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A NEW PERTURBATION SIMPLEX ALGORITHM FOR LINEARPROGRAMMING�1)Ping-qi Pan(Department of Applied Mathematis, Southeast University, Nanjing 210096, China)AbstratIn this paper, we �rst propose a perturbation proedure for ahieving dual fea-sibility, whih starts with any basis without introduing arti�ial variables. Thisproedure and the dual simplex method are then inorporated into a general pur-pose algorithm; then, a modi�ation of it using a perturbation tehnique is madein order to handle highly degenerate problems eÆiently. Some interesting the-oretial results are presented. Nmerial results obtained are reported, whih arevery enouraging though still preliminary.Key words: Linear programming, Simplex method, Perturbation, Dual feasibility.1. IntrodutionThe dual simplex algorithm[1, 9℄ and the primal-dual simple algorithm [6℄ are well-known and eÆient simplex variants. However, both of them need an initial dual feasiblebasis to get started, and therefore an not be diretly applied to solving problems thatdo not have suh an expliit basis. A number of shemes have been suggested to ahievedual feasibility [1, 5, 17, 18℄. Some of them onstrut the dual analogues of the arti�ial-variable tehniques, and none of them is as easy to implement omputationally as thelassial Phase-1 proedure of the primal simplex algorithm. As a result, either thedual or the primal-dual simplex algorithm is usually used only in some speial ases inpratie.On the other hand, degeneray is, in our view, all along a headahe for simplexvariants, inluding the dual and the primal-dual simplex algorithms. In pratie, de-generay ours frequently and degrades their omputational performane even thougthhardly leading to yling. Consequently, various anti-degeneray tehniques of di�er-ing avors have arised sine the early days of linear programming. Dantzig (with hisstudents) [4℄ and Charne [2℄ �rst applied perturbation strategy to resolving degener-ay. Sine then methods of this type have been proposed by, among others, Wolfe [19℄,Benihou, Gauthier, Hentges and Ribiere [3℄, Harris [8℄, and Gill, Murray, Saundersand Wright [7℄.The distinguished features of our perturbation approah are as follows:� Reeived February 27, 1995.1)This work was supported by the National Siene Foundation of China. No. 19271038



234 P.Q. PAN(a) It applies perturbation to solving the problem itself as well as dealing withdegeneray, via a \partially revised" sheme in a naturally ombined manner.(b) It perturbs the right-hand side or the relative prie row only (if neessary), andmakes no hange to either bounds of variables or pivot rules.() The amount of perturbation an be large.(d) No additional storage is needed.(e) It starts from any initial basis without introduing arti�ial variables.This paper is organized as follows. In Setion 2, we �rst desribe the perturbationproedure for generating a starting point for the dual or the primal-dual simplex algo-rithms, whih starts with any basis without introduing arti�ial variables. In Setion 3,this proedure and the dual simplex method are inorporated into a general two-phasealgorithm, whih is then modi�ed through perturbation in order to handle not onlyusual but highly degenerate problems eÆiently. Some interesting theorems onern-ing the perturbation approah are as well given. Finally, in Setion 4, omputationalresults are reported, whih are very enouraging though still preliminary.2. Ahieving Dual FeasibilityConsider linear programming problem in the standard form:max z = x (2.1a)s.t. Ax = b (2.1b)x � 0; (2.1)where m < n, A 2 Rm�n with rank (A) = m, b 2 Rm, and  and x are row and olumnn-vetors, respetively.Put linear system (2.1b) into the following tableau:� 0A b (2.2)Suppose that an initial simplex tableau of the preeding presents:� �z�A �b (2.3)where �A 2 Rm�n, �b 2 Rm, and for eah i = 1; � � � ;m, the ji-th olumn �aji of �A is theidentity vetor with the i-th omponent 1. Then, xji , i = 1; � � � ;m are the related basiset of variables. We denote by JB the set of indies of basi variables, and take thesymbol: �JB = f1; � � � ; ngnJB : (2.4)Usually, tableau (2.3) is neither primally nor dually feasible, i.e., the row index setI = fij�bi < 0g (2.5)and the index set J = fjj�j < 0; j 2 �JBg; (2.6)



A New Perturbation Simplex Algorithm for Linear Programming 235are both nonempty. We shall desribe a proedure for reahing dual feasibility.It is simple matter to hange all �bi(i 2 I) into some predetermined positive numbersÆi, by resetting �bi := Æi; 8i 2 I; (2.7)whih amounts to respetively adding quantities�i = Æi � �bi i 2 I: (2.8)It is evident that the modi�ed tableau, say (2.3) again, is now primally feasible, andthe basi tehnique of the primal simplex method is immediately appliable to solvingsuh a modi�ed problem. Suppose now that variables xk and xjl are seleted undersome rule, e.g., Dantzig's original rule, to enter and to leave the basi set respetively,and that the basis hange results in the new simplex tableau below:~ ~z~A ~b (2.9)where ~z = �z � (�bl=�alk)�k (2.10a)~j = �j � (�alj=�alk)�k; (j = 1; � � � ; n) (2.10b)~bi = ( �bi � (�bl=�alk)�aik; (i = 1; � � � ;m; i 6= l)�bl=�alk; (i = l) (2.10)~aij = ( �aij � (�alj=�alk)�aik; (i = 1; � � � ;m; i 6= l)�alj=�alk (i = l) (2.10d)Then, one simplex step has ompleted. Two tableaus are said to be equivalent if onean be obtained from the other in �nitely many iteration steps, or in other words, thetwo anonial systems, represented by them, are equivalent.We ondut suh steps until reahing an optimal tableau, or deteting upper un-boundedness. Suppose that the termination ours at some tableau, say (2.9), whih islearly equivalent to the modi�ed but not the initial tableau. Sine the anonial sys-tem, represented by the modi�ed tableau (2.3), an be obtained by making the variabletransformation xji := xji � �i for all i 2 I on the system, represented by the initialtableau, and the former system is equivalent to the one, represented by (2.9), it an besaid that making on (2.9)'s system the inverse transformation: xji := xji + �i for alli 2 I results in a system whih is equivalent to that represented by the initial tableau.Therefore, a tableau that is equivalent to the initial one an be obtained from (2.9)by the following operations: for all xji , i 2 I that are basi, subtrating �i from theorresponding omponents of the right-hand side of (2.9), respetively; and for eahnonbasi one, subtrating from the right-hand side the vetor, obtained by multiplyingthe orresponding olumn of the left-hand side of (2.9) by the assoiated �i.However, the preeding sheme may lead to unaeptable loss of orret signi�antdigits, in partiular for large problems. This diÆulty an be overome by using a so-alled partially revised sheme, in whih the inverse of the basis is utilized to generate



236 P.Q. PANdiretly from the the original A just the information required for pivoting without om-puting and reording the whole new tableau, as is done in the revised simplex method,exept ~z; ~ and ~b are still alulated via (2.10a,b,). Suh a trik is advantageous as asensitivity analysis may restore the desired tableau simply after the termination of theproess, as demonstrated below.Let B 2 Rm�m be the basis, assoiated with a urrent simplex tableau, say (2.3),i.e, B = (aj1 ; � � � ; ajm), where aji , i = 1; � � � ;m, are the olumns of A, orresponding tothe basis variables xji , and let B�1 be its inverse. Then the well-known formula~B�1 := B�1 + (el �B�1ak)eTl B�1eTl B�1ak ; (2.11)an be used to ompute the inverse of the new basis, assoiated with the tableau (2.9),where el is the identity olumn m-vetor with the l-th omponent 1. Thus we an put(2.9) into the partially revised tableau ~ ~z~B�1A ~b (2.12)where ~z; ~ and ~b are de�ned by (2.10a,b and ), respetively. Suppose that the iterationproess terminates at the tableau (2.12), and that  ~B is the row m-vetor onsistingof the prie oeÆients orresponding to the basi variables. Sine any modi�ation ofthe original right-hand side a�ets the �nal value olumn only, a diret way to restorethe desired tableau is to reset ~z :=  ~B ~B�1b and ~b := ~B�1b:3. The AlgorithmsLet us examine what an be said about the restored simplex tableau. If the un-restored tableau, say (2.12), is optimal for the modi�ed problem, the dual feasibilityof the original problem is then ahieved after the restoration beause what has beenhanged is its right-hand side only. Suppose now that the unrestored (2.12) indiatesupper unboundedness of the modi�ed problem, and the last hosen index is k, i.e., wehave ( ~B�1ak)i � 0; 8i = 1; � � � ;m: (3.1)Clearly, the restored tableau will still indiate the upper unboundedness of the originalproblem if all the strit inequalities in (3.1) hold. This is always true exept when thefollowing onditions ( ~B�1ak)~i = 0 and ( ~B�1b)~i < 0 (3.2)are satis�ed for some row index ~i. When (3.2) holds, it an still be asserted that thereexists no optimal solution, as (3.1) learly indiates dual infeasibility of the program.We may inorporate the primal proedure desribed in Setion 2 as phase-1 into ageneral algorithm, in whih either the dual or the primal-dual simplex proedure anbe taken as phase-2. Let us desribe a model, in whih the dual simplex proedure isutilized:



A New Perturbation Simplex Algorithm for Linear Programming 237Algorithm 1. Let B�1 2 Rm�m be the inverse of an initial basis. Given onstantsÆi > 0, i = 1; � � � ;m. This algorithm solves linear program (2.1).1. Set ia = 0 and ib = 0.2. Compute �z = BB�1b (3.3a)� = �+ BB�1A (3.3b)�b = B�1b (3.3)3. If row index set I de�ned by (2.5) is nonempty, reset aording to (2.7) and setib = 1.4. Determing an index k suh that�k = minf�j jj 2 �JBg (3.4)5. If �k � 0, then: (i) stop if ib = 0; (ii) restore �z and �b by (3.3a) ane (3.3),respetively; (iii) set ia = 1, and then go to step 10.6. Stop if the row index set below is empty:I 0 = fi j (B�1ak)i > 0; i = 1; � � � ;mg (3.5)7. Determing a row index l suh that�bl=(B�1ak)l = minf�bi=(B�1ak)ij i 2 I 0g (3.6)8. Update B�1 by (2.11), and �z; � and �b by (2.10a), (2.10b) and (2.10), respetively.9. If ia = 0, go to step 4.10. Determing l suh that �bl = minf�biji = 1; � � � ;mg (3.7)11. Stop if �bl � 0:12. Stop if the index set : J 0 = fjj(B�1aj)l < 0, j 2 �JBg is empty.13. Determing k suh that�k=(B�1ak)l = maxf�j=(B�1aj)ljj 2 J 0g (3.8)14. Go to step 8.Note: The primal phase-1 proedure onsists of steps 2 through 8, and the dualphase-2 steps 8 through 14.Based of the well-known properties of the primal and the dual simplex methods,and disussions made prior to the above algorithm, we onlude:Theorem 2. Assuming primal and dual nondegeneray, Algorithn 1 terminates ateither(a) step 5(i) or 11, with an optimal solution of (2:1) reahed; or (b) step 6, indiatingupper unboundedness of the program; or () step 12, indiating infeasibility of it.It is possible to gain more via a sensitivity analysis:



238 P.Q. PANLemma 3. Let T1 and T2 be two equivalent tableaus and let X be a subset of vari-ables whih are basi for both tableaus. For eah basi variable in X, let the assoiatedomponents of two right-hand sides of T1 and of T2 orrespond to eah other. Thenadding any same set of real numbers respetively to orresponding omponents resultsin two tableaus that are also equivalent.Proof. Without loss of generality, let the X beX = fxi j i = 1; � � � ; rg; (3.9)where r � m. Suppose that the tableau T1 (without the prie row) isIr Dr b0r0 D b0 (3.10)where Ir is the r�r identity matrix, 0 is the (m�r)�r zero matrix, and Dr 2 Rr�(n�r),D 2 R(m�r)�(n�r), b0r 2 Rr and b0 2 Rm�r, and that the tableau T2 isIr Er b00r0 E b00 (3.11)Denote by B�1 the inverse, left-multiplying by whih the two sides of T1 leads to T2.So, if holds that 0� b00r� � �b00 1A = B�10� b0r� � �b0 1A (3.12)If an be shown that B�1 is of the following form:B�1 =  Ir Fr0 F ! (3.13)Denote by ~T1 the tableau resulting from T1 by adding some real vetor �br 2 Rr to b0r.Then left-multiplying by B�1 the two sides of ~T1 yields an equivalent tableau of it. Theleft-hand side of the resulting tableau is as the same as that of T2, but the right-handside isB�10� b0r +�br. . . . . . .b0 1A = B�10� b0r� � �b0 1A+B�10��br� � �0 1A = 0� b00r� � �b00 1A+0��br� � �0 1A (3.14)where 0 is the zero (m� r)-vetor, and the last equality results from (3:12) and (3:13).Thus, the theorem is proved.Theorem 4. Assume that the original linear program (2:1) has a dually nonde-generate optimal tableau. If only those omponents of the right-hand side of the initialtableau are modi�ed in step 3, for whih the assoiated basi variables are also basi forthe optimal tableau, then, ahieving optimality, Algorithm 1 terminates at step 11 im-mediately after the exeution of the primal phase-1 if primal nondegeneray is assured.



A New Perturbation Simplex Algorithm for Linear Programming 239Proof. Let T2 be a dually nondegenerate optimal tableau of (2:1) and let �i bepositive numbers, de�ned by (2.8). Denote by T1 the initial tableau, and ~T1 the modi�edone from T1 by adding respetive numbers �i to the omponents of the right-hand side,assoiated with those variables whih is also basi for the optimal tableau. Aordingto Lemma 3, adding the same set of positive numbers to the orresponding omponentsof the right-hand side of T2 must result in ~T1's equivalent tableau, say ~T2, whih isoptimal for the modi�ed program sine the values of aording omponents are stritlyinreased by �0is. Thus, under the primal nondegeneray assumption, phase-1 mustterminate at some optimal tableau of the modi�ed program, say T̂2; and under the dualnondegeneray assumption on T2 and hene ~T2, the two basi solutions, related to T̂2and to ~T2, are equal. Therefore, subtrating the positive numbers from orrespondingomponents of the value olumn of T̂2 results in a nonnegative right-hand side again,an equivalene to that restored in step 5(ii). It is thus evident from Lemma 3 thatan optimal tableau of (2.1) presents, and hene the algorithm terminates at step 11immediately.Geometrially, the e�et of the modi�ations an be viewed as the violated non-negative restritions being relaxed. Obviously, if all the relaxed restritions are notative (or binding) at an optimal solution, no hange to optimal solution will happen.So, in this ase adding any positive quantities to those omponents of the initial right-hand side that are assoiated with optimally basi variables does not interfere withour purpose. On the other hand, it is seen from (3.14) that the modi�ations usuallyinterfere if some of the assoiated variables are optimally nonbasi; nevertheless, suhinterferene may not be serious if the added �i are small:Remark 5. Assume that primal phase-1 proedure of Algorithm 1 produes anoptimal tableau for the modi�ed program. If this tableau is primally nondegenerateand the modi�ations are small enough, then the algorithm terminates at step 11immediately.It is lear however that quantities �i are essentially unontrollable, and an be verylarge. So, the dual phase-2 proedure is needed in the general purpose algorithm.Like the lassial primal and dual simplex algorithms, Algorithm 1 has no defenesagainst degeneray. Therefore, it might be better to modify it to handle not only usualbut highly degenerate problems. Obviously, there is no reason to relax the violatedrestritions only: why do not relax as well the nearly-violated restritions, inludingthose orresponding to degenerate basi variables? Why do not deal with the dualproedure similarly? This leads to the anti-degenerate variant of Algorithm 1 below:Algorithm 6. Let B�1 be the same as in Algorithm 1. Given Æi > 0, i = 1; � � � ; nand a small positive number " < minfÆiji = 1; � � � ; ng. This algorithm solves linearprogram (2.1).1. Set ia = 0, ib = 0 and i = 0.2. Compute �z; � and �b by (3.3).3. If index set I = fij�bi < "; i = 1; � � � ;mg is nonempty, reset �bi = Æi, 8i 2 I and setib = 1.4. Determing index k by (3.4).5. If �k � 0, then: (i) stop if ib = 0; (ii) restore �z and �b by (3.3a) and (3.3),



240 P.Q. PANrespetively; (iii) set ia = 1; ib = 0, and then go to step 10.6. Stop if I 0, de�ned by (3.5), is empty.7. Determing l by (3.6).8. Update B�1 by (2.11), and �z; � and �b by (2.10a), (2.10b) and (2.10), respetively.9. If ia = 0, go to step 3.10. Determine row index l by (3.7).11. If �bl � 0, then (i) stop if i = 0; (ii) restore �z and � by (3.3a) and (3.3b),respetively; (iii) set ia = 0; i = 0, and then go to step 3.12. Stop if J 0, de�ned by (3.8), is empty.13. If the index set J = fjj�j < �; j 2 J 0g is nonempty, then reset �j = Æj ;8j 2 Jand set i = 1.14. Determing k by (3.8).15. Set ia = 1, and go to step 8.Comparing between Algorithms 1 and 6, we onlude that all the results statedpreviously in this setion hold as well for the latter.Moreover, Algorithm 6 has important features. It is noted that the modi�ed tableauprodued in step 3 is now guaranteed to be primally nondegenerate; and before takingon the dual simplex steps, after phase-1, the relative prie row is modi�ed so as theresulting tableau is also dually nondegenerate. There an also be an analogue of Lemma3, assoiated with the latter modi�ations:Lemma 7. Let T1 and T2 be two equivalent tableaus and let X be a subset of vari-ables that are nonbasi for both tableaus. Then adding any same set of real numbers toorresponding relative prie oeÆients results in two tableaus whih are also equivalent.Proof. Suppose that N is the submatrix onsisting of the olumns of A, orre-sponding to the modi�ed relative prie oeÆients, B is the basis related to T1 and�B the basis related to T2. Then the validity of the statement omes from the formsof the orresponding relative prie oeÆients of the two tableaus, N � BB�1N andN �  �B �B�1N , where N is the row vetor onsisting of prie oeÆients orrespondingto the olumns of N .In onjuntion with Algorithm 6, we state an analogue to Theorem 4:Theorem 8. Assume that the original linear program (2:1) has a primally non-degenerate optimal tableau and that the end tableau of primal phase-1 is restored atstep 5(ii). If, before arrying on dual phase-2, only those relative prie oeÆients ofthe restored tableau are modi�ed for whih the assoiated nonbasi variables are alsononbasi for the optimal tableau, Algorithm 6 terminates immediately at step 5(i) afterthe exeution of dual phase-2, ahieving optimality, if dual nondegeneray is assuredthroughout.Clearly, the situation may beome di�erent if some of modi�ed oeÆients areassoiated with optimally basi variables. But a statement, similar to Remark 5, analso be made here; that is, the same thing holds if the added Æi are small enough and theend tableau of phase-2 is dually nondegenerate. However, in ontrast to the ase of theformer modi�ations, where added quantities are unontrollable, the Æi being addedhere is allowed to be small, fortunately. This may be explained geometrially: the



A New Perturbation Simplex Algorithm for Linear Programming 241latter modi�ations amount to perturbing the gradient vetor of the original objetivefuntion so that the edges at the reahed vertex are all stritly dereasing ones.As a safeguarding strategy, we designed the algorithm go bak to its primal phaseagain if optimality of (2.1) is not yet ahieved after the dual simplex steps taken, andmodify all enountered degenerate entries, not only in the �rst but also in subsequentirles throughout.We onlude this setion with the following:Remark 9. Algorithm 6 terminates if primal and dual degeneray our only�nitely many times. 4. Computational ResultsIn order to gain an insight into the performane of the proposed approah, Algo-rithm 6 was oded into a FORTRAN 77 program, where the predetermined numbersused in Algorithm 6 were Æj = 10�1, 8j = 1; � � � ; n, and " = 10�3. We used Algorithm6.5 of [11℄ to determine an initial basis.Tested linear programming problems fall into 4 groups. The �rst onsists of 62problems with only inequality onstraints and of up to 22 deision variables and on-straints. The seond inludes 23 randomly produed problems with from 23 up to 80deision variables and onstraints. The third are 4 larger sparse problems. To see whatwill happen with Klee-Minty problems, the fourth group involves two suh ones (see,for example, [16℄).In TABLE 1, in terms of number of pivot steps required, numerial results obtainedare summarized, and ompared with the revised two-phase simplex algorithm usingDantzig's original rule. Four problems of group 3 are designated by P1, P2, P3 andP4, and Klee-Minty problems by KM1 and KM2, respetively.Table 1. Numerial ResultsProblem Algorithm 6 Classial Ratio: C=ATotal for Group 1 240 800 3.33Total for Group 2 1164 3209 2.76P1 : m = 27, n = 51 9 27 3.00P2 : m = 28; n = 56 4 38 9.50P3 : m = 55; n = 137 46 170 3.70P4 : m = 56; n = 138 67 172 2.57Total for Group 3 126 407 3.23KM1 : n = 8 5 255 51.00KM2 : n = 10 5 1023 204.60The preeding shows the orretness of the analysis made in Setion 3, and pointslearly to the exellene of our algorithm on these tested problems. We stress that itoutperformed the lassial simplex algorithm for eah of these problems. It turns outthat numerial results are not very sensitive to the predetermined amount of perturba-tion.Suh a good performane of Algorithm 6 might be partially due to its anti-degenerayfeature. Stalling phenomenon is not observed in the solution proess. Our experiene isthat after modi�ations at step 3 or 13 in the �rst irle of the two phases, only a little
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