; wn � wn? )k �"jjwn? jj2k + C14" jjwnjj2k;(�nwn; wn � wn? )k �C2jjwnjj2k;h[wn℄; wn+i�kn� �C3h�12 j[wn℄j�kn� jjwnjjk�"(jjwn? jj2k + jjwnjj2k) + C44" h�1j[wn℄j2�kn� :Substituting inequalities above into (3.14) and taking " = 112 then (3.13) is derived.Lemma 3.4. There exists a onstant C?0 > 0 suh thatjjUn? jj2 � C?0fjjUnjj2 + h�1j[Un℄j2Qn� + jjfnjj2g; n = 1; 2; � � � ; N (3.15)Proof. Sine Un 2 Vh we haveB(Un; Un;Un�1) = (fn; Un); n = 1; 2; � � � ; N:The estimation (3.15) an be obtained by Lemma 3.3 and applying "�ab inequalityand (3.12) to term (fn; Un).Now de�ne jjU jj2�;h 4= jjU jj24 + h NXn=1 jj4tUn + �n � rUnjj2�; (3.16)where still speifying Un+j�+ = 0, n = 1; 2; � � � ; N .Theorem 3.2. Euler FDDG sheme (2:6) is stable in norm jj � jj�;h, that is, for �small enough, the solution fUng of sheme (2:6) satis�es the following estimate:jjU jj2�;h � Cfjjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2g; (3.17)



104 C. SUN AND S.J. QINwhere C is independent of h; � .Proof. It follows from (2.7) and Lemma 3.2 that12[4tjjUnjj2 + j[Un℄j2Qn� + jUn�j2�n+ ℄ � jjfnjj2 + C1jjUnjj2 + jjgnjj2L2(��): (3.18)Multiplying (3.15) by �h(� > 0) where � is small so that �C?0 � 14 and adding theobtained inequality to (3.18) we have12� (jjUnjj2 � jjUn�1jj2) + 14 j[Un℄j2Qn� + 12 jUn�j2�+ + �hjjUn? jj2�C2(jjUnjj2 + jjfnjj2 + jjgnjj2L2(��)); n = 1; 2; � � � ; N:Summing above inequalities up for n and using the regularity treatment, then theonlusion (3.17) an be proved.Comparing Theorem 3.2 with Theorem 3.1 we see that Theorem 3.2 delineates thestability of sheme (2.6) more deeply sine estimate (3.17) shows that the hange ofUn along the ow �eld diretion (�n1 ; �n2 ; 1) is also stable. By the way, we point outthat it seems impossible to establish the same stability results as (3.17) for full disreteGalerkin sheme of Problem (1.1).Remark 1 If the term jj4tUnjj2 is retained by applying Lemma 3.2 to derive (3.18),then the estimate (3.17) an be improved asjjU jj2�;h + � NXn=1 jj4tUnjj2� � C(jjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2): (3.19)If taking � = �h (� = onst: > 0) and noting thatjj�n � rUnjj2 � 2(jj4tUnjj2 + jj4tUn + �n � rUnjj2)then we an get jjU jj24 + NXn=1f� jj4tUnjj2 + hjj�n � rUnjj2g��Cfjjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2g: (3.20)Remark 2. In the analysis of DG method based on spae-time �nite elementdisrete to solve Problem (1.1), the ondition� � 12div� � �0 > 0; (x; t) 2 Dis assumed[2℄. But as we have seen above that the assumption is not neessary for EulerFDDG sheme (2.6).3.2 Convergene-order estimationLet u be the solution of (1.1). Assume that u 2 L1(Hr+1(
)) \ C( �D), �u�t 2L2(Hr+1(
)) and �2u�t2 2 L2(L2(
)). The trunation error En1 in following equationB(un; v;un�1) = (fn; v) + (En1 ; v); 8v 2 Vh; n = 1; 2; � � � ; N (3.21)



The Full Disrete Disontinuous Finite Element Analysis for First{Order Linear Hyperboli Equation105an be bounded byjjEn1 jj2 =4tun � ��u�t �n2 = 1�2  Z tntn�1(t0 � tn�1)�2u�t2 dt0���2�C1��2u�t2 L2(Jn;L2(
)); (3.22)where Jn = (tn�1; tn).It follows from (3.2) and (2.7) thatB(un � Un; v;un�1 � Un�1) = (En1 ; v); 8v 2 Vh; n = 1; 2; � � � ; N; (3.23a)(un � Un)�j�� = 0; (3.23b)(u0 � U0; v) = 0; 8v 2 Vh: (3.23)De�ne ~u(t) : [0; T ℄! Vh suh that, for 8k 2 Vh,(~u(t)� u(t); v)k = 0;8v 2 Pr(k); t 2 [0; T ℄: (3.24)Set �n = Un� ~un, �n = un� ~un, en = un�Un = �n� �n and take ~un�j�� = gn thenB(�n; v; �n�1) = B(�n; v; �n�1)� (En1 ; v); 8v 2 Vh; n = 1; 2; � � � ; N; (3.25a)�n�j�� = 0; �n�j�� = 0; (3.25b)�0 = 0: (3.25)Taking v = �n in (3.25a) we haveB(�n; �n; �n�1) = B(�n; �n; �n�1)� (En1 ; �n):Using Lemma 3.2 and the boundary ondition (3.25b) we an get12[4tjj�njj2 + j[�n℄j2Qn� + j�n�j2�n+ + � jj4t�njj2℄�B(�n; �n; �n�1) +C0jj�njj2 � B(�n; �n; �n�1)+C1(jj�njj2 + jjEn1 jj2): (3.26)Lemma 3.5. There exists a onstant C > 0 suh that4tjj�njj2 + j[�n℄j2Qn� + j�n�j2�n+ + � jj4t�njj2�Cfjj�njj2 + jj�njj2 + hjj�njj21 + j�n�j2Qn� + j�n�j2�n+ + jjEn1 jj2g; n = 1; 2; � � � ; N:(3.27)Proof. In fat,B(�n; �n; �n�1) =X(4t�n + �n � r�n + �n�n; �n)k + h[�n℄; �n+iQn� : (3.28)



106 C. SUN AND S.J. QINSine �njk 2 Pr(k), from the de�nition of ~u we have(? ? 1) (4t�n; �n)k = 1� (�n � �n�1; �n)k = 0, 8k 2 Th:Integrating by parts yields(? ? 2) (�n � r�n + �n�n; �n)k = �(�n; �n � r�n)k+((�n � div�n)�n; �n)k + R�k �n�n�n �  ds:Noting that (�n(Ok) � r�n)jk 2 Pr(k) and using the inverse estimate of Pr(k) we anget(? ? 3) (�n; �n � r�n)k = (�n; (�n(x)� �n(Ok)) � r�n)k � C1jj�njjk � jj�njjk:And also(? ? 4) R�k �n�n�n �  ds= R�kn+ �n��n� ��n �  ds� R�kn� �n+�n+j��n � j ds� R�k �n�n( ��n � �n) �  ds:Using Lemma 3.1 and the trae inequality we obtain(? ? 5) R�k �n�n( ��n � �n) �  ds � (R�k(�n)2j�n � ��nj ds) 12 � (R�k(�n)2j�n � ��nj ds)12� Ch 12 jj�njjL2(�k) � jj�njjk � Ch 12 jj�njjH1(k) � jj�njjk� jj�njj2k + C2hjj�njj21;k:Combining (? ? 1)|(? ? 5) with (3.28) and noting (3.25b) we haveB(�n; �n; �n�1) �C3(jj�njj2 + jj�njj2) + C2hjj�njj21 + h�n�; �n�iQn+� h�n+; �n+iQn� + h[�n℄; �n+iQn��C4(jj�njj2 + jj�njj2 + hjj�njj21) + 14(j[�n℄j2Qn� + jj�n�jj2�n+ )+ 2(j�n�j2Qn� + j�n�j2�n+ ):Substituting above inequality into (3.26), the desired estimate (3.27) is proved.De�ne for n = 1; 2; � � � ; N ,�n? = 4t�n + �n � r�n;8k 2 Th; (3.29a)�n = 4t�n + �n(Ok) � r�n; 8k 2 Th: (3.29b)Lemma 3.6. There exists a onstant ~C > 0 suh thatjj�n? jj2 � ~C1[jj�njj2 + h�1j[�n℄j2Qn� + jjr�njj2 + jj�njj2+ h�1j[�n℄j2Qn� + jjEn1 jj2℄; n = 1; 2; � � � ; N: (3.30)Proof. Taking v = �n in (3.25a) and using Lemma 3.3 we an get34 jj�n? jj2 � B(�n; �n; �n�1) + ~C0(jj�njj2 + h�1j[�n℄j2Qn�)= B(�n; �n; �n�1)� (En1 ; �n) + ~C0(jj�njj2 + h�1j[�n℄j2Qn�):From (3.12) we have (En1 ; �n) � 14(jj�n? jj2 + jj�njj2) + C1jjEn1 jj2:



The Full Disrete Disontinuous Finite Element Analysis for First{Order Linear Hyperboli Equation107Thus 12 jj�n? jj2 � B(�n; �n; �n�1) +C2(jj�njj2 + h�1j[�n℄j2Qn� + jjEn1 jj2): (3.31)Note that B(�n; �n; �n�1) =X(4t�n + �n � r�n + �n�n; �n)k + h[�n℄; �n+iQn� ;(3.32)(41) (4t�n; �n)k = 0;(42) (�n � r�n + �n�n; �n)k � C3(jjr�njjk + jj�njjk) � (jj�n? jjk + jj�njjk);(43) h[�n℄; �n+iQn� � C4h�12 X j[�n℄j�kn�(jj�n? jjk + jj�njjk):Combining (3.31) with (3.32), (41)|(43) and using "{ab inequality the estimate (3.30)is derived.Theorem 3.3. Let u; fUng be the solutions of Problem (1:1) and Euler FDDGsheme (2:6) respetively. Assume thatu 2 L1(Hr+1(
)) \C( �D); �u�t 2 L2(Hr+1(
)); �2u�t2 2 L2(L2(
)):Then there exists a onstant C independent of �; h suh that, for � small enough,max0�n�N jjenjj2+ NXn=1 j[en℄j2Q� + NXn=1(� jj4tenjj2 + hjj4ten + �n � renjj2)��C(h2r+1 + �2); (3.33)where Un+j�+ = un+j�+ = ~un+j�+ = 0 are spei�ed.Proof. Multiplying (3.30) by �h(� > 0) with � proper small and adding this newinequality to (3.27), we an get4tjj�njj2 + j[�n℄j2Q + � jj4t�njj2 + hjj�n? jj2�C1fjj�njj2 + jj�njj2 + j[�n℄j2Q + hjjr�njj2 + j�n�j2Qn� + jjEn1 jj2g; n = 1; 2; � � � ; N:Multiplying above inequalities by � then summing up for n and applying Gronwallineqality, realling �0 = 0 we obtain for � small enough,jj�njj2 + nXj=1 j[�j ℄j2Q� + nXj=1(� jj4t�jjj2 + hjj�j?jj2)��C2n nXj=1[jj�j jj2 + j[�j ℄j2Q + hjjr�j jj2 + j�n�j2Qn� ℄� + nXj=1 jjEj1jj2�o: (3.34)From (3.22) we havenXj=1 jjEj1jj2� � C3�2 nXj=1 �2u�t2 2L2(Jj ;L2(
)) = C3�2�2u�t2 2L2(L2(
))



108 C. SUN AND S.J. QINTherefore from (3.34),max0�n�N jj�njj2 + NXn=1 j[�n℄j2Q� + NXn=1(� jj4t�njj2 + hjj4t�n + �n � r�njj2)��C4n NXn=1[jj�njj2 + j[�n℄j2Q + hjjr�njj2 + j�n�j2Qn� ℄� + �2o: (3.35)Moreover, we need to estimate terms jj�njj, jjr�njj, j[�n℄jQ, j�n�jQn� . To this end, let�hu(t) be the interpolation of u(t) in Vh. By the de�nition of ~u and the �nite elementinterpolation theorem we know thatjj�njjk =jjun � ~unjjk = inf'2Pr(k) jjun � 'jjk � jjun ��hunjjk�Chr+1jjunjjr+1;k; n = 1; 2; � � � ; N (3.36)where jj � jjr+1;k 4= jj � jjHr+1(k). Alsojj�njj�k 4= jj�njjL2(�k) = jjun � ~unjj�k � jjun ��hunjj�k + jj�hun � ~unjj�k:Aording to the result given by [3℄ we havejjun ��hunjj�k � C0hr+12 jjunjjr+1;k:Thus using Lemma 3.1 and triangle inequality to term jj�hun � ~unjj�k we an getjj�njj�k � C1hr+12 jjunjjr+1;k: (3.37)Hene j[�n℄jQ � C2hr+12 jjunjjr+1;
: (3.38)Sine r�n = r(un ��hun) +r(�hun � ~un);we an get from (3.36) jjr�njjk � C3hrjjunjjr+1;k: (3.39)Substituting (3.36)|(3.39) into (3.35) to obtainmax0�n�N jj�njj2 + NXn=1 j[�n℄j2Q� + NXn=1(� jj4t�njj2 + hjj4t�n + �n � r�njj2)��C4(h2r+1 + �2): (3.40)Noting that jj4t�njj2k � 1� ZJn �u�t 2k dt:



The Full Disrete Disontinuous Finite Element Analysis for First{Order Linear Hyperboli Equation109By the regularity analysis[5℄ we an getNXn=1 jj4t�njj2� � C5h2r+2jj�u�t jj2L2(Hr+1(
)): (3.41)Thus from (3.35) and applying triangle inequality, the onvergene order estimate (3.33)is obtained.The onvergene order given by (3.33) is optimal sine error �n � ren and [en℄Q areonsidered. 4. Crank{Niolson FDDG ShemeApplying the treatment analogous to that used in setion 3 for Euler sheme (2.6),we an establish the theoretial analysis for C|N FDDG sheme (2.11). Here we onlygive some onerned results on the stability and error estimation.De�neG(wn; v;wn�1) =X(4twn + �n � r ~wn + �n ~wn; v)k + h[ ~wn℄; v+iQn� ; (4.1)where the de�nitions of notations ~wn; �n; �n; �kn�; � � � ; Qn� have been given in x2.Obviously, the C|N sheme (2.11) an be written as: �nd Un 2 Vh, n = 0; 1; � � � ; N ,suh that G(Un; v;Un�1) = (fn; v); 8v 2 Vh; n = 1; 2; � � � ; N (4.2a)Un�j�� = gn; (4.2b)(U0 � u0; v) = 0;8v 2 Vh: (4.2)Taking v = ~wn in G(wn; v;wn�1) and noting that (4twn; ~wn) = 124tjjwnjj2, we anget Lemma 4.1. There exists a onstant C0 > 0 suh that, for arbitrary wn; wn�1 2 Vhand wn�j�� 2 L2(��),G(wn; ~wn;wn�1) + C0jjwnjj2 + 12 j ~wn�j2�� � 12(4tjjwnjj2 + j[ ~wn℄j2Qn� + j ~wn�j2�+): (4.3)De�ne pieewise funtions on Th for n = 1; 2; � � � ; N ,~Un? = 4tUn + �n � r ~Un; 8k 2 Th; (4.4)~Un = 4tUn + �n(Ok) � r ~Un; 8k 2 Th; (4.5)where Ok is the geometry entre of element k.Lemma 4.2. Let fUng be the solution of sheme (2:11) then there exists a onstant~C > 0 suh thatjj ~Un? jj2 � ~Cfjj ~Unjj2 + h�1j[ ~Un℄j2Qn� + jjfnjj2g; n = 1; 2; � � � ; N: (4.6)By Lemma 4.1, 4.2 and using the similar argument to prove Theorem 3.2 in x3 wean obtain



110 C. SUN AND S.J. QINTheorem 4.1. C|N FDDG sheme (2:11) has a unique solution fUngN0 whihsatis�es the following stability estimation: for � small enough,max0�n�N jjUnjj2 + NXn=1 j[ ~Un℄j2Q� + h NXn=1 jj4tUn + �n � r ~Unjj2��Cfjjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2g; (4.7)where Un+j�+ = 0 (n = 1; 2; � � � ; N) are spei�ed.Finally, applying the analogous approah used in x3 to establish Theorem 3.3 wean prove the following theorem.Theorem 4.2. Let u; fUngN0 be the solutions of Problem (1:1) and C|N sheme(2:11) respetively. Assume thatu 2 L1(Hr+1(
)) \C( �D); �u�t 2 L2(Hr+1(
)); �2u�t2 2 L2(H1(
))and �3u�t3 2 L2(L2(
)). Then for � small enough,max0�n�N jjenjj2 + NXn=1 j[~en℄j2Q� + h NXn=1 jj4ten + �n � r~enjj2)� � C(h2r+1 + �4); (4.8)where onstant C is independent of �; h.5. A Numerial ExampleConsider the following hyperboli problem�u�t + �u�x = f(x; t); (x; t) 2 (0; 1℄ � (1; 2℄; (5.1a)u(x; 1) = u0(x); x 2 [0; 1℄; (5.1b)u(0; t) = g(t); t 2 [1; 2℄: (5.1)where f(x; t) = 1"(1 � e�1=")(1� x� t)e�(1�x)t=";u0(x) = (1� e�(1�x)=")=(1 � e�1=");g(t) = (1� e�t=")=(1 � e�1="):The exat solution of (5.1) isu(x; t) = (1� e�(1�x)t=")=(1 � e�1="): (5.2)Take h = 1M , 4t = � = 1N where M;N are two positive integers. Let xi = ih,i = 0; 1; � � � ;M , Ii = [xi�1; xi℄ and tn = 1 + n� , n = 0; 1; � � � ; N . DenoteP1(Ii) = fv = ax+ b; a; b 2 R; x 2 Iig; i = 1; 2; � � � ;M;



The Full Disrete Disontinuous Finite Element Analysis for First{Order Linear Hyperboli Equation111Vh = fv 2 L2(0; 1); vjIi 2 P1(Ii); i = 1; 2; � � � ;Mg:The Euler FDDG sheme for Problem (1.1) is as follows: Find Un 2 Vh, n =0; 1; � � � ; N , suh that, for element Ii,�Un � Un�1� ; v�Ii + (Unx ; v)Ii + [Un(xi�1)℄ � v+(xi�1) = (fn; v)Ii ;8v 2 P1(Ii); n = 1; 2; � � � ; N; (5.3a)(U0; v)Ii = (u0; v)Ii ;8v 2 P1(Ii); (5.3b)Un�(0) = gn; (5.3)where Unx = �Un�x , [Un(xi�1)℄ 4= Un+(xi�1)� Un�(xi�1).Let 'i�1(x), 'i(x) be the basis funtions of P1(Ii) satisfying'l(xs) = Æls; l; s = i� 1; ithen Un(x) an be written asUn(x) = Un+(xi�1)'i�1(x) + Un�(xi)'i(x); x 2 Ii; i = 1; 2; � � � ; N: (5.4)Clearly, Un(x) an be solved element by element in order I1; I2; � � � ; IN from (5.3).Taking " = 10�3 and hoosing M = 103; N = 10, we omputed the solution fUngN0of FDDG sheme (5.3).To ompare the numerial results with standard Galerkin method, we also solvedProblem (5.1) by full disrete Euler Galerkin sheme.Some numerial results at time t = 2(n = 10) are given in following table. (For thevalues of solution Un(x) of Euler FDDG sheme at node x = xi, we speify UN (xi) 4=UN� (xi).) Table ( at t=2.0 )x exat solution FD{DG solution Galerkin solution0 1 1 10.5 1 1 10.93 1 0.99997 0.999970.94 0.99995 0.99989 0.999750.95 0.99966 0.99950 0.998130.96 0.99752 0.99723 0.986210.97 0.98168 0.98201 0.898560.98 0.86464 0.87379 0.264081 0 0.08530 �0:7324From the results above we see that FDDG sheme is better than standard Galerkinsheme. Speially, in the neighborhood x = 1 where the exat solution u(x; 2) presentsrapid hange from 1 & 0. The solution of FDDG sheme an approximate the exatsolution still, but the solution of standard Galerkin method is of instable so that it annot simulate the exat solution of Problem (5.1).
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