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Abstract

A mixed finite element method is developed to approximate the solution of a
strongly nonlinear second-order parabolic problem. The existence and uniqueness
of the approximation are demonstrated and L?-error estimates are established for
both the scalar function and the flux. Results are given for the continuous-time
case.
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1. Introduction

For second order elliptic problems, the mixed method was described and analyzed
by many authors 3! in the case of linear equations in divergence form, as well as in
[4, 5] for quasilinear or nonlinear problems in divergence form. Johnson and Thoméel®!
considered alternative proofs of the previously known error estimates for such meth-
ods in the elliptic case. They also analyzed the mixed finite element method for the
parabolic equation given by p; — Ap = f. Garcial”) studied the convergence of mixed
finite element approximations to quasilinear parabolic equations in the continuous-time
case and derived the superconvergent estimates for the difference between the approx-
imate solution and the projection.

In this paper we consider a mixed finite element for approximating the pair (u,p)
satisfying second-order, strongly nonlinear parabolic equation

u(z,t) = —a(z, Vp),

. €N, teJ, 1.1
e, ppi(a,t) + divu(a, ) = f(e,p,t), (L)
subject to the following conditions:

p(z,0) = po(x), z€eQ, t=0,

p(z,t) = —g(z,1), (z,1) € 0 x J, (1.2)

where  C R? is a bounded, convex domain with C?-boundary 9Q, and J = [0, 7],
a:QxR? — R? is cubic continuously differentiable with bounded derivatives through
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third order and has a bounded positive definite Jacobian with respect to the second
argument, which implies that Vp can be locally represented as a function of the flux,
say

Vp = —b(u). (1.3)

We shall assume that this representation is global, and that u € H7/2t¢0(Q)2nC%'(Q)?,
go > 0. Furthermore, assume that the domain of definition of b contains a ball By
centered at u in L (Q)5).

The functions ¢(x,v), f = f(z,v,t), and g = g(z,t) are continuously differentiable
with respect to v and . Moreover, there exist constants c,, ¢* and K such that, for all
reQ, teJ,and v €R,

0< ¢, <c(z,v) <, (1.4)
Oc| 10f (0f 0g
Ll 5] 500 15l 15 ] < & (1.5)

We also assume that the solution {u, p} for (1.1)—(1.2) has sufficiently smooth regularity.

2. Formulation of the Mixed Method

Now we let V = H(div; Q) = {v € L2(Q)%: divw € L?()}, W = L?(Q2). Combining
(1.1), (1.2), and (1.3), we arrive at the mixed weak form of (1.1)—(1.2): (u,p) € V.xW
is the solution of the system

(b(u)vv) - (diVU,p) = (g,U ’ ’I’L), CAS Va (21)
(c(p)pe, w) + (divu, w) = (f(p), w), w e W,
and p(x,0) = pg, where n is the unit exterior normal vector on 99, (-, -) and (-, -) denote,
respectively, the L2(Q)-inner product and the L2(9€2)-inner product. We consider the
Raviart-Thomas!! space V;, x W), C V x W of index k > 0 associated with quasiregular
partition T}, of Q by triangles or quadrilaterals, with boundary elements allowed to have

one curved side. The mixed finite element method we shall analyzed is the discrete form
of (2.1)-(2.2) and is given by: Find (up,pn) € Vi, x W}, such that p,(0) = P(0),

(b(up),v) — (dive,pg) = (g,v - n), v € V), (2.3)
(c(pp)pnt, w) + (divup, w) = (f(pr), w), w € Wy,

where P(0) is the elliptic mixed method projection (to be defined below) into the finite
dimensional space W}, of the inital data function py.

3. Mixed Method Projection

For introducing an elliptic projection®!, we shall assume that the following boundary
value problem

—div(a(Vz)) = f(p) — c(p)pt, in
z=—g, on 0f), (3.1)
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is solvable for all p = p(z,t), t € J, p being the solution of (1.1)—(1.2). For ¢ € J, define
a strongly nonlinear, mixed method, elliptic projection of V' x W onto V}, x W}, by the
map (u,p) — (U, P) determined by the relations:

(b(U),v) — (dive, P) = (g,v - n), v E Vi,

(le va) = (f(p) - C(p)ptaw)a w € Wh. (32)
Note that the solution p for the problem (1.1)—(1.2) is a solution for the elliptic problem

(3.1) for each t = 7.
Let

n=p—P &=P—pp,
p=u—-U, (=U—uy,. (3.3)

Estimates for 1, p and divp are given in [5] and are presented in Lemma 1 and 2
without proof.

Lemma 1. Fort € J and for h sufficiently small,

llu—="Ullo < Ch"||u|ly, forl/2<r<k+1,
||div(u — U)llo < Ch"||ullpg1, for 0 <r <k-+1,
lp = Pllo < CR"(|[pllr + [[ullr-1), for2<r<k+1.

Lemma 2. Fort € J and for h,e sufficiently small,

1
= Ullose < CH" 2| Inh|2||ullyse, for1/2<r <k+1,
lp = Plloce < CR"(|pl]r,00 + IIUIIT,%WO), for 1 <r <k+1,

here and below C' is a generic constant depending on ||u||C0,1(§)2 or ||ull7/24¢ [5],

We shall need the following relations, which are integral form of Taylor's formula:
for p € By,

b(u) = b(u) = — B(u)(u — ) + (u— ) "[Hi (), Hy(w)](u — p)

=~ Blu)(u - p), (3.4)
b by, b 2h;
where B(u) = % = % is the Jacobian of b, a positive define matrix, H; = %

(j = 1,2) is the Hessian of b;, (T[Hy, H2]¢ = ((TH1(, ¢ THo() € R?, for j = 1,2,

! o2, ! o2
) /0 (1= )53 (ot sl = ul)ds /0 (1= 8) g2+ sl — ul)ds

Hj(p) = 1 92b. 1 92b.
| =gt slu—uhds [ 1- ) g (ol = s
(3.5)
L ob, L oy
N —— (1 + slu — p))ds ——(+ slu — pl)ds
Bu) = |10, /0 Ou (3.6)
; Fu, Wt slu—pl)ds 9, Wt sl — pl)ds
U1 0 Ou2
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Note B(u) and ﬁlj(u), j=1, 2, are bounded (matrix) functions since ¢ has two con-
tinuous and bounded derivatives, and its Jacobian is bounded away from 0. Let us
introduce the L?-projection P,: W — W), and the Raviart-Thomas projection[”
w2 H'(2)? — V},, which have the following useful commuting property:

div o 7, = Py o div : HY(Q)? = Wy, (3.7)

and the following approximation properties57]

lo = mhollo < O llolly, 1 <r<E+1,
||div(v — mpv)|lo < CA"||divo||,, 0<7r <k-+1,
llw — Pyw|lo,g < Ch"[|wl|yq, 0<7r<k+1, 1<q< 400, (3.8)

Lemma 3. For h sufficiently small,

lue = Uillo < CA (l[ully + [luellr),  for 1/2 <r <k +1,
[div(uy — Up)llo < Ch||divuy|ly,  for 0 <r <k+1,
lpe = Pillo < CA"(lpellr + [lullr + [lucll;),  for 1/2 <r <k+1.

Proof. Let

ezp_Phpa 0O =1U—TprU,
T:Php—P, (5:7rhu—U, (3.9)

then it follows from (2.1)-(2.2) and (3.2) that

(b(u) — b(U),v) — (divo,p — P) =0, v €V,
(div(u — U),w) =0, w € Wy, (3.10)

and, using the mean value theorem, (3.4), we obtain

(B(U)p’v) - (diVU,n) =0, v € Vp,
(divp, w) = 0, w € Wy, (3.11)

where B(U) is given by (3.6) with 4 = U. Now, differentiate the above equations with
respect to time:

(E(U)pt,v) - (diVUaﬁt) = - (aa_f(U)pa U) , UE Vh,

(divpg,w) =0, w € Wy, (3.12)
Using (3.7) and (3.9), we rewrite (3.12) as

(B(U)6s,v) — (dive, 1) = — (%—Jf(mp, v) — (B(U)oy,v), veV,

(div 64, w) =0, w € Wp, (3.13)
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where

1 6261 62()1 1 aZbl 6261
8_B(U) B /0 [ 3u% (Y)y1e + m(?/)y%] ds /0 [8u16u2 (¥)ye + a—u%(y)y%} ds
ot

N L r92by 02by Le 9%by 02by
e 222 d il d
/0 [371% Whye + OuyOug (y)th] i /o [Gmam Whye + ou3 (y)y%] 3
(3.14)

y=(y1,92) =U +s(u—U), yr = U + s(ug — Uy).

2
1,7 =1,2
auzauj (y)a 2¥) ) Sy

and B (U) are bounded functions and there exists a positive constant A independent of
h and v such that

From Lemma 2, for A sufficiently small, U and y € By so that

M||? < (B(U)v,v), veV. (3.15)

Take now v = ¢; and w = 74 in (3.13) and add the two equations:

- OB -
N8l <(BU)S,60) = (5 (U)p. ) = (B(U)or,b0)
<C(|[willo + llotllo + 18l |o)llellol 0llo + Cllorl ol 6¢llo
<O ||ull? + llowl3) + ell5 2 (3.16)

here, we have used Lemma 1. Note that (7,u); = 7,u¢, since the projection 7, is defined
by means of moments over the edges and interiors of the triangles or the rectangles of
the partition T},. So, o; can be bounded using (3.8). Thus

16¢[lo < CR"([[ullr + ||uellr), for 1/2 <r <k+1. (3.17)
To estimate 7, we apply Lemma 2.2 in [5] to (3.13) and obtain
lI7ello < C(Rl[8¢llo + h||divdello + llello + lloello), (3.18)
Observing that divd; = 0 from (3.7)and (3.17), we have
[I7ello < CA([|ullr + [Juellr), for 1/2 <r<k+1. (3.19)
Now,

[[nello < 110¢llo + lI7ello = [lpe — Prpello + 1I7ello,
lloello < llotllo + 10ello = [lue — mruello + [10¢llo, (3.20)
||div p¢l[o = [|divey||o = [[div(u; — mhue)llo,

where, we also have used (P,p); = P,p;. These inequalities suffice to prove Lemma 3.
O

Using (3.4), we can rewrite the relations (3.11) as

(B(u)p,v) — (divo, 7) = (p"[HL(U), Hao(U))p,v) , v € Vi,
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(divp,w) =0, w € W, (3.21)

and differentiate (3.21) in time,

(B(U)pr,v) = (divo, 1) = (pT [aHéiU), aH;EU)] 2 v) - (8]36§u)p,>
+ (ol 1HL(©), B (D))o, 0) + (o [FL(U), Ha(U)]pryv) , v € Vi,

(divps, w) =0, w € Wy, (3.22)

We can obtain two improved results by using the argument similar to lemma 3.1 and
4.1 in [5]:
I7]lo < CR™ ul|,, forl<r<k+1. (3.23)
Iello < CRF(J|ully + [Juglly), for 1 <r <k+1. (3.24)

From (3.24), (3.8) and the inverse hypothesis [9], we have

lpe = Plloco < CH (ully + ludlly + [Iplloe), forl<r<k+1. (325

4. Existence and Uniqueness of the Solution of Discrete Problem

The discrete form (2.3)—(2.4) is a nonlinear ordinary differential system in the com-
ponents of (up, pp), which we must prove is uniquely solvable. We shall follow some of
the idea of [4, 5] to use a fixed point argument for the proof of existence. First, we
derive from (2.1)-(2.2), (2.3)-(2.4), and (3.10) the following useful error equations:

(b(U) = b(up),v) — (divo, P —pp) =0, v € Vp,
(c(p)pe — c(pn)phe, w) + (div(U —up),w) = (f(p) — f(pn),w), w € Wy, w
4.1

with (P — pp)|t=0 = 0. By using (3.4)-(3.6) with ¢ = u; and u replaced by U, we
rewrite (4.1) as

(BU)(U = up),v) — (dive, P — pp)
=((U = wp) "[Hy(un), Hy(up))(U = up),v), v € Vi,

(c(pn) (P = pr)e, w) + (div(U — up), w) + ([e(P) — c(pn)|P = [f(P) = f(pn)]; w)
=(f(p) = f(P) — c(p)(p — P)¢ — [c(p) — c(P)] P, w), w € Wh,(4 )

with (P — pp)|i=0 = 0. Let h be small enough that U € V}, N By, and choose a ball By
centered at U such that By C By with respect to the L°°-norm.
Define (y,q) = ¢((i, 5)) as a map of (By NV}) x Wy, into Vj, x W}, given by

(BU)U = y),v) = (dive, P = q) = (U — ) "[Hi (1), Ho()](U = p),v), v € Vi,
()P = @), w) + (div(U = y), w) + ([e(P) = e(@)]P: = [f(P) = f(9)], w)
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=(f(p) = f(P) —c(p)(p — P)t — [c(p) — c(P)]|Pr,w), w € Wh,
(4.3)

with (P — ¢)|t=0 = 0. Note that, since the left-hand side of (4.3) corresponds to the
mixed finite element for a quasilinear parabolic operator with B(U) positive definite and
H{(-) and Hy(-) uniformly bounded on By, the operator ¢ is well defined [7]. Clearly, in
order to establish the solvability of (2.3)-(2.4), it suffices to prove the following theorem
(compare (4.2) with (4.3)):

Theorem 1. For h sufficiently small, ¢ has a fixed point.

By Brouwer’s fixed-point theorem, Theorem 1 will be true if we prove the following
result.

Theorem 2. For 6(0 < § < 1) sufficiently small (depending on h via the inverse
inequality (4.6), and smaller than the radius of By so that ¢ is well defined on By), let

Bs = {( B = pll e (riz2) + 1P = Bllpoe a2y < 6},

then ¢ maps the ball By of radius § of Vi, x Wy, centered at (U, P), into itself.
Proof. Let (U, P) € Bs. Settingv =U —y, w = P — ¢ in (4.3) and adding the two
relations, we can get

() (P =), P —q) + (BU)U - y),U —y)

=((U — p) " [H: (1), Ho()|(U — 1), U — )
+ (f(p) — f(P) —c(p)(p — P) — [c(p) — c(P)] P
+ f(P) = f(q) — [e(P) — c(9)] P, P — q), (4.4)

Then, from (1.5), (3.6) and Lemma 1, 2, and 3 we bound the right-hand of (4.4):

(U = @) T[Hy (1), Ho(w))(U = ), U = )| < CIIU = pl[.4l1U = wllo
<Ch™?||U = pllo + e1l|U = w5, (4.5)

here, we used the following “inverse-type” estimate!®:

1v]lo.0 <CR*=2/%|[v]|o.,, for 2 < 6,v < +o0,v € Vj, (4.6)

(f(p) = F(P)=c(p)(p — P}t = [e(p) — e(P)Pi + f(P) = f(q) = [e(P) = c(q)] P, P = q)|
<C[llp = Pllo + 1o = P)illo + Ip = Pllol|Pello,00

+ (14 [Ploco)l|P = allo] 1P = gllo < C1h* + C|IP =g}, (4.7)

where s = 7/2 + ¢y,

01 = O (Il s gy |l 240 el Pl e Pl g ) (4:8)

In order to get an estimate for (c(q)(P — q)¢, P — q), we use an argument due to
Wheeler®. We note that

()P =) P =) =5 [ RGP~ g,0)ds
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P—q
—/ (/ cp(P — a)Ptada)dx, (4.9)
o \Jo
where
P—q
R(q,P —q,z) = / c(z, P — a)ada. (4.10)
0
Since P
—q
[([ " alP - )Pada)ds] < ClIPdoe 1P - alf, (4.11)
and according to (1.4), for each (z,1)
1 1
6P —al* < R(g, P = g,2) < 5c'[P = gf*. (4.12)

Now, we can find an estimate for (4.4) using the estimate above and the positive
definiteness of B(U),

Xollv[|2 < (B(U)v,v), X >0, veEV, (4.13)
to obtain the evolution inequality
d 2
= [ R, P = o)z + XollU =yl
Q
<Ch* + Ch72||U = pllg + C|IP = q|f§ + &1|U = ylf5, (4.14)

Integrate (4.14) in time and note that (U, P) € By, we have
t
R4, P = 4,) + XollU =31 a sy S OH¥ +CH2II0 = iy + € [ 1P~ alidr
! 2
SCR + Ch2U = pllfoe sy + C [ 1P = gl
’ 0
t
<O(h* + h25%) + C/ |P — ql[3dr, (4.15)
0

where, we used that L>® — L*. Apply (4.12) and Gronwall’s lemma, we obtain the
following estimate:

WU = yllr2(s;r2y + |1P = allpoo(s;02) < Co(h® + h7'6%). (4.16)

Now, we choose v = U — y in the first relation of (4.3) and bound it as (4.18) by
using (4.5), (4.13), (4.16) and the inverse estimate:

|div - v|jp < Ch™Y|vllo, for v € V. 4.17)
U =yllo <AI1P —gllo + |U = ullg] < C5(h*~" + h725%). (4.18)

(«%)

)
Let K = max(Cy,C3). Since we want Kh* 1 < 3 and Kh 26?2 < 3 in (4.16) and
(4.18), we need
1
2KR ™ <6 < ——h% 4.19
W <8< gzh (4.19)
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2 4
Note that s = 7/2 +&¢. Let h < (2K) 5-3 = (2K)1+20 and § = 2Kh*~!. It follows

(
that (4.19) holds, and then (4.16) and (4.18)—(4.19) yields
WU = yllpoo(riz2y <0 and  ||P — ql[peo(s;12) <6, (4.20)

which concludes the proof. O
Remark 1. Note that Theorem 2 not only proves that (2.3)—(2.4) is solvable, but
also that the solution is close to (u,p). Specifically, for small A,

5
1U = unllvi, + [P = pallo < Ch2T*°.

By the inverse inequality(4.6), this implies that

_ 3
U = upllo.co < ChH|U — upllo < Ch2F5, (4.21)

where C' depends on ||u||00,1(§)2 and the norms of u, u, p, and p; in space H'/2t%0(Q)
(see (4.8)). We shall need this estimate in the argument below.

We can also show that the solution of (2.3)—(2.4) is unique (near (u,p)).

Theorem 3. Let (up,pn) and (vh,qn) be solution of (2.3)~(2.4). Then, up, = v,
and pp, = qp-

Proof. Let I' = uj, — v, and S = py — g Then, (2.3)—(2.4) implies that (T, S) €
Vi, x W), satisfies the relations

(b(up) — b(vp),v) — (dive, S) =0, v €V,

(c(pn)pne — clan)ane, w) + (divD,w) = (f(pa) — f(qn), w), w € Wy,
(4.22)

with S|;=¢ = 0. Using the mean value theorem (3.4), we rewrite (4.22) as

(B(up)l,v) — (dive, S) =0, v €V,

(c(pn)St,w) + (divD, w) = (f(pr) — flan), w) + ([c(gn) — c(pn)lgnt, w), w € Wp.
(4.23)

Now, if the choices v = I and w = S are made in (4.23), the following equation is
obtained after these two equations are added:

(c(pn)St, S) + (B(un)T,T) = (f(pr) — f(aqn), S) + ([c(an) — c(pn)lane. S) . (4.24)

For h sufficiently small, the positive definiteness of B(u) together with (4.21) imply the
positive definiteness of B(uy). That is,

M| 2 < (B(up)v,v), v eV, (4.25)

where A > 0 is independent of i and v. Using the same argument in (4.9)-(4.12), we
can rewrite (4.24) as

d -
5 | Blan,=S,a)dz + MDY < K1+ llaellooe) 11, (4.26)
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where
1 2 1 * 2
§C*|S| < R(qn,—S,x) < 3¢ |S]°. (4.27)

Using (4.26) and a Gronwall argument we have
IS Blo + [Pl 2(s32) < CEIISO)lo- (4.28)

so uniqueness is established.

5. Superconvergence for the Difference Between the Approximate
Solution and the Projection

In this section we derive superconvergence results using an argument similar to that
used by Garcial”l. We show that if (U, P) € Vj, x W), satisfies (3.2) and (uy, pp,) satisfies
(2.3) and (2.4), then under certain assumptions

U — unllp2n2y + 1P = prllps 2y < O(h*+2).

This superconvergence result is useful to prove the following theorem.
Theorem 4. There is a constant C > 0, independent of h, such that

lJu —unl|lr2(5,02) + [P = Pall Lo (g302) < C(u,p)h",
Cluyp) = C (lul g2y + Nuellzzgaey + Ipllegey + lpdllizgen)) ()
for2<r<k+1, k>0.
In order to prove Theorem 4 we need to derive estimates for |[U — up||2(s;r2) and
[P — pullzoo(1;02)- The following results will often be used in the argument below.

Result 1. If F is the average value of F(p) on each element of the partition T,
then

(F(p)p, 3) =(Fp, ) + ((F(p) = F)p, 8,)
<(Fp, B) +1IF = Fll=lpllolIBllo-

Result 2. If ||Vg||r~ < K and g is the average value of g on each element of T,
then

[(g(p)p, ) — (gp, )| < CKhlpllo]|%]]o-

Lemma 4. If ( =U — up and £ = P — py, then there is a constant C' independent
of h such that

||C||L2(J;L2) + ||f||Loo(J;L2) < C(uap)hrﬂa (5.2)
for1<r<k+1, k>0, and C(u,p) was given by (5.1).
Proof. First, we rewrite the error equations (4.1) as
(B(up)¢,v) — (dive, &) =0, v €V,
(e(pn)&r, w) + (divg, w) = ([e(pr) — c(p)lpe, w) + (c(pn) (P = p)i, w)
+ (f(p) = fpn),w), w € Wy, (5.3)
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choose v = ¢ and w = £ as the test functions and add the two relations of (5.3):

(B(up)¢, €) + (c(pn)é, €)

= ([e(pn) = e(p)Ipr; €) + (clpn) (P = p)1, &) + (f(p) = f (), €)- 5.
5.4

We now bound each of the terms on the right-hand side of (5.4) using Result 1, 2 and
Lemma 2, 3:

([e(p) = c(p)]pe, €) = ([c(p) — c(Php)lpt, €) + ([c(Php) — c(P)]pt, §)
+ ([e(P) = c(pn)lpe; €)

()0~ Pup)ps€) + (50— Pup) i)
+ Clplloselirlolgllo + Clipelosell€1R. (5.

Using Result 1 and 2 with g(p) = ¢,(p)p:, we obtain

([e(p) = clpn)lpe, €) <Chl[B]lo][E]lo + C118]losollOllolI< o

+ Cllpello,colrlolllo + Cllpello, oo I€113 (5.6)
Next,
() = £0n), O] =| (£ 0) = F(Pup)] + [((Pup) — £(P)]
+[(F(P) = (o), ©)| SC{h||9||0||f||0+||T||0||f||0+||f||3%a |
5.7
(c(pr)(p = P)t, &) =(c(p)ni, &) + ([e(pn) — c(p)]m €)
= (c(p)01,€) + (c(p)72,€) + ([c(pn) — c(P)]mi, )
+ ([e(P) = (P, €)
<Chll6ulolI€llo + ClImllolIgllo + Clinello,col €113
+ Cllnllo,collmellolIllo- (5.8)

Now, we can find an estimate for (5.4) using the estimates above to obtain the
evolution inequality

(c(pn)&r) + (B(un)(,€) < CIIE]I5 + CR, (5.9)
where we have used the estimate (3.25) and R was used to simplify

R ={2[[0115 + 10115 0016115 + 17115 + A*16:][5
+172l[§ + 1115 o0 1715} (5.10)

Using (3.8), (3.23)-(3.24) and Lemma 2 and 3, it is easy to see that

R < C (fully + lluellr +lplle + lpells) B2, 1 < r <k + 1, k> 0.
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We also note that
d ¢
(c(pn)&t, &) = —/ R(pn, &, x)dz —/ / cp(P — a)Pada | dz, (5.11)
dt Jo o \Jo

where
P—py
R(pp,&,z) = / c(z, P — a)ada. (5.12)
0

/Q (/06 cp(P — a)szdoz) dz

and if 0 < ¢, < ¢(xz,t) < ¢* according to (1.5), then for each (z,t),

Since

< O||Pffo,col €115 (5.13)

1 1,
6P —pnl* < R(pp, & 1) < JC 1P — pul*. (5.14)
Using (5.11) and (5.13) we rewrite (5.9) as

& [ Ron&.2)ds + (Bw)G,0) < ClIEh + ORy (5.15)
Q

Integrate (5.15) in time. Applying (4.25), Gronwall’s Lemma, and (5.14), we obtain
the following estimate:

T
Sl E2(rsn2) €]l Lo (1512) < CThT“/O (felly + el +11pllr + llpellr)dr < C(u, p)h",

(5.16)
for1 <r<k+1, k>0. So, Lemma, 4 is established. O
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