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A NONLINEAR GALERKIN METHOD WITH VARIABLEMODES FOR KURAMOTO-SIVASHINSKY EQUATION�1)Yu-jiang Wu(Department of Mathematis, Shanghai University, Jiading, Shanghai 201800, China;Department of Mathematis, Lanzhou University, Lanzhou 730000, China)AbstratThis artile proposes a kind of nonlinear Galerkin methods with variable modesfor the long-term integration of Kuramoto-Sivashinsky equation. It onsists of�nding an appropriate or best number of modes in the orretion of the method.Convergene results and error estimates are derived for this method. Numerialexamples show also the eÆieny and advantage of our method over the usualnonlinear Galerkin method and the lassial Galerkin method.Key words: Kuramoto-Sivaskinsky equation, Nonlinear Galerkin method, Approx-imation, Convergene 1. IntrodutionThe nonlinear Galerkin method was introdued by Marion and Temam[4℄, whihis stemmed from the theory of inertial manifolds and dynamial system theory. Theonsiderable inrease in the omputing power during last years makes it possible forthe mathematiians to solve numerial problems for approximating various dissipativeevolution equations on large interval of time. Indeed, the nonlinear Galerkin methodhas proven to be a powerful tool for suh problems (See [9℄, [11℄ and referenes therein).Reently, this method has been applied to the long time integration of Kuramoto-Sivashinsky equation[12℄. Thanks to a newly established inequality for the nonlinearterm of Kuramoto-Sivashinsky equation, we an extend the method to a nonlinearGalerkin method with variable modes. Here the method involves a hangeable numberfor the small-sale omponents zs = zs(m), when the unknown funtion is u � um + zs.After the analysis of error estimates we give an optimal value of s or ! = m+ s whihredues the order of the error of the method to the lowest.This paper is organized as follows: Setion 2 ontains the desription of the equationand some preliminary results. In Setion 3 we desribe the modi�ation of nonlinearGalerkin method with variable modes and prove suessively the onvergene of themethod. In Setion 4 we state and prove the error estimates of the method and givethe possible minimummodes for the method. Finally, in Setion 5 we make omparisonsof various numerial omputations for two examples whih show a signi�ant gain inomputing time for our method.� Reeived Otober 5, 1995.1)The projet is supported partially by the Siene Foundation of the State Eduation Commissionof China.



244 Y.J. WU2. The Equation and Its Funtional SettingThe Kuramoto-Sivashinsky equation with an initial ondition and a periodi bound-ary ondition reads as follows (with dimension= 1 and period= l):8>>><>>>: �u�t + �4u�x4 + �2u�x2 + u�u�x = 0 0 < x < l; t > 0u(x; 0) = u0(x) 0 � x � lu(x; t) = u(x+ l; t) t � 0 (2.1)(2.2)(2.3)For the funtional setting of the equation, we an rewrite this partial di�erentialequation into an abstrat evolution equation in a Hilbert spae H with salar produt(�; �) and norm j � j. In this ase, we have H = fuju 2 L2(0; l), u(0; t) = u(l; t) = 0g.Thus the equations (2.1){(2.3) beome8<: dudt +Au+B(u) + Cu = fu(0) = u0 (2.4)(2.5)Here, we set A = �4�x4 , B(u) = u�u�x andCu = 8>><>>: �2u�x2 l < 2��2u�x2 + ��u�x + �0u l � 2�f = ( 0 l < 2���(4) � �00 � ��0 l � 2�where � = �(x) is a funtion given in [5℄ to keep the oerivity property of the operatorA+ C.Sine A�1 is ompat and self-adjoint, there exists an orthonormal basis of H whihonsists of the eigenvetors of A: Awj = �jwj , 0 < �1 � �2 � � � �, �j !1 as j !1.Given another Hilbert spae V endowed with salar produt ((�; �)) and norm k � k,V = H2p (0; l) \H. We denote the domain of the operator A by D(A) = H4p(0; l) \H.And we know that B(u) = B(u; u) is a bilinear operator from V � V into V 0, C is alinear operator from V into H and f 2 H.De�ne a trilinear form b on V by b(u; v; w) = hB(u; v); wiV 0;V 8u; v; w 2 V , wereall the following well-known properties:b(u; u; u) = 0 8u 2 V (2.6)jb(u; v; w)j � 1juj1=2kuk1=2kvkjwj1=2kwk1=2 8u; v; w 2 V (2.7)jCuj � 2kuk 8u 2 V (2.8)jB(u; v)j � 3juj1=2kuk1=2kvk1=2jAvj1=2 8u 2 V; v 2 D(A) (2.9)jB(u; v)j � 4juj1=2jAuj1=2kvk 8u; v 2 D(A) (2.10)jB(u; v)j � 5�1 + log jAuj2�1kuk2�1=2kukkvk 8u 2 D(A); v 2 V (2.11)



A Nonlinear Galerkin Method with Variable Modes for Kuramoto-Sivashinsky Equation 245jB(u; v)j � 6�3� �1kuk2� jAuj2 �1=2kukkvk (� > 0) 8u 2 D(A); v 2 V (2.12)By the onstrution, we have, for an � > 0,((A+ C)u; u) � �kuk2; 8u 2 D(A) (2.13)Let m denote a �xed positive integer. To suh an m, we assoiate the orthogonalprojetion P = Pm in H onto the subspae spanned by the �rst m eigenvetors ofA;w1; w2; � � � ; wm. For any integer m0 > m, it results in the following lemma.Lemma 2.1. If v 2 (Pm0 � Pm)H, then it holds1�m0 + 2 jvj � j(A+ C)�1vj � 1��m+1 jvj: (2.14)At the end of this setion, we reall a result borrowed from [8℄:Lemma 2.2. (Gronwall) If y(t) � 0 (y(0) = 0), x(t) � 0, g(t) � 0 and h(t) � 0satisfy y0(t) + x(t) � g(t)y(t) + h(t) 8t � 0 theny(t) + Z t0 x(�)d� � Z t0 h(�)exp�Z t� g(s)ds�d�: (2.15)3. Nonlinear Galerkin Method with Variable ModesWe assume that ! = !(m) (> m) is another integer assoiated with m. Let s =s(m) = !(m) �m. The preise values of ! and s will be given in Setion 4. Usingthe eigenvetors wj, j 2 N, of the operator A, this kind of nonlinear Galerkin methods(NLG) for an approximate solution of problem (2.4){(2.5) is implemented as follows:The approximate solution um + zs is of the formum(t) = mXj=1 gjm(t)wj ; zs(t) = !Xj=m+1hjm(t)wj (3.1)where um : R+ !Wm = span fw1; w2; � � � ; wmg, zs : R+ ! ~Ws = span fwm+1; wm+2; � � �,w!g. The pair (um; zs) satis�esddtum +Aum +Cum + Pm(B(um; um) +B(um; zs) +B(zs; um)) = Pmf (3.2)Azs + Czs + (P! � Pm)B(um; um) = (P! � Pm)f (3.3)um(0) = Pmu0 (3.4)The system (3.2){(3.3) is equivalent to the following:ddt(um; v) + ((A+ C)um; v) + b(um; um; v) + b(um; zs; v)+ b(zs; um; v) = (f; v) 8v 2Wm (3.5)



246 Y.J. WU((A+ C)zs; ~v)+b(um; um; ~v) = (f; ~v) 8~v 2 ~Ws (3.6)Remark 3.1. If s = m, then we go bak to the �rst NLG method presented in[4℄. Later on, Temam pointed out that we might hange the number m of modes toapproximate zm (see e.g. [9℄). His proposal is to use (d� 1)m modes, d > 2. Here, ourhoie is more general beause ! = !(m) is probably a nonlinear funtion of m ratherthan a linear one (d� 1)m.Now we go to analyze the approximate solution produed by our method. Theseproperties lead suessively to the onvergene of the approximate solution. (In thefollowing, absolute onstant  may be di�erent when it is used in di�erent plaes.)Proposition 3.2. The approximate solution um + zs(m) produed by (3:2){(3:4)satis�es(i) um and zs remain both in a bounded set of L1(R+;H) as m!1;(ii) um and zs remain both in a bounded set of L2(0; T ;V ) as m!1.Proof. Taking v = um in (3.5) and ~v = zs in (3.6) we haveddt jumj2 + kumk2 + (Cum; um) + b(um; zs; um) + b(zs; um; um) = (f; um) (3.7)kzsk2 + (Czs; zs) + b(um; um; zs) = (f; zs) (3.8)Summing up (3.7) and (3.8) and due to (2.13) and b(um; zs; um) + b(zs; um; um) +b(um; um; zs) = 0, we obtain thatddt jumj2 + �(kumk2 + kzsk2) � jf j2��1 (3.9)It follows also that ddt jumj2 + ��1jumj2 � jf j2��1 (3.10)Besides, using (2.9) and (2.13) we dedue an estimate for zs from (3.8)jzsj � � �m�m+1 jumj+ 1�m+1 jf j�Hene, by using this estimate and by integrating (3.9) and (3.10) respetively we om-plete the proof. 2Proposition 3.3. We have, as m!1, that(i) zs(m) ! 0 in L2(0; T ;H) strongly;(ii) zs(m) ! 0 in L2(0; T ;V ) weakly;(iii) zs(m) ! 0 in L1(R+;H) weak-star.Proof. We also infer from (3.8) another inequalitry�1=2m+1jzsj � (jumjkumk+ jf j):Combining it with the results of Proposition 3.2, we �nd that�1=2m+1zs remain bounded in L2(0; T ;H):



A Nonlinear Galerkin Method with Variable Modes for Kuramoto-Sivashinsky Equation 247However, we know that limm!1�m =1. Hene, (i) follows.(ii) and (iii) are diret onsequenes of Proposition 3.2. 2Proposition 3.4. There exist an element u� and a subsequene m0 suh that, asm0 !1,(i) um0 ! u� in L2(0; T ;V ) weakly;(ii) um0 ! u� in L1(R+;H) weak-star;(iii) um0 ! u� in L2(0; T ;H) strongly;(iv) dum0dt ! du�dt in L2(0; T ;V 0) weakly.Proof. Obviously, (i) and (ii) are onsequenes of Proposition 3.2.By (2.12) and the inlusion V � H � V 0, we know that B(um; um), B(um; zs) andB(zs; um) are all bounded in L2(0; T ;V 0). Due to (2.8) and Proposition 3.3, we derivethat dumdt remains bounded in L2(0; T ;V 0)whih implies (iv).By virtue of a lassial ompatness theorem[7℄, we get (iii). 2Proposition 3.5. For the trilinear terms, we have, as m!1, that(i) b(um0 ; um0 ; v)! b(u�; u�; v) in L1(0; T ) strongly;(ii) b(um0 ; zs(m0); v)! 0 in L1(0; T ) strongly;(iii) b(zs(m0); um0 ; v)! 0 in L1(0; T ) strongly.Proof. At �rst, we have simply thatb(um0 ; um0 ; v)� b(u�; u�; v) = b(um0 � u�; um0 ; v) + b(u�; um0 � u�; v)By Sobolev imbedding theorem and Propositions 3.2 and 3.4, we derive thatjb(um0 � u�; um0 ; v)j =��� Z l0 (um0 � u�)�um0�x vdx����� Z l0 jum0(x)� u�(x)j2dx�1=2�Z l0 ����um0�x ���4dx�1=4� Z l0 v4dx�1=4�kum0kkvkjum0 � u�j � jum0 � u�j 8t 2 [0; T ℄and jb(u�; um0 � u�; v)j =��� Z l0 u� �(um0 � u�)�x vdx��� � Z l0 ���(um0 � u�)�(u�v)�x ���dx�� Z l0 jum0(x)� u�(x)j2dx�1=2� Z l0 ����(u�v)�x ���2dx�1=2�jum0 � u�jn� Z l0 ���v�u��x ���2dx�1=2 + �Z l0 ���u� �v�x ���2dx�1=2o�jum0 � u�j 8t 2 [0; T ℄:So we getZ T0 jb(um0 ; um0 ; v)� b(u�; u�; v)jdt �  Z T0 jum0(t)� u�(t)jdt! 0 as m0 !1:



248 Y.J. WURealling that (2.12) and Proposition 3.2 and Proposition 3.3, we �nd easily the proofof (ii) and (iii). 2As a onsequene, we haveProposition 3.6. The limit u� satis�es8<: ddt (u�; v) + ((A+ C)u�; v) + b(u�; u�; v) = (f; v) for all v 2 Vu�(0) = u0Hene, u� = u is the solution of (2:4){(2:5).In view of the passage to limit, we �nd that u� = u is the solution of problem(2.4){(2.5). Sine this solution is unique, we know from [7℄ that the onvergenes inProposition 3.4 and Proposition 3.5 hold for the whole sequene m.Finally we onsider as in [4℄ that the expressionXm = 12 jum(T )�u(T )j2+ Z T0 fkum�uk2+(C(um�u); um�u)+ kzsk2+(Czs; zs)gdt:We show exatly as in [4℄ that Xm ! 0 as m!1. This shows thatum(T )! u(T ) strongly inHum ! u; zs(m) ! 0 strongly inL2(0; T ;V ); 8T � 0:Using the Lebesgue dominated onvergene theorem we have furthermoreum ! u; zs(m) ! 0 in Lp(0; T ;H) strongly; for all T > 0; and all 1 � p <1:Up to now, we obtain the onvergene result of our nonlinear Galerkin method withvariable modes. i.e.Theorem 3.7. For u0 given in H, the approximate solution um + zs determinedby (3:2){(3:4) onverges, as m!1, to the solution of Kuramoto-Sivashinsky equation(2:4){(2:5) in the following sense:(i) um ! u, zs(m) ! 0 in L2(0; T ;V ) and Lp(0; T ;H) strongly for all T > 0, andall 1 � p <1;(ii) um ! u, zs(m) ! 0 in L1(R+;H) weak-star.4. Error EstimationIn order to analyze the error of our methods, let us deompose orthogonally thespae H into H = PH �QH, where operator Q = Qm = I � P . We assoiate to anyorbit u of (2.4) in H its projetories p = Pu, q = Qu. Projeting (2.4) on PH and QH(noting that P;Q ommute with A and the powers of A, and that C is a power of A ora linear ombination of powers of A), we obtain a oupled system for p; qdpdt +Ap+ Cp+ PB(p+ q) = Pf (4.1)dqdt +Aq + Cq +QB(p+ q) = Qf (4.2)



A Nonlinear Galerkin Method with Variable Modes for Kuramoto-Sivashinsky Equation 249We suppose that the initial datum u0 in (2.5) satis�es ju0j � R0, ku0k � R1, for ertainonstants R0, R1. It is well-known that there exists a time t� depending on R0, R1 andthe other data �, jf j and �1 suh that for t � t�, ju(t)j �M0, ku(t)k �M1, where M0,M1 are independent of u0, but depend on the other data.Upon taking the salar produt of (4.2) with q and using (2.6) we �nd12 ddt jqj2 + ((A+ C)q; q) = (Qf; q)� (B(p; p); q) � (B(q; p); q) � (B(p; q); q)Making use of (2.7), (2.12) and (2.13) and notiing that there exists a onstant 0 > 0suh that �3� �1kuk2� jAuj2 �1=2 � 0; 8u 2 D(A)We know that12 ddt jqj2 + �kqk2 �jQf jjqj+ 6�3� �1kpk2� jApj2 �1=2kpk2jqj+ 1kpkkqkjqj + 60kpkkqkjqj��jQf j+ 6�3� �1��m+1�1=2M21 + 1M21 + 60M21�jqj�01��1=2m+1 (jQf j+M21 )kqk � �2 kqk2 + 02��m+1 (jQf j2 +M41 )ddt jqj2 + ��m+1jqj2 � 03��m+1 (jQf j2 +M41 )By integration in time we �ndjq(t)j2 � jq(t�)j2e���m+1(t�t�) + 03�2�2m+1 (jQf j2 +M41 )If we write �0 = s 203��12 (jf j2 +M41 ), we an obtainjq(t)j � �0� �1�m+1�; for t � t01; t01 = maxnt�; t� + 1��m+1 log2M0�2m+1�0�12 o: (4.3)Similarly, we an provekq(t)k � �0� �1�m+1�1=2; jq0(t)j � �0� �1�m+1�1=2; jAq(t)j � �0; for large t: (4.4)Let us de�ne a mapping� : PH ! H�(p) = (A+ C)�1(I � Pm)(f �B(p)) 8p 2 PHand denote by M the graph of �. Aording to (4.3) and (4.4), we set the induedtrajetories um+ �zm; �zm = �(um) assoiated to u(t) as in [10℄ and [2℄, then there existsa � > 0 suh that dist (u;M) � ju� (um + �zm)j � �� �1�m+1�3=2 (4.5)



250 Y.J. WULet us de�ne another mapping	 : PH ! H	(p) = (A+ C)�1(P! � Pm)(f �B(p)) 8p 2 PHand denote by N the graph of 	. Thus, we obtain the �rst error estimation of ourNLG method as follows:Theorem 4.1. There exist onstants �1 and �2 suh thatdist (u;N ) � ju� (um + zs)j � �1� 1�m+1�3=2 + �2� 1�!+1� (4.6)Proof. Thanks to (4.5), (2.12) and (2.14), we dedue thatdist (u;N ) �ju� (um + zs)j � ju� (um + �zm)j+ j(um + �zm)� (um + zs)j��� �1�m+1�3=2 + j�(um)�	(um)j��� �1�m+1�3=2 + j(A+ C)�1(I � P!)(f �B(um))j��� �1�m+1�3=2 + 1� 1�!+1 (jf j+ 05M21 ) � �1� 1�m+1�3=2 + �2� 1�!+1�: 2Remark 4.2. It is well-known that the eigenvalues of the one-dimensinal Kuramoto-Sivashinsky equation are �j = �2�jl �4; j = 1; 2; � � � (4.7)If we hope that the nonlinear Galerkin method with variable modes an attain to itsbetter preision, (4.6) suggests that we hoose the number of modes, !(m), so large that�2� 1�!+1 � � �1� 1�m+1�3=2. Combining with (4.7) we should at least set O(!(m)) � 32as m!1. i.e. we should take !(m) � mpm (4.8)We give a result derived from Parseval identity. (See e.g. [1℄)Lemma 4.3. If u 2 H�0 (0; l), then there exists a  > 0 suh thatju� Pmuj � m�����d�udx� ��� : (4.9)This lemma is frequently used in the proess of error analysis. Realling the Setion2 (also [5℄), it is reasonable to devide the error estimation proess into two steps: l < 2�and l � 2�.I. Case 1: l < 2�.In this ase, (3.2) and (3.3) redue to�um�t + �4um�x4 + �2um�x2 + Pm�um �um�x + zs�um�x + um �zs�x � = 0 (4.10)�4zs�x4 + �2zs�x2 + (P! � Pm)�um�um�x � = 0 (4.11)



A Nonlinear Galerkin Method with Variable Modes for Kuramoto-Sivashinsky Equation 251The results of the following two lemmas are straightforward.Lemma 4.4. There exists a � > 0 suh that, for any w 2 D(A), we have((A+ C)w;Aw) � �jAwj2 (4.12)Proof. Diret omputation shows � � 1� � l2��2: 2Lemma 4.5. For the approximate solution um + zs of (4:10){(4:11), we haveum 2 L1(R+;H) \ L2(R+;V )zs 2 L1(R+;H) \ L2(R+;V )Proof. Thanks to Proposition 3.2, all we need to do now is to show that um and zsare both in L2(R+;V ). However, this is easy. Beause of (3.9) and f = 0, we integrateit from 0 to t and getjum(t)j2 + � Z t0 (kumk2 + kzsk2)d� � ju0j2 8t � 0Z t0 (kumk2 + kzsk2)d� � 1� ju0j2 8t � 0This ompletes the proof. 2From now on, we denoteu� (um + zs) = �(x; t) + �(x; t) (4.13)where �(x; t) = u� P!u �(x; t) = �1(x; t) + �2(x; t)�1(x; t) = Pmu� um �2(x; t) = P!u� Pmu� zsWe have the error estimation theoremsTheorem 4.6. For u0 given in H, it follows that(i) ju� (um + zs)j = O((!(m)�� + ��1m+1m��) uniformly for t > 0(ii) Z 10 ku� (um + zs)k2dt = O((!(m))�2� + ��2m+1m�2�)Proof. By (4.13), we know that �(x; t) satis�es��1�t +A�1 + C�1 + Pm�u�u�x � �um �um�x + zs�um�x + um�zs�x �� = 0 (4.14)��2�t +A�2 + C�2 + (P! � Pm)�u�u�x � um �um�x �+ �zs�t = 0 (4.15)Taking inner produt of (4.14) with �1 and of (4.15) with �2, we obtain respetively12 ddt j�1j2 + �k�1k2 �12� supx ju+ um + zsjju� (um + zs)j�����1�x ���+ Z l0 jzsj2�����1�x ���dx���2 k�1k2 + � supx ju+ um + zsj2(j�j2 + j�j2) + � Z l0 jzsj4dx



252 Y.J. WUand 12 ddt j�2j2 + �k�2k2 �12 supx ju+ umjju� umj�����2�x ���+ ����zs�t ���j�2j��2 k�2k2 + � supx ju+ umj2(j�j2 + j�j2 + jzsj2) + � ����zs�t ���2Adding them together, we haveddt(j�1j2 + j�2j2) + �(k�1k2 + k�2k2)� � (ku+ um + zsk2 + ku+ umk2 + kzsk2)(j�j2 + j�1j2+ j�2j2 + jzsj2) + � ����zs�t ���2 (4.16)By Lemma 2.1 and Lemma 4.3 (see also [12℄ for the detail), we havejzsj = O(��1m+1m��) ����zs�t ��� = O(��1m+1m��) (4.17)Applying Gronwall inequality (Lemma 2.2) to (4.16), we obtainj�1(t)j2 + j�2(t)j2 + � Z t0 (k�1k2 + k�2k2)d�=O((!(m))�2� + ��2m+1m�2�) uniformly for t > 0Note that j�j = O(!��), we omplete the proof. 2Theorem 4.7. For u0 given in V , it follows that(i)ku� (um + zs)k = O((!(m))�� + ��1m+1m��) uniformly for t > 0 (4.18)(ii) Z 10 jA(u� (um + zs))j2d� = O((!(m))�2� + ��2m+1m�2�) (4.19)(iii) supx ju� (um + zs)j = O((!(m))�� + ��1m+1m��) uniformly for t > 0 (4.20)Proof. Similarly, we take inner produt of (4.16) with A�1 and of (4.17) with A�2.Thanks to Lemma 4.4, we obtainddtk�1k2 + �jA�1j2 � �maxfkum + zsk2; kuk2; kzsk2g(k�k2 + k�k2 + kzsk2)and ddtk�2k2 + �jA�2j2 � ��maxfkumk2; kuk2g(k�k2 + k�k2 + kzsk2) + ����zs�t ���2�Adding the orresponding inequalities, we getddt(k�1k2 + k�2k2) + �(jA�1j2 + jA�2j2)



A Nonlinear Galerkin Method with Variable Modes for Kuramoto-Sivashinsky Equation 253� ��maxfkumk2; kuk2; kzsk2g(k�k2 + k�k2 + kzsk2) + ����zs�t ���2�and k�1(t)k2 + k�2(t)k2 + � Z l0 (jA�1(�)j2 + jA�2(�)j2)d�=O((!(m)�2� + ��2m+1m�2�)uniformly for t > 0:This shows (i) and (ii).By virtue of Sobolev imbedding theorem, (iii) is also veri�ed. Hene, the proof isonluded. 2II. Case 2: l � 2�In this ase the Lemma 4.4 and Lemma 4.5 do not hold true. Therefore, theonlusion about the time t is weakened.Theorem 4.8. For u0 given in H, it follows that(i) ju� (um + zs)j = O((!(m))�� + �1m+1m��) for 0 < t � T ; (4.21)(ii) Z T0 ku� (um + zs)k2dt = O((!(m))�2� + ��2m+1m�2�) (4.22)Theorem 4.9. For u0 given in V , it follows that(i)ku� (um + zs)k = O((!(m))�� + ��1m+1m��) for 0 < t � T ; (4.23)(ii) Z T0 jA(u� (um + zs))(�)j2dt = O((!(m))�2� + ��2m+1m�2�) (4.24)(iii) supx ju� (um + zs)j = O((!(m))�� + ��1m+1m��) for 0 < t � T: (4.25)Remark 4.10. Thanks to (4.7), the above theorems suggest that we hoose!(m) � m1+ 4� (4:26)in whih ase the order of error redues to O(m�4��).Combining with the Theorem 4.1 and the disussion there, we eventually �nd theleast number of modes!(m) = !min 4=  �maxfm[pm℄;m[m 4� ℄g: (4:27)where  is a positive onstant. Aording to this hoie, we use s = !min �m modesto approximate the small strutures omponent. The approximation involves a total of!min modes, whih brings our NLG method to the possibly highest preision.5. Numerial ExperimentWe desribe here the results of omputational tests performed with our nonlinearGalerkin method with variable modes (3.2){(3.4). Comparisons are also made with the



254 Y.J. WUusual nonlinear Galerkin method and the lassial Galerkin method. In all ases thetime disretization is impliit in the linear terms and expliit in the nonlinear terms.Two examples will be disussed in the following part.Example 5.1. We hange a little bit of the equation (2.1) by adding a nonhomo-geneous term ~f on the right-hand side of (2.1). We use also a visosity � to replaeA by �A in the equation. All the theoreti results are also true. In this situation thesolution u is a priori hosen and ~f is determined from (2.1). Hene the exat solutionof the equation is known and it is easy to test safely the auray.Our NLG method with variable modes here beomes:�um�t + (�A+ C)um + Pm�um �um�x + zs�um�x + um�zs�x � = Pm ~f (5.1)(�A+ C)zs + (Pm+s � Pm)�um�um�x � = (Pm+s � Pm) ~f (5.2)um(0) = Pmu0 (5.3)The exat solution u = u(x; t) is:u = g(t) � � sin �x+ e�pN sinN�x� (� = 2�=l; N = 150)g = g(t) = 11 + 12(����3) � (1� e(�2���4)t) � e(�2���4)tTherefore,~f = ~f(x; t) = (g0 + ��4g � �2g) sin �x+ 12�g2 sin 2�x� 12(N � 1)e�pN�g2 sin (N � 1)�x+ (g0 + ��4gN4 � �2gN2)e�pN sinN�x+ 12(N + 1)e�pN�g2 sin (N + 1)�x+ 12Ne�2pN�g2 sin 2N�xThe time step is set to be 4t = 10�3, the visosity � = 0:48 and l = 9�=5. Withm = 64 and s = 106 we employed �ve methods to ompute.a) NLG method with variable modes (64+106 modes).b) NLG method (85+85 modes).) Galerkin method (170 modes).d) NLG method (64+64 modes).e) Galerkin method (128 modes).Computational results show that the auray is about the same for methods a),b) and ), whih is higher than that of d) and e). In like manner, the auray is alsoabout the same for both d) and e). However, Table 5.1 shows the gain in omputingtime for the method a): the gain over b) is approximately 5%, over ) is approximately12%. In less modes ases, both d) and e) use about the same CPU time. (See, e.g.,Table 5.2).



A Nonlinear Galerkin Method with Variable Modes for Kuramoto-Sivashinsky Equation 255Table 5.1 Computing Time in Seond(more modes)t = methodsa) b) )100 � 4t 9.36 9.70 10.54200 � 4t 18.71 19.54 21.19300 � 4t 27.85 29.22 31.80400 � 4t 37.16 39.02 42.35500 � 4t 46.69 48.90 52.98600 � 4t 56.04 58.57 63.50700 � 4t 65.34 68.06 74.14800 � 4t 74.42 78.19 84.74900 � 4t 84.12 87.89 95.811000 � 4t 93.25 97.54 106.22
Table 5.2 Computing Time in Seond(less modes)t = methodsd) e)100 � 4t 5.83 5.83200 � 4t 11.73 11.76300 � 4t 17.55 17.65400 � 4t 23.63 23.47500 � 4t 29.50 29.56600 � 4t 35.43 35.53700 � 4t 41.21 41.56800 � 4t 47.28 47.51900 � 4t 53.08 53.031000 � 4t 58.79 59.09Example 5.2We use the equation (2.1){(2.3) without nonhomogeneous term on the right-handside. In this ase we do not know what the exat solution u(x; t) is although it ex-ists. Meanwhile we use also �ve methods to ompute the approximate solution of theequation. Here we set: 4t = 10�3, � = 4; l = 9�=5;m = 64 and s = 106.a) NLG method with variable modes (64+106 modes).b) NLG method (85+85 modes).) Galerkin method (170 modes).d) NLG method (64+64 modes).e) Galerkin method (128 modes).Table 5.3 Computing Time in Seond(more modes)t = methodsa) b) )500 � 4t 37.67 39.93 44.541000 � 4t 76.12 79.90 88.871500 � 4t 113.43 120.20 133.252000 � 4t 150.97 159.48 178.232500 � 4t 188.61 199.08 222.473000 � 4t 227.73 239.05 266.253500 � 4t 263.91 278.08 311.534000 � 4t 301.08 318.43 354.724500 � 4t 343.46 357.95 399.265000 � 4t 376.48 398.16 444.34
Table 5.4 Computing Time in Seond(less modes)t = methodsd) e)500 � 4t 23.58 26.511000 � 4t 47.42 52.811500 � 4t 71.57 78.882000 � 4t 93.95 105.142500 � 4t 118.59 131.753000 � 4t 141.72 157.613500 � 4t 164.99 182.994000 � 4t 189.09 210.244500 � 4t 212.74 236.545000 � 4t 236.65 262.10Note that here we use a variation of (3.2){(3.4) to implement pratially the non-linear Galerkin method (with or without variable modes) in the ases a), b) and d).The variation reads:�um�t + (�A+ C)um + Pm�um�um�x + zs �um�x + um�zs�x � = 0 (5.4)�zs�t + (�A+ C)zs + (Pm+s � Pm)�um �um�x � = 0 (5.5)um(0) = Pmu0 (5.6)
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