
Journal of Computational Mathematis, Vol.17, No.3, 1999, 225{232.
FINITE ELEMENT ANALYSIS OF A LOCAL EXPONENTIALLYFITTED SCHEME FOR TIME-DEPENDENTCONVECTION-DIFFUSION PROBLEMS�1)Xing-ye Yue(Department of Mathematis, Suzhou University, Suzhou 215006, China)Li-shang Jiang(Institute of Mathematis, Tongji University, Shanghai 200092, China)Tsi-min Shih(Department of Applied Mathematis, Hong Kong Polytehni University, Hong Kong)AbstratIn [16℄, Stynes and O'Riordan(91) introdued a loal exponentially �tted �niteelement (FE) sheme for a singularly perturbed two-point boundary value problemwithout turning-point. An "-uniform h1=2-order auray was obtain for the "-weighted energy norm. And this uniform order is known as an optimal one forglobal exponentially �tted FE shemes (see [6, 7, 12℄).In present paper, this sheme is used to a paraboli singularly perturbed prob-lem. After some subtle analysis, a uniformly in " onvergent order hj lnhj1=2 + �is ahieved (h is the spae step and � is the time step), whih sharpens the resultsin present literature. Furthermore, it implies that the auray order in [16℄ isatuallay hj lnhj1=2 rather than h1=2.Key words: Singularly perturbed, Exponentially �tted, Uniformly in " onvergent,Petrov-Galerkin �nite element method.1. IntrodutionConsider the time-dependent onvetion-di�usion problemut � "uxx + a(x; t)ux + b(x; t)u = f(x; t); (x; t) 2 [0; 1℄ � [0; T ℄ (1.1)u(0; t) = u(1; t) = 0; t 2 [0; T ℄; (1.2)u(x; 0) = u0(x); x 2 [0; 1℄; (1.3)a(x; t) � � > 0; (1.4)b(x; t)� ax(x; t)=2 � � > 0; (1.5)where 0 � " � 1. (1.1)-(1.5) an be regarded as a paraboli singularly perturbedproblem. In general, the solution has a boundary layer at the outow boundary x = 1.See [1℄ and [15℄ for disusss of the properties of u(x; t).Suh problems are all pervasive in appliations of mathematis to problems in thesiene and engineering. Among these are the Navier-Stokes equation of uid ow� Reeived April 4, 1997.1)This work is supported by the NSFC.



226 X.Y. YUE, L.S. JIANG AND T.M. SHIHat high Reynolds number, the drift-di�usion of semiondutor, the mass onservationlaw in porous mediam. They have mainly hyperboli nature for " is small. Thismakes them diÆult to solve numerially. It's well know that lassial methods do notwork well for (1.1){(1.5) (see [3, 10℄). The main problem is how to onstrut an "-uniformly onvergent sheme. Many authors have suggested various methods to solvesuh problems, see [2, 5, 9, 10, 13℄ and their referenes for the disussion of �nitedi�erene methods.As to "-uniformly onvergent FE sheme, Gartland [4℄, Stynes and O'Rriordan [14,16℄, Guo [6{8℄ and Sun & Stynes [17℄ have onstruted quite a few methods. Guo 93[8℄ proved that any sheme on a uniform mesh for (1.1){(1.5) that was globally L1onvergent uniformly in ", ould not only have polynomial oeÆients; the oeÆientsmust depend on exponentials. But for highly nonequidistant meshes, suh as Shiskin-type meshes, standard polynomial FE methods an also yield "-uniformly onvergentresults (see Th 2.54 of [12℄).In the following, we'll fous on a sheme suggested by Stynes and O'Riordan 91 [16℄for a steady-ase of (1.1){(1.5), whih we all as \loal exponentially �tted FE sheme".They used exponentially �tted splines in the boundary layer region and outside it, thenormal ontinuous pieewise linear polynomials instead. An "-uniform onvengeneorder h1=2 was obtained. Although this order is known as an optimal one for globalexponentially �tted FE shemes, we an sharpen it to order hj lnhj1=2 in the ase ofloal exponential �tting as a orollary of our main result for (1.1){(1.5).2. The Loal Exponentially Fitted FE ShemeBefore desribing the sheme, we need to know the behavior of the solution u of(1.1){(1.5). Just for simpliity, we assume that a(x; t); b(x; t); f(x; t) and u0(x) aresuÆiently smooth and satisfy neessary ompatibility assumptions on the orners ofthe boundary. Then we have the following lemma.Lemma 2.1[15℄. (1.1){(1.5) has a unique smooth solution u(x; t) whih satis�esj�ix�jt u(x; t)j � C[1 + "�ie��(1�x)="℄ 8(x; t) 2 [0; 1℄ � [0; T ℄; (2.1)for 0 � i � 1 and 0 � i+ j � 2.Throughout this paper, C will denote a generi positive onstant independent of ".We work with an arbitrary tensor produt grid on [0; 1℄� [0; T ℄. In the x-diretion,let 0 = x0 < x1 < � � � < xN = 1, with hi = xi � xi�1 for i = 1; � � � ; N , and seth = maxi hi, �hi = (hi + hi+1)=2.We assume that hhi � C 8i = 1; � � � ; N:In the t-diretion, let 0 = t0 < t1 < � � � < tM = T , with �m = tm � tm�1, form = 1; 2; � � � ;M and � = maxm �m.Assuming 2"j ln "j=� < 1=2 (it is not a restrition for " is small), and setK = maxfi : 1� xi � 2"j ln "j=�g: (2.2)From lemma 2.1, we have



Finite Element Analysis of a Loal Exponentially Fitted Sheme ... 227Lemma 2.2. If u(x; t) is the solution of (1.1){(1.5), then1) kukL1 ; kuxkL1 � C; 8t 2 [0; T ℄2) juxj; juxxj � C (x; t) 2 (0; xK)� [0; T ℄.So [xK ; 1℄� [0; T ℄ is alled as the layer region.A weak form of problem (1.1){(1.5) is de�ned as: for eah time t, �nd u(x; t) 2H10 (0; 1) suh that (ut; v) +B(u; v) = (f; v) 8v 2 H10 (0; 1); (2.3)where B(u; v) = "(ux; vx) + (aux; v) + (bu; v).To disretize (2.3), we de�ne a disrete L2-inner produt for eah tm, (vm; wm)h �N�1Xi=1 �hiv(xi; tm)w(xi; tm) and denote the assoiate norm by k � kh. Then a Petrov-Galerkin approximation of (2.3) an be formulated as follows: Set U0 = (u0(x))S0 be thenode point interpolant from S0 to u0(x). Form = 1; 2; � � � ;M , �nd Um 2 Sm � H10 (0; 1)suh that �Um � Um�1�m ; v�h + �B(Um; v) = (f; v)h; 8v 2 T � H10 (0; 1); (2.4)where �B(vm; w) = "(vmx ; wx) + (�amvmx ; w) + (bvm; w)h for vm; w 2 H10 (0; 1) and thepieewise onstant �am is an approximation of a(x; tm), whih is de�ned by �am(x) =�am(x)j(xi�1;xi) = (a(xi�1; tm)+a(xi; tm))=2. The test spae T is omposed of the normalontinuous pieewise linear funtions whih is spaned by a basis f 1;  2; � � � ;  N�1g,where eah  i is the hat funtion satisfying  i(xj) = Æij for all j. For m = 1; 2; � � � ;M ,the trial spae Sm is onstruted by loal exponential �tting, whih is spaned by a basisf'1; '2; � � � ; 'K�1; 'mK ; � � � ; 'mN�1g, where '1; '2; � � � ; 'K�1 are the normal hat funtionssame as  1;  2; � � � ;  K�1;'mK+1; � � � ; 'mN�1 are so-alled L-spline funtions de�ned by(see [16℄) L'mi � �"('mi )xx + �am('mi )x = 0 on [xK ; 1℄�'mi (xj) = Æij ; for j = K; � � � ; N;where [xK ; 1℄� = (xK ; xK+1) [ (xK+1; xK+2) [ � � � [ (xN1 ; xN ); 'mK is a hybrid hat/L-spline de�ned similarly. For m = 0, the spae S0 is same as T .Remark. Note that we still have supp'i = (xi�1; xi+1), for the L-spline funtions'i; i = K + 1; � � � ; N � 1.De�ne k � k to be the usual L2(0; 1) norm, and then the "-weighted energy norm isde�ned as kwk" = ("kwxk2 + kwk2h)1=2; 8w 2 H10 (0; 1):For any v 2 H10 (0; 1), let vT 2 T interpolate to v at eah node xi. Then we havethe following oerivity of �B(�; �) (see lemma 4.3 of [16℄).Lemma 2.3. 8vm 2 Sm; �B(vm; vmT ) � (�=2)kvmk2"for suÆiently small h (depending only on a; b).



228 X.Y. YUE, L.S. JIANG AND T.M. SHIHIt is ready to obtainLemma 2.4.8vm 2Sm;m = 1; 2; � � � ;M; �B(vm; vmT ) + �vm � vm�1�m ; vmT �h�(�=2)kvmk2" + (1=(2�m))[(vm; vm)h � (vm�1; vm�1)h℄for suÆiently small h (independent of ").This lemma yields the existene and uniquenes of the solution of (2.4).3. Error EstimatesIn this setion, we'll derive an "-weighted energy norm error estimate for our disretesheme.First, let uSm(x; tm) be the interpolant from Sm to the exat solution u(x; tm), andset Zm = uSm(x; tm) � Um; �m = u(x; tm) � uSm(x; tm). Therefore, em = u(x; tm) �Um � Zm + �m, and Z0(xi) = 0, �m(xi) = 0, m = 1; � � � ;M; i = 0; � � � ; NRewrite (1.1) as �"uxx + aux + bu = F (x; t) � f(x; t) � ut. From Lemma 2.1,jutjL1 � C, 8t 2 [0; T ℄. Then, similarly to [16℄ for the steady ase, we an derive thefollowing interpolation error estimates.Lemma 3.1. For m = 1; 2; � � � ;M ,(1) 8x 2 [xi�1; xi℄; j�m(x)j � Ch2i ; if 1 � i � K;j�m(x)j � Chi(1� e��i) if K < i � N;(2) k�mk2" � Ch(h+ (1� e��)"j ln "j);where �i = �hi=", � = �h=".It an be proved in the same way as [16℄ by regarding f(x; t)�ut as a right-hand-sideterm.Remark. Note that 1 � e�� � � for � > 0, the result (2) is h(1 + j ln "j)1=2-order,whih is almost optimal.We now need to estimate Zm = uSm�Um. The next lemma relates the L1 and L2norms of the derivative of an L-spline over eah subinterval within the boundary layerregion, and it plays an important role in the following anlysis.Lemma 3.2. (see [11, 16℄)For eah w 2 Sm, m = 1; 2; � � � ;M , and eah i 2 fK + 1; � � � ; NgZ xixi�1 jwxjdx � C(1� e��i)1=2"1=2� Z xixi�1 jwxj2dx�1=2:We now ome toTheorem 3.3. For h suÆiently small (independent of "),MXm=1 kZmk2"�m +maxm kzmk2h � Ch(h+ (1� e��)"j ln "j) + C�2: (3.1)



Finite Element Analysis of a Loal Exponentially Fitted Sheme ... 229Proof. From (2.3) and (2.4), for eah v 2 T and m = 1; 2; � � � ;M ,�Zm � Zm�1�m ; v�h + �B(Zm; v) = R(um; v) +R1(�m; v); (3.2)where R(um; v) = [(�m; v) � (�m; v)h℄ + �ut � um � um�1�m ; v�h + ((�am � am)umx ; v),�m = fm � bmum � umt and R1(�m; v) = �["(�mx ; vx) + (�am�mx ; v)℄.Taking v = ZmT 2 T , and using Lemma 2.4,(�=2)kZmk2" + (1=2=�m)(kZmk2h � kZm�1k2h) � R(um; ZmT ) +R1(�m; ZmT ): (3.3)We �rstly bound the seond term of the righthand side. Integrating by parts andobserving that ZmT 2 T is pieewise linear, we an write by Lemma 3.1 thatjR1(�m; ZmT )j =j"(�mx ; (ZmT )x) + (�am�mx ; ZmT )j=���N�1Xi=0 Z xi+1xi �m(�"(ZmT )xx � �am(ZmT )x)dxj�C N�1Xi=0 Z xi+1xi j�m(ZmT )xjdx = C K�1Xi=0 Z xi+1xi j�mj jZm(xi+1)� Zm(xi)jhi+1 dx+ C N�1Xi=K Z xi+1xi j�mj jZm(xi+1)� Zm(xi)jhi+1 dx�C KXi=1 h2i jZm(xi)j+ Ch(1� e��)N�1Xi=K Z xi+1xi jZmx jdx� �16 N�1Xi=1 (Zm(xi))2�hi + C N�1Xi=1 h3i + Ch(1� e��) Z 1xK jZmx jdx� �16kZmk2h +Ch2 + Ch(1� e��) Z 1xK jZmx jdx (3.4)The last integration inside the boundary layer region will appear several times, andit plays a key role in this paper. So we treat it seperately. Using Lemma 3.2,Ch Z 1xK jZmx jdx �ChN�1Xi=K(1� e��i+1)1=2"1=2� Z xi+1xi jZmx j2dx�1=2�Ch�N�1Xi=K 12�1=2�N�1Xi=K(1� e��i+1)" Z xi+1xi jZmx j2dx�1=2�Ch2(1� e��)�N�1Xi=K 1�+ �16" Z 1xK jZmx j2dx�Ch2 + Ch(1� e��)"j ln "j+ �16" Z 1xK jZmx j2dx0 + h2 (3.5)



230 X.Y. YUE, L.S. JIANG AND T.M. SHIHwhere we have used that N�1Xi=K 1 � (C"j ln "j+ h)=h.We now turn to bound the term R(um; ZmT ). Beause of ZmT = N�1Xi=1 Zm(xi) i and(1;  i) = �hi, the �rst item of it an be estimated byj(�m; ZmT )� (�m; ZmT )hj =���N�1Xi=1 (�m � �(xi; tm);  i)Zm(xi)����N�1Xi=1 (1;  i)jZm(xi)j Z xi+1xi�1 j�mx jdx=N�1Xi=1 �hijZm(xi)j Z xi+1xi j�mx jdx+ N�1Xi=1 �hijZm(xi)j Z xixi�1 j�mx jdx�(I) + (II):These two terms an be treated in the same way. We only need to bound the �rst one.(I) =K�1Xi=1 �hijZm(xi)j Z xi+1xi j�mx jdx+ N�1Xi=K �hijZm(xi)j Z xi+1xi j�mx jdx�(I1) + (I2):By Lemma 2.1 and 2.2, outside the boundary layer, we have Z xK0 j�mx j2dx � C andinside the boundary layer, Z 1xK j�mx jdx � C. Therefore,(I1) � �32 K�1Xi=1 (Zm(xi))2�hi + C K�1Xi=1 �hi�Z xi+1xi j�mx jdx�2� �32kZmk2h + Ch2 K�1Xi=1 Z xi+1xi j�mx j2dx � �32kZmk2h + Ch2;where we have used the Holder's inequality.(I2) �N�1Xi=K �hijZm(xi)� Zm(1)j Z xi+1xi j�mx jdx�N�1Xi=K �hi Z xi+1xi j�mx jdx Z 1xK jZmx jdx � Ch Z 1xK jZmx jdx(by (3.5)) �Ch(1� e��)"j ln "j+ �32" Z 1xK jZmx j2dx:Estimating (II) in the same way, we getj(�m; ZmT )� (�m; ZmT )hj � Ch2 + Ch(1� e��)"j ln "j+ �16kZmk2": (3.6)



Finite Element Analysis of a Loal Exponentially Fitted Sheme ... 231The seond term of R(um; ZmT ) an be easily bounded by using Lemma 2.1,j(ut � (um � um�1)=�m; ZmT )hj � C�2 + �16kZmk2h: (3.7)To handle the third term of R(um; ZmT ), we also seperate the integration into two parts,observing that k�am � amkL1 � Ch, m = 1; 2; � � � ;M;j(�am � am)umx ; ZmT )j � Z xK0 j(�am � am)umx ZmT jdx+ Z 1xK j(�am � am)umx ZmT jdx(by Lemma 2.2) �Ch2 + �16kZmk2h + Ch Z 1xK jumx jjZmT (x)� ZmT (1)jdx�Ch2 + �16kZmk2h + Ch Z 1xK jumx jdx Z 1xK j(ZmT )xjdx�Ch2 + �16kZmk2h + Ch Z 1xK j(ZmT )xjdx(proved in (3.4)) �Ch2 + �16kZmk2h + Ch Z 1xK jZmx jdx(by (3.5)) �Ch2 + Ch(1� e��)"j ln "j+ �16kZmk2": (3.8)Combining (3.3){(3.8), we obtain for m = 1; 2; � � � ;M;�4 kZmk2" + 1=2=�m(kZmk2h � kZm�1k2h) � C(h2 + h(1� e��)"j ln "j+ �2): (3.9)Multiplying by �m, and summing form m = 1 to m0(1 � m0 �M);m0Xm=1 kZmk2"�m + kZm0k2h � C(h2 + �2 + h(1� e��)"j ln "j):Here we have used Z0(xi) = 0, i = 0; 1; � � � ; N .This is the end of the proof of Theorem 3.3.We �nally ome to the main error estimate. Combining Lemma 3.1 and Theorem3.3, we getTheorem 3.4. If u(x; t) and Um are the solutions of (1.1){(1.5) and (2:4) respe-tively. Then for h suÆiently small,MXm=1 kum � Umk2"�m +maxm kum � Umk2h �C(h2 + �2 + h(1� e��)"j ln "j)�C(�2 + h2j lnhj);where C is only dependent on a; b; f; T:Proof. The �rst inequality is diretly from Lemma 3.1 and Theorem 3.3. To provethe seond inequality, one needs heking two ases: (1) " � h, and (2) " < h.(1) In the ase of " � h, sine 1� e�� < � = �h=",C(h2 + �2 + h(1 � e��)"j ln "j) � C(�2 + h2j ln "j) � C(�2 + h2j lnhj):
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