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THE FINITE ELEMENT METHOD FOR SEMILINEARPARABOLIC EQUATIONS WITH DISCONTINUOUSCOEFFICIENTS�1)Hui Feng(Shenzhen University Normal College, Shenzhen 518060, China; Laboratory of ComputationalPhysis, Institute of Applied Physis and Computational Mathematis, Beijing 100088, China)Long-jun Shen(Laboratory of Computational Physis, Institute of Applied Physis and ComputationalMathematis, Beijing 100088, China)AbstratIn this paper we investigate the existene, uniqueness and regularity of thesolution of semilinear paraboli equations with oeÆients that are disontinuousaross the interfae, some prior estimates are obtained. A net shape of the �niteelements around the singular points was designed in [7℄ to solve the linear elliptiproblems , by means of that net, we prove that the approximate solution has thesame onvergene rate as that without singularity.Key words: Finite element, Semitinear paraboli equation, Disontinuous oeÆ-ients. 1. IntrodutionLet x be points on plane R2, and 
 be a polygonal domain, we denote the boundaryof 
 by �
. There in 
 are �nite many broke lines whih divide it into �nite polygonalsubdomains 
l; l = 1; � � � ; L. The funtion p(x) 2 L2(
) is assumed to have bounded�rst derivatives in all subdomains 
l, while p is allowed to be disontinuous on theinterfaes �
i \ �
j. And there exists a positive onstant � suh thatp(x) � �; 8x 2 
:We adopt the usual notations of the Sobolev spaes in this paper, that is, denote byHs(
) and Hs0(
) the spaes and k � ks the norms, j � js the semi norms.We de�ne a linear operator A byAu = 5(p(x)5 u); D(A) = fu 2 H10 (
); Au 2 L2(
)g;� Reeived July 5, 1996.1)The Projet is supported by China Postdotoral Siene Foundation and the Siene Foundationof Aademy of Engineering Physis of China.



192 H. FENG AND L.J. SHENwhere5 is gradient operator. Let f(x) 2 L2(
), u0 2 D(A2); T0 be a positive onstant.In this paper we study the following nonlinear initial value problem8>><>>: �u�t = Au� �(u) + f(x) in 
� (0; T0℄u(t; x) = 0 texton �
� [0; T0℄u(0; x) = u0(x) in 
 (1.1)where � 2 C1(R) and we assume further that there exist positive onstants �1; �2 andpositive integer k suh that 0 < �0(u) � �1 j u jk +�2:In setion 2 we �rst get the existene and uniqueness of (1.1), then we investigate theregularity of the solution, some prior estimates are obtained. In setion 3 we present the�nite element method whih is suitable for (1.1), some error estimates for interpolationoperator of �nite element spae are gotten. In setion 4 we obtain the error estimatefor the �nite element solution.2. Existene, Uniqueness and RegularityBy the usual approah[1�3℄ it is easy to prove that A is the in�nitesemal generator ofan analyti semigroup T (t) on L2(
). As in [1℄, [2℄ and [3℄, for 0 � � � 1, we introdueoperators A� whih are frational powers of A, we denote the domain of A� by D(A�),D(A�) equipped with the norm kuk� = kA�ukL2(
) is a Banah spae whih we denoteby X�.By Gagliardo-Nirenberg inequality[1�3℄, we haveX� � L4k(
) when 1� 12k < � � 1: (2.1)and the imbeddings are ontinuous.Analogous to [1℄, [2℄ and [3℄, by the ontration mapping theorem, it is easy to knowthat (1.1) has a unique loal solution u 2 C([0; t1℄; X�), where 1� 12k < � < 1; t1 is apositive onstant depending on u0.Similar to [4℄, we an prove that there is a unique u� 2 D(A) satisfyingAu� � �(u�) + f(x) = 0:Now we onsider the following initial problem8>><>>: �v�t = Av � (�(v + u�)� �(u�)) in 
� (0; T0℄v(t; x) = 0 on �
� [0; T0℄v(0; x) = u0(x)� u�(x) in 
 (2.2)Sine as long as the solution exists, t ! R
 j v(t; x) j2l dx is noninreasing for allpositive integer l, it follows from (2.1) and Gronwall's inequality that there exists aonstant M1 independent of t suh thatkv(t; x)k� �M1 (2.3)



The Finite Element Method for Semilinear Paraboli Equation with... 193whih implies that the unique solution of (2.2) exists for all t � 0. In other words wehave gotten the global existene of (1.1).On the other hand, by (2.3) we an getkF (t; u(t)) � F (s; u(s))kL2(
) � Lku(t)� u(s)k�; (2.4)where F (t; u(t)) = ��(u(t)) + f(x); L is a positive onstant independent of t 2 R.Notie thatk(T (h) � I)A�T (t)u0kL2(
) � Z h0 kT (� + t)k � kA��1k � kA2u0kL2(
)d� �M2h;Where M2 an be hosen to be independent of t. Similar to [1℄, we haveTheorem 1. Let u 2 C([0; T0℄; X�) be the solution of (1:1), 1� 12k < � < 1. Thenfor 0 < � < 1� �, we haveF (t; u(t)) = ��(u(t)) + f(x) 2 C�([0; T0℄;L2(
)): (2.5)Furthermore, Au 2 C([0; T0℄;L2(
)); u 2 C1([0; T0℄;L2(
)): (2.6)From Theorem 1, by [5℄ and [6℄, we an obtain the regularity of the solution of(1.1). u may posses singularities at the following points: the rosspoints of interfaes,the turning points of interfaes, the rosspoints of interfaes with �
 and the points on�
 with interior angles greater than �. The �rst - order derivatives of the solution nearthese points, whih will be generally known as singular points, may be unbounded.Denoting the singular points by x(m);m = 1; � � � ;M . We de�ne 
(m) = fx 2 
; jx � x(m) j� �g, where j � j is Eulidean norms in R2, we an hoose � � 1 suh that
(m) does not ontain any other singular point. Let (�m; �m) be the polar oordinatesentered at x(m), 
� = 
 n [Mm=1
(m), then we haveTheorem 2. The solution u of (1:1) has the followingdeompsition:u(t; x) = MXm=1 Xj2J(m) �(m)j (t)�p�j (m)m �(�m)�(m)j (�m) + u�(t; x) (2.7)where �(m)j (t) are onstants independent of rm and �m, � 2 C1(0; �) with�(r) = ( 1; for r < �=30; for r > 2�=3:f�(m)j , �(m)j gj�1 is the omplete eigensystem of the orresponding Sturm-Liouville eigen-value problem (2:9), J (m) = fj is a positive integer j �j(m) 2 (0; 1)g, u� 2 H2 on eah
l, moreover, we haveMXm=1 Xj2J(m) (�(m)j (t))2 + LXl=1 ku�(t; x)k22;
l � CkAuk2C([0;T0℄;L2(
)) (2.8)



194 H. FENG AND L.J. SHENIn 
(m), let � 2 L1(
(m)) be the pieewise onstant funtion, that represents thedisontinuities of p(x) at x(m):� j
(m)\
i := �i := p j
i (x(m))Let f�m � �, �m = �(�)g, 1 � � � N0 be the interfaes where the funtion � isdisontinuous. When x(m) 2 
, the Sturm-Liouville eigenvalue problem is8>>>><>>>>: ��00 + ��� = 0; �m 6= �(�)�(0) = �(2�)�(�(�) � 0) = �(�(�) + 0)�(�(�) � 0)�0(�(�) � 0) = �(�(�) + 0)�0(�(�) + 0); 1 � � � N0: (2.9)When x(m) 2 �
; (2:9) is replaed by8>>>><>>>>: ��00 + ��� = 0; �m 6= �(�)�(0) = �(!) = 0�(�(�) � 0) = �(�(�) + 0)�(�(�) � 0)�0(�(�) � 0) = �(�(�) + 0)�0(�(�) + 0); 1 � � � N0:where ! is the interior angle of 
 at x(m). Similar to [7℄, by a diret omputation, weget when x(m) 2 
; minj2J(m) �j(m) � min�imax�i ;when x(m) 2 �
; minj2J(m) �j(m) � min�imax�i (�! )23. Finite Element MethodThe presene of singularities generally leads to nonoptimal onvergene rates by theusual �nite element method. Without destorying the usual sheme of �nite elementmethod, taking into aount the singularities as preisely as possible allows a betterapproximation of solution. More preisely we disretize the domain 
 by a speial meshsubdivision J whih de�ned in the following.For the sake of simpliity, we make assumption A): the inluded angles at singularpoints x(m) between interfaes � �=3. (otherwise, we an draw �titious interfae).In 
(m), we hoose �0 �minj2J(m)q�j(m), R = �2�0=3.r0 = 0; ri = (R in) 32�0 ; i = 1; 2; � � � ; n: (3.1)We de�ne Gi = fx 2 
, j x � x(m) j< rig, i.e., Gi = fx 2 
; �m < rig, it isobvious that Gn = 
(m). We denote the insribed polygon in Gi whih vertexes are the



The Finite Element Method for Semilinear Paraboli Equation with... 195intersetion points between �Gi and the interfaes by Ei. Let �1 = G1, �i = Gi nGi�1,i = 2; � � � ; n. D1 = E1;Di = Ei n Ei�1, Ai = Di \ �i�1; i = 2; � � � ; n.In 
; we make a triangulation J suh that in every 
(m) it satis�es the followingassumptions:I) In eah Di;J is a quasi uniform triangulation, and there exists onstants C1 andC2 independent of i suh that for 8� 2 Di, the diameter d� satis�esC2(ri � ri�1) � d� � C1(ri � ri�1) (2.2)II) The intersetion of every triangle element � 2 J and the interfae is eitherempty, the edge of � or the vertex of �.In the above, for onveniene the right upper index (m) for Gi; Ei;�i;Di; Ai havebeen omited, i.e., we should denote Gi; Ei;�i;Di and Ai by G(m)i ; E(m)i ;�(m)i ;D(m)i andA(m)i respetively.In 
�� = 
 n [Mm=1E(m)n ;J is a onventional quasi uniform triangulation whih alsosatis�es the assumption II), it is required that these triangulations onform to eahother, that is, the nodes of them oinide on �E(m)n .Let Vh 2 H10 (
) be the the linear onforming �nite element spae assoiate with J .The semidisrete approximate problem orrespondind to (1.1) is8<: �nd uh 2 Vh suh that��uh�t ; v�+ a(uh; v) + (�(uh); v) = (f; v) 8v 2 Vh; (3.2)where (u; v) = R
 uvdx, a(u; v) = R
 p(x)5 u5 vdx.Let �t be the steplength of t, N be the integer part of T0�t . Let � be the Vh-interpolation operator[8℄. We selet u0h = �u0, and disrete (3.2) using impliit di�er-ene sheme in time, then8<: �nd un+1h 2 Vh suh that�un+1h � unh�t ; v�+ a(un+1h ; v) + (�(un+1h ); v) = (f; v) 8v 2 Vh: (3.3)The �nite element solution of (1.1) is gotten by algorithm (3.3). We �rst state thefollowing Lemma 1 whih proved in [7℄.Lemma 1. For v = �dm�(�m)�(�m), �0 � d � 1, where � is the solution of (2.9),we have kv ��vk0;En � C 1n2 ; kv ��vk1;En � C 1n;where C is independent of n.Sine rn � rn�1 � C 1n; (3.4)it follows from [8℄ and Theorem 2 thatLemma 2. Let u�(t; x) be the funtion whih de�ned in Theorem 2. Thenku�(t; x)��u�(t; x)k0;En � C 1n2 ; ku�(t; x)��u�(t; x)k1;En � C 1n;



196 H. FENG AND L.J. SHENwhere C is independent of n and t.By Theorem 2, ombining Lemma 1 and Lemma 2 yieldsLemma 3. In 
(m), for the solution u(t; x) of (1:1), we haveku(t; x) ��u(t; x)k0;En � C 1n2 ; ku(t; x) ��u(t; x)k1;En � C 1n;where C is independent of n and t.For the solution u(t; x) of (1.1), noting the de�nition of funtion � and assumptionA), we get u(t; x) = u�(t; x) in 
��, then by [8℄, it follows from Theorem 2 and (3.4)thatLemma 4. Let u(t; x) be the solution of (1:1). Thenku(t; x)��u(t; x)k0;
�� � C 1n2 ; ku(t; x) ��u(t; x)k1;
�� � C 1n;where C is independent of n and t.We de�ne h = 1n: (3.5)By Lemma 3 and Lemma 4, we haveTheorem 3. For the solution u(t; x) of (1:1), there exist onstants C1; C2 indepen-dent of h and t suh thatku(t; x) ��u(t; x)k0;
 � Ch2; ku(t; x) ��u(t; x)k1;
 � Ch:4. Error Estimate of the Finite Element SolutionWe de�ne un = u(n�t; x), wn = un ��un, en = un� unh. It follows from (1.1) and(3.2) that�en+1 � en�t ; en+1�+ a(en+1; en+1) = �en+1 � en�t ; wn+1�+ a(en+1; wn+1)+ �un+1 � un�t � �un+1�t ;�un+1 � un+1h �+ (�(un+1h )� �(un+1);�un+1 � un+1h ) � 4Xj=1P jn; (4.1)where P 1n = �en+1 � en�t ; wn+1�; P 2n = a(en+1; wn+1);P 3n = �un+1 � un�t � �un+1�t ;�un+1 � un+1h �;P 4n = (�(�un+1)� �(un+1);�un+1 � un+1h ):(4.1) yields that 12kem+1k20 + 12 mXn=0 ken+1 � enk20 + mXn=0 a(en+1; en+1)�t



The Finite Element Method for Semilinear Paraboli Equation with... 197� 12ke0k20 + 4Xj=1 mXn=0P jn�t (4.2)where m = 1; 2; � � � ; N . We estimate eah of the four terms separately. From Theorem3 we have mXn=0P 1n�t � Ch2 mXn=0 ken+1 � enk0 � 12 mXn=0 ken+1 � enk20 + C h4�t ; (4.3)and mXn=0P 2n�t � 18 mXn=0 a(en+1; en+1)�t+ Ch2: (4.4)In the following we denote u(t; x) by u(t) for simpliity. By Theorem 1 and Theorem3, ��u(t)�t � �un+1�t ;�un+1 � un+1� � Ch2: (4.5)We de�ne Q(t; tn+1) = (F (t; u(t)) � F (tn+1; u(tn+1)); en+1).When t 2 [n�t; (n+ 1)�t℄, by (1.1) and Theorem 1,��u(t)�t � �un+1�t ; en+1� = �a(u(t)� u(tn+1); en+1) +Q(t; tn+1)� 18a(en+1; en+1) + Ca(u(t)� u(tn+1); u(t) � u(tn+1)) +Q(t; tn+1)� 18a(en+1; en+1) + Cku(t)� u(tn+1)k0 +Q(t; tn+1)� 18a(en+1; en+1) + C�t+ C�t�ken+1k0: (4.6)(4.5) and (4.6) yield thatP 3n = 1�t Z (n+1)�tn�t ��u(t)�t � �un+1�t ;�un+1 � un+1�dt+ 1�t Z (n+1)�tn�t �u(t)�t � �un+1�t ; en+1�dt�Ch2 + 18a(en+1; en+1) + C�t+ C�t�ken+1k0;this implies that mXn=0P 3n�t � 14 mXn=0 a(en+1; en+1)�t+ Ch2 + C�t�: (4.7)From Theorem 1 and Theorem 3, there exist positive onstant C1; C2 independent ofn suh that kun+1k1 � C1; kun+1 ��un+1k1 � C2h;henek�(un+1)� �(�un+1)k0 � C(kun+1kkL4k + k�un+1kkL4k + 1)kun+1 ��un+1kL4



198 H. FENG AND L.J. SHEN� C(kun+1kk1 + k�un+1kk1 + 1)kun+1 ��un+1k1 � Ch;whih yields thatP 4n =(�(�un+1)� �(un+1);�un+1 � un+1) + (�(�un+1)� �(un+1); un+1 � un+1h )� Ch3 + Chken+1k0; (4.8)where we used Theorem 3. It follows from (4.8) thatmXn=0P 4n�t � Ch2 + 18 mXn=0 a(en+1; en+1)�t: (4.9)Combining (4.2) with (4.3),(4.4),(4.7) and (4.9) we havekem+1k20 + mXn=0 a(en+1; en+1)�t � C(h2 + h4�t +�t�): (4.10)The main result of this paper omes next:Theorem 4. Let u and unh be the solution of (1:1) and (3:3) respetively. Then wehave maxn kun � unhk20 + N�1Xn=0 kun+1 � un+1h k21�t � C(h2 + h4�t +�t�);where 0 < � < 12k , C is a onstant independent of h;�t and n.The authors thank Prof. Zhou Yulin and Prof. Ying Lungan for their suggestionsand disussions. Referenes[1℄ A. Pazy, Semigroups of Linear Operators and Appliations to Partial Di�erential Equation,Springer-Verlag, New York, 1983.[2℄ D. Henry, Geometri Theory of Semilinear Paraboli Equations, Leture Notes In Mathe-matis, Vol. 840, Springer-Verlag, New York, 1981.[3℄ Q.X. Ye, Z.Y. Lee, Introdution to Reation-Di�usion equations (in Chinese), ChineseSiene Press, Beijing, 1990.[4℄ O.A. Ladyzhenskaya, N.N. Ural'tseva, Linear and Quasilinear Ellipti equations, AademiPress, New York, 1968.[5℄ R.B. Kellogg, Singularities in interfae problems, In: B. Hubbard, ed., Numerial Solutionof PDE2, Aademi Press, New York London, (1971), 351-400.[6℄ M. Blumenfeld, The regularity of interfae-problems on orner-regions, In: P. Grisvard,W. wendland and J.R. Whiteman eds., Singularities and Construtive Methods for TheirTreatment, Leture Notes in Mathematis, Vol. 1121, Springer-Verlag, Berlin HeidelbergNewYork, (1985), 38-54.[7℄ J.G. Lei, J.M. Xu, Finite element analysis of boundary value problem with disontinuousoeÆient, Mathematia Numeria Sinia, 2 (1980) 209-216.[8℄ P.G. Ciarlet, The Finite Element Method for Ellipti Problems, North-Holland, AmsterdamNewYork Oxford, 1978.


