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STABILITY ANALYSIS OF FINITE ELEMENT METHODS FORTHE ACOUSTIC WAVE EQUATION WITH ABSORBINGBOUNDARY CONDITIONS (PART I)�1)Xiu-min Shao Zhi-ling Lan(Institute of Mathematis, Aademy of Sienes, Beijing 100080, China)AbstratIn Part I and Part II of this paper initial-boundary value problems of theaousti wave equation with absorbing boundary onditions are onsidered. Their�nite element-�nite di�erene omputational shemes are proposed. The stabilityof the shemes is disussed and the orresponding stability onditions are given.Part I and Part II onern the �rst- and the seond-order absorbing boundaryonditions, respetively. Finally, numerial results are presented in Part II to showthe orretness of theoretial analysis.Key words: Stability, Finite element methods, Wave equation, Absorbing boundaryonditions 1. IntrodutionIn the numerial simulation of wave propagation in unbounded or semi-unboundedmedium it is neessary to introdue arti�ial boundaries to obtain �nite omputationalregions. Then some boundary onditions have to be imposed on these boundaries, whihshould eliminate the reetion of waves at arti�ial boundaries, so that the obtainedsolutions rather aurately simulate the solutions in the unbounded domains. (That iswhy they are alled absorbing boundary onditions). The onditions on the arti�ialboundaries should also guarantee the well-posedness of solutions to the di�erentialequations, whih is a neessary ondition for the stability of the �nite di�erene or the�nite element approximations.In reent thirty years, a variety of absorbing boundary onditions for wave equationshave been developed (see [1℄). What is most widely used was given by Clayton andEngquist[2℄, Engquist and Majda [3;4℄, based on the pseudodi�erential operator theory.A hierarhy of di�erential boundary onditions was derived to approximate the bound-ary onditions of the pseudodi�erential operator forms. Let the arti�ial boundary bex = 0, and the domain be t � 0; x � 0: For the aousti wave equation�2u�t2 � �2u�x2 � �2u�y2 = 0; (1:1)the mentioned onditions are the followings:B1ujx=0 = ��u�t � �u�x����x=0 = 0;� Reeived May 14, 1996.1) Supported By National Natural Siene Foundation of China.



294 X.M. SHAO AND Z.L. LANB2ujx=0 = ��2u�t2 � �2u�t�x � 12 �2u�y2 ����x=0 = 0; (1.2)BN+1ujx=0 = � ��tBNu� 14 �2�y2BN�1u����x=0 = 0:The orresponding onditions for the elasti wave equations are ompliated, and weare not going to write them here.In [3℄, the well-posedness of (1.2) (i.e., the Clayton-Engquist-Majda onditions forthe aousti wave equation) when N � 3 has been proved. In [5℄, the authors of thispaper generalize (1.2) to the anisotropi elasti wave equations and have proved that theClayton-Engquist-Majda onditions for the elasti wave equations are ill posed whenN � 2:In this paper, only the aousti wave equationL(u) = �2u�x2 + �2u�y2 � 1C2(x; y) �2u�t2 = f(x; y; t) (1:3)is disussed. But some onlusions are signi�ant also for other wave equations.In numerial omputations, the equation (1.3) with absorbing boundary onditionsis approximated usually by �nite di�erene shemes, and seldom by �nite element ap-proahes. The author of [6℄ aÆrmed that the main diÆulty omes from the order ofthe boundary onditions for whih it is not easy to derive a weak formulation whihprovides a suitable energy estimate. In [6℄, therefore, a third-order energy is intro-dued, and a �rst-order hyperboli system of 7 unknowns is derived, for whih �niteelement methods an be applied. Obviously, this approah is not desirable for pratialomputation.In this paper, �nite element-�nite di�erene shemes for the equation (1.3) withthe �rst and seond order absorbing boundary onditions of (1.2) are proposed. Theirstability is disussed, and the stability onditions are given. The Part I is devotedto the �rst order absorbing boundary ondition, and the Part II to the seond orderboundary ondition. The numerial results are presented in the Part II, whih showthe orretness of the theoretial onlusions.For the sake of simpliity, we shall restrit ourselves to the two-dimensional ase.The three-dimensional ase an be disussed similarly without any diÆulty.2. Finite Element-Finite Di�erene ShemesLet the omputational domain be 
;
 = f(x; y) : �a < x < a; 0 < y < bg;�1 = f(x; y): �a � x � a; y = 0g be a natural boundary, and �
0 = �
=�1 be thearti�ial boundary.Introdue the inner produt notations(u; v) = Z Z
 uvdxdy; hu; vi = Z�
0 uvds:De�ne the spae H1;0(
) = fv(x; y) 2 H1(
) : vj�1 = 0g. It is obvious that H1;0(
) isa losed subspae of H1(
):In the following disussion, let n denote outer normal diretion, and s tangentialdiretion of the boundary �
0. Suppose that in (1.3), C(x; y) 2 L1(
) and C(x; y) > 0;



Stability Analysis of Finite Element Methods for the Aousti Wave Equation ... 295f(x; y; t) 2 H10 (
) � C([0; T ℄). Consequently, f(x; y; t) 2 L2(
) � C([0; T ℄). Henef(x; y; t) 2 L1(
) � C([0; T ℄). For onveniene of omputation, we write f(x; y; t) asf(x; y; t)=C2(x; y); where f(x; y; t) = C2(x; y)f(x; y; t):Corresponding to the �rst-order absorbing boundary ondition in (1.2), onsider thefollowing generalized solution of initial-boundary value problem of the equation (1.3).Problem I. Find a funtion u(x; y; t) whih is seond-order ontinuously di�eren-tiable with respet to t when (x; y) 2 
 and belongs to H1;0(
) for any �xed t 2 [0; T ℄;and satis�es the following equations8>>>>>>>>><>>>>>>>>>:
� 1C2 �2u�t2 ; v�+ (5u;5v) � h�u�n; vi+ � 1C2 f; v� = 0D�u�n + 1C �u�t ; vE = 0(u; v)jt�0 = 0��u�t ; v�jt�0 = 0 (2.1)

for every v(x; y) 2 H1;0(
):Remark. Replaing the homogeneous Dirihlet boundary ondition on �1 in theproblem I, we an onsider the boundary ondition uj�1 = g(x; t). In this ase, u shouldbe replaed by u� u0, f by f + L(u0), where u0(x; y; t) is a funtion suh that1) u0 2 H1(
) with respet to x and y;2) u0j�1 = g(x; t):Disretise the spatial variables x and y by using the �nite element method. Denotethe nodes by Pi (i = 1; � � � ;m). Suppose that Sh is a �nite element spae, Sh 2 H1(
),and its basis funtions are 'i (i = 1; � � � ;m) whih possess the feature 'i(Pj) = Æij .Take 'i as the funtion v in (2.1) (exept those 'i whih orrespond to the nodes on�1). Find the solution of the problem I in the subspae Sh. Then the problem isredued to the following initial value problem of ODEsI 0 : 8>><>>: M ��U +SU �W =MG(t)W +MB _U = 0U(0) = Ut(0) =W (0) = 0 (2.2)where U is the nodal unknown vetor, M the mass matrix, S the sti�ness matrix, MBthe boundary mass matrix, and W the vetor related with the normal derivative onthe arti�ial boundary. The elements of the matries M;S;MB and the vetor W are,respetively, Mij = Z Z
 1C2'i'jdxdy; Sij = Z Z
5'i � 5'jdxdy;(MB)ij = Z�
0 1C'i'jds (i; j = 1; 2 � � � ;m); (2.3)Wi = Z�
0 �u�n'idS (i = 1; � � � ;m); (2.4)and G(t) is a vetor whih onsists of the values of the funtion f(x; y; t) at nodes.In the next setion, the following �nite element spaes will be onerned:



296 X.M. SHAO AND Z.L. LAN1) Triangle elements and linear basis funtions: Let (xi; yi) (i = 1; 2; 3) be theverties of the triangle. Then the basis funtions 'i(x; y) (i = 1; 2; 3) of the elementare the followings:�(x; y) = '1(x; y) = 124f(y2 � y3)x� (x2 � x3)y + x2y3 � x3y2g;�(x; y) = '2(x; y) = 124f(y3 � y1)x� (x3 � x1)y + x3y1 � x1y3g; (2.5)�(x; y) = '3(x; y) = 124f(y1 � y2)x� (x1 � x2)y + x1y2 � x2y1g;where 4 is the diretive area of triangle, �; � and � are usually alled baryentrioordinates. The mapping (2.5) transforms the element e in (x; y) oordinates into theanonial right triangle ê in (�; �) oordinates.2) Isoparametri quadrilateral elements and bilinear basis funtions: Let'i(�; �) = 14(1 + �i�)(1 + �i�) (i = 1; 2; 3; 4)�1 = �4 = �1 = �2 = 1; �2 = �3 = �3 = �4 = �1: (2.6)The same polynomials 'i(�; �) (i = 1; 2; 3; 4) of seond degree are used for the trans-formation of oordinates as for the basis funtions within eah element. That is,x = 4Xi=1 xi'i(�; �); y = 4Xi=1 yi'i(�; �); u = 4Xi=1 ui'i(�; �): (2.7)Then (2.7) maps the square ê with the verties (1; 1); (�1; 1); (�1;�1) and (1;�1) inthe (�; �) plane onto the quadrilateral element e with the verties (xi; yi) (i = 1; 2; 3; 4)in the (x; y) plane.We onsider the wave speed C as a onstant in eah element. Through a lumpingproess the matries M and MB are replaed by diagonal matries. In the ase oftriangle elements mentioned above, the entries of element mass matrix areM eij = 8<: 43C2 i = j0 i 6= j; (2.8)and the entries of element boundary mass matrix are(MB)eij = 8<: h2C i = j0 i 6= j; (2.9)where h is the mesh size of a boundary element. In the ase of isoparametri quadri-lateral elements, the orresponding entries areM eij = ( 24C2 i = j0 i 6= j (2.10)and (2.9), respetively.



Stability Analysis of Finite Element Methods for the Aousti Wave Equation ... 297Disretise the time variable in (2.3) by using the �nite di�erene sheme8>>>>>><>>>>>>: Un+1 � Un4t = V n+1MV n+1 � V n4t + SUn �W n =MGnW n+1 +MBV n+1 = 0: (2.11)That is, 8><>: MV n+1 =MV n �4tSUn +4tW n +4tMGnUn+1 = Un +4tV n+1W n+1 = �MBV n+1: (2:11)0The initial values U0; V 0 and W 0 are zero. Utilizing the formulas (2.11)0, Un+1; V n+1and W n+1 an be obtained suessively from Un; V n and W n.3. Stability of the Shemes (2.11)In this setion we will give the stability ondition of the sheme (2.11) for the general�nite element spaes and then for two onrete �nite element spaes mentioned in thelast setion.When �nite element methods are used, the hoie of mesh size h mainly dependson the auray requirement. For example, ten or more grid points per wavelength areneessary. After h has been determined, the stability onditions are, in fat, onditionswhih 4t should satisfy.In the following disussions, �max and �min denote the maximum and minimumeigenvalues of a matrix, hmax and hmin the maximum and minimum element sizes,Cmax and Cmin the maximum and minimum wave speeds, respetively. F : (�; �) 2ê ! (x; y) 2 e is a mapping from a anonial element ê onto a element e in (x; y)-oodinates, whih has the formula (2.5) and (2.7) for the triangle and isoparametrixquadrilateral elements, respetively. JF is the Jaobian of F , and jJF j = det(JF ): Weuse the following notations as usual:jJF j0;1;ê = sup(�;�)2ê jJF j;jF j1;1;ê = sup(�;�)2êmaxn�x�� ; �x�� ; �y�� ; �y��o:Similar notations jJF�1 j0;1;e and jF�1j1;1;e will be used for the inverse of F . Denoteu(x(�; �); y(�; �)) by û(�; �):Lemma 1. For the �nite element spae of triangle elements and linear basis fun-tions, the following inequalities�max(S) � 6qhmaxhmin sin � ; �min(M) � h2min sin �6C2max ; �max(MB) � hmaxCmin (3.1)are valid, where q is the maximum number of elements whih meet at any node, and �is the minimum interior angle of triangle elements.



298 X.M. SHAO AND Z.L. LANProof. First, onsider the maximum eigenvalue of the sti�ness matrix S. As is wellknown, �max(S) = maxU2Rm UTSUUTU : (3:2)For the unknown funtion u(x; y; t) and the nodal unknown vetor U , we haveUTSU =Xe juj21;e: (3:3)It is easy to prove that juj21;e � 4jF�1j21;1;ejJF j0;1;êjûj21;ê. From (2.5),jF�1j1;1;e � hemax24 :Sine jJF j = 24 � hemaxhemin sin �, we obtainjuj21;e � 4hemaxhemin sin � jûj21;ê = 4hemaxhemin sin � (U ê)TS êU ê� 4hemaxhemin sin ��max(S ê)(U ê)TU ê = 4hemaxhemin sin ��max(S ê)(U e)TU e;where U e is the nodal unknown vetor of element e, S ê is the sti�ness matrix of anon-ial element ê, S ê = 12 0� 1 �1 0�1 2 �10 �1 1 1A (3:4)(or the matries whih are obtained from the above matrix by permulations). It is easyto get that �max(S ê) = 3=2. Therefore,juj21;e � 6hemaxhemin sin � (U e)TU e:From (3.2) and (3.3), we an get�max(S) � 6qhmaxhmin sin � ;whih is the �rst inequality of (3.1).The mass matrixM and the boundary mass matrixMB are both diagonal matries.A node is at least a vertex of one element and a boundary node is at most vertex oftwo elements. Considering this fat and utilizing the expressions (2.8) and (2.9) for theentries of M and MB , we have the last two inequalities of (3.1), whih ompletes theproof.Lemma 2. For the �nite element spae of isoparametri quadrilateral elements andbilinear basis funtions, the following inequalities�max(S) � 4�2qsin � ; �min(M) � h2min4C2max ; �max(MB) � hmaxCmin (3.5)



Stability Analysis of Finite Element Methods for the Aousti Wave Equation ... 299are valid, where q is the maximum number of elements whih meet at any node, � isthe minimum interior angle of elements, and� = maxe �e = maxe hemaxhemin ; (3:6)hemax and hemin are the maximum and minimum mesh sizes of the element e, respetively.Proof. First, disuss the maximum eigenvalue of the sti�ness matrix S. For eahelement e, we have �x�� = 14(b11 + b12�); �y�� = 14(b21 + b22�);�x�� = 14(b31 + b32�); �y�� = 14(b41 + b42�); (3.7)where b11 = x1 � x2 � x3 + x4; b12 = x1 � x2 + x3 � x4;b21 = y1 � y2 � y3 + y4; b22 = y1 � y2 + y3 � y4;b31 = x1 + x2 � x3 � x4; b32 = x1 � x2 + x3 � x4;b41 = y1 + y2 � y3 � y4; b42 = y1 � y2 + y3 � y4 (3.8)from (2.6) and (2.7). The diret omputation by using (3.7) and (3.8) an derive thatthe Jaobian determinant jJF j of the transformation F is a linear funtion of � and �, sothat its maximum and minimummust be at the verties of the quadrilateral. Denote theverties of the quadrilateral element by Pi(i = 1; 2; 3; 4) and the orresponding interiorangles by �i(i = 1; 2; 3; 4). Let P5 = P1. It an be obtained from diret omputationthat jJF (Pi)j = 14 jPiPi�1j � jPiPi+1j sin �i (i = 1; 2; 3; 4): (3:9)Therefore, jJF j � 14(hemin)2 sin �: (3:10)The Jaobian of the transformation F�1 isJF�1 = 14jJF j � b41 + b42� �(b31 + b32�)�(b21 + b22�) b11 + b12� � ;whih implies �u�x = 14jJF jn(b41 + b42�)�u�� � (b31 + b32�)�u��o;�u�y = 14jJF jn� (b21 + b22�)�u�� + (b11 + b12�)�u�� o: (3.11)It is obvious that jbi1 + bi2�j � 2hemax (i = 3; 4);jbi1 + bi2�j � 2hemax (i = 1; 2) (3.12)



300 X.M. SHAO AND Z.L. LANwhen �1 � �; � � 1: From (3.10){(3.12),juj21;e � 4�2esin � jûj21;ê = 4�2esin � (U ê)TS êU ê� 4�2esin ��max(S ê)(U ê)TU ê = 4�2esin ��max(S ê)(U e)TU e;where the notation �e is de�ned by (3.6), and S ê is the sti�ness matrix of anonialelement ê, S ê = 16 0BB� 4 �1 �2 �1�1 4 �1 �2�2 �1 4 �1�1 �2 �1 4 1CCA (3.13)It is easy to �nd that �max(S ê) = 1; so thatjuj21;e � 4�2esin � (U e)TU e:It follows that UTSU =Xe juj21;e � 4q�2sin � UTU;where � = maxe �e: Finally, we have�max(S) � 4q�2sin � :From (2.10) and (2.9) we an get the estimates of the minimum and maximumeigenvalues of the mass matrix M and the maximum eigenvalue of the boundary massmatrix MB : They are the seond and third inequalities in (3.5). This ompletes theproof.For the uniform right-angled triangle and square elements, by using diret proofs,rather than onsidering them as speial ases of the Lemma 1 and 2, we an obtainbetter results than those in the Lemma 1 and 2.Lemma 3. For the �nite element spae of right-angled triangle elements and linearbasis funtions, the following inequalities�max(S) � 9; �min(M) � h26C2 ; �max(MB) � hC (3.14)are valid.Proof. For the nodal unknown vetor U , we haveUTSU =Xe (U e)TSeU e � q�max(Se)UTU;where q is the maximum number of elements whih meet at a node, and Se the elementsti�ness matrix, as in the Lemma 1. In the present ase, q = 6 and Se is the matrix(3.4), so that �max(Se) = 3=2. From (3.2), the �rst inequality of (3.14) an be obtained.The seond and third inequalities are obvious, whih ompletes the proof.



Stability Analysis of Finite Element Methods for the Aousti Wave Equation ... 301Lemma 4. For the �nite element spae of square elements and bilinear basis fun-tions, the following inequalities�max(S) � 4; �min(M) � h24C2 ; �max(MB) � hC (3.15)are valid.Proof. The approah is similar to the Lemma 1. We have only to notie that inthe present ase, q = 4 and Se is the matrix (3.13), so that �max(Se) = 1: The proof isompleted.Now we are on the position to investigate the stability properties of the shemes(2.11).De�ne the following inner produts and norms of vetors:(U; V )2 = UTV; kUk2 = q(U;U)2;(U; V )M = UTMV; kUkM = q(U;U)M ;(U; V )S = UTSV; kUkS = q(U;U)S :The latter two de�nitions of norm are reasonable beause of the positive-de�nitenessof the matries S and M . Sine M is a diagonal matrix, we have1�max(M)kUk2M � kUk2 � 1�min(M)kUk2M :Theorem 1. If the ondition�max(S)4 t2 + 2�max(MB)4 t� 4�min(M) � �" < 0 (3:16)or 4t � ��max(MB) +p�2max(MB) + 4�max(S)�min(M)�max(S) � " (3:16)0is satis�ed, where " is any given positive number small enough, then for any T 2 R bigenough and N 2 Z+, 0 < (N + 1)4 t < T , there exists a onstant C1(") suh that thesolution of (2:11) is subjet to the inequalitymax0�n�N kUn+1kM + max0�n�N kV n+1kM � C1(")kfk1; (3:17)i.e., the sheme (2.11) is stable.Proof. From (2.11),MUn+1 � 2Un + Un�14t2 + SUn +MBUn � Un�14t =MGn: (3:18)Multiply the equation (3.18) by 4t�Un+1 � Un�14t �T , and sum the obtained equationfrom 0 to N with respet to n. Sine M is a diagonal matrix, the �rst term of theleft-hand side an be redued to4t�Un+1 � Un�14t �TMUn+1 � 2Un + Un�14t2



302 X.M. SHAO AND Z.L. LAN=�Un+1 � Un4t �TMUn+1 � Un4t � �Un � Un�14t �TMUn � Un�14t :After the summation, we obtain4t NXn=0�Un+1 � Un�14t �TMUn+1 � 2Un + Un�14t2 = �UN+1 � UN4t �TMUN+1 � UN4t :Here the ondition U0 = U�1 = 0 has been used. For the seond term of the left-handside we have4t Un+1 � Un�14t !T SUn =12f(Un+1)TSUn+1 � (Un+1 � Un)TS(Un+1 � Un)� (Un�1)TSUn�1 + (Un � Un�1)TS(Un � Un�1)g:After the summation it beomes4t NXn=0�Un+1 � Un�14t �TSUn =12(UN+1)TSUN+1 + 12(UN )TSUN� 12(UN+1 � UN )TS(UN+1 � UN )=(UN+1)TSUN+1 � (UN+1)TS(UN+1 � UN ):For the third term, it an be proved that4t�Un+1 � Un�14t �TMBUn � Un�14t = 124 t(Un+1 � Un�1)TMB(Un+1 � Un�1)+ 124 t(Un � Un�1)TMB(Un � Un�1)� 124 t(Un+1 � Un)TMB(Un+1 � Un):It follows that 4t NXn=0�Un+1 � Un�14t �TMBUn � Un�14t=4t2 NXn=0 �Un+1 � Un�14t �TMB�Un+1 � Un�14t �� 4t2 �UN+1 � UN4t �TMB�UN+1 � UN4t �:Thus the equation (3.18) is redued to�UN+1 � UN4t �T�M � 4t2 MB�UN+1 � UN4t + (UN+1)TSUN+1� (UN+1)TS(UN+1 � UN ) + 4t2 NXn=0



Stability Analysis of Finite Element Methods for the Aousti Wave Equation ... 303� �Un+1 � Un�14t �TMB�Un+1 � Un�14t �=4 t NXn=0�Un+1 � Un�14t �TMGn: (3.19)It is well known that�UN+1 � UN4t �T�M � 4t2 MB�UN+1 � UN4t�n1� 4t2 �max(MB)�min(M) oUN+1 � UN4t 2M ;(UN+1)TS(UN+1 � UN ) = (UN+1; UN+1 � UN )S � kUN+1kS � kUN+1 � UNkS ;and 4t NXn=0 Un+1 � Un�14t !T MB  Un+1 � Un�14t ! � 0:If we take 4t suh that � = 1� 4t2 �max(MB)�min(M) > 0; (3:20)then left of (3.19) �� UN+1 � UN4t 2M + kUN+1k2S � kUN+1kS � kUN+1 � UNkS�� UN+1 � UN4t 2M + kUN+1k2S�s �max(S)�min(M) 4 tkUN+1kS UN+1 � UN4t M�(1� 4t2p�s �max(S)�min(M)) �8<:� UN+1 � UN4t 2M + kUN+1k2S9=;+ 4t2p�s �max(S)�min(M) (p� UN+1 � UN4t M � kUN+1kS)2�(1� 4t2p�s �max(S)�min(M))� UN+1 � UN4t 2M : (3.21)Take 4t one again suh that1� 4t2p�s �max(S)�min(M) � " > 0;where " is any given positive number small enough. It implies�max(S)4 t2 + 2(1� ")2�max(MB)4 t� 4(1� ")2�min(M) � 0; (3:22)



304 X.M. SHAO AND Z.L. LANi.e.,4t � �(1� ")2�max(MB) + (1� ")p(1� ")2�2max(MB) + 4�max(S)�min(M)�max(S) : (3:23)It is easy to see that (3.22) (onsequently, (3.23)) ontains (3.20). (3.23) an be replaedby the following stronger ondition:4t � (1� ")2��max(MB) +p�2max(MB) + 4�max(S)�min(M)�max(S) : (3:24)Introdue the notationD = ��max(MB) +p�2max(MB) + 4�max(S)�min(M)�max(S) :(3.24) an be rewritten into4t � D � "0 = ��max(MB) +p�2max(MB) + 4�max(S)�min(M)�max(S) � "0; (3:25)where "0 = (2"� "2)D. It is equivalent to�max(S)4 t2 + 2�max(MB)4 t� 4�min(M) � �"00 < 0; (3:26)where "00 _=2"0q�2max(MB) + 4�max(S)�min(M)(in whih the terms of orders higher than 1 of "0 in the Toylor expansion are negleted).(3.26) and (3.25) are just the onditions (3.16) and (3.16)', respetively. Denote�0 = 1� D � "02 �max(MB)�min(M) :Then from (3.21), left of (3.19) � "�0 UN+1 � UN4t 2M : (3:27)For the right-hand side of (3.19) we have4t NXn=0 Un+1 � Un�14t !T MGn � 24 t NXn=0 Un+1 � Un4t !T+MGn+;where the notation ( )+ denotes a vetor the entries of whih are absolute values ofentries of the original vetor. Obviously, jGni j � C2maxkfk1 (i = 1; � � � ;m). Introduethe m-dimensional vetor E = f1; 1; � � � ; 1gT . Then4t NXn=0 Un+1 � Un�14t !T MGn � 24 t NXn=0 Un+1 � Un4t !T+ � C2maxkfk1ME



Stability Analysis of Finite Element Methods for the Aousti Wave Equation ... 305= 24 t NXn=0  Un+1 � Un4t !+ ; C2maxkfk1E!M� 24 t NXn=0 Un+1 � Un4t M � C2maxkfk1kEkM� "�0 4 t NXn=0 Un+1 � Un4t 2M + 1"�0C4maxkfk21 4 t NXn=0 kEk2M : (3.28)From (3.27) and (3.28), it is obtained thatUN+1 � UN4t 2M � 4t NXn=0 Un+1 � Un4t 2M +Kkfk21;K = C2max"2�20 4 t NXn=0 kEk2M :From the disrete Gronwall's inequality[7℄ we getmax0�n�N kV n+1k2M = max0�n�N Un+1 � Un4t M � Kkfk21 expf2Tg = C(")kfk21:That is max0�n�N kV n+1kM � qC(")kfk1: (3:29)Moreover, kUn+1kM � 4tfkV n+1kM + kV nkM + � � �+ kV 1kMg. It followsmax0�n�N kUn+1kM � TqC(")kfk1: (3:30)Adding (3.29) and (3.30), we obtain (3.17), whih ompletes the proof.Theorem 2. Consider the �nite element spae of triangle elements and linear basisfuntions. If the onditionCmax 4 thmin � sin �6q CmaxCmin 8<:�1 +s1 + 4q hminhmax �CminCmax�29=;� " (3:31)is satis�ed, then the sheme (2.11) is stable in the sense of (3.17) . Here � is theminimum interior angle of elements, q is the maximum number of elements at nodes,and " is any given positive number small enough.Proof. The onlusion of theorem an be obtained diretly from Theorem 1 andLemma 1.Corollary. If C(x; y) is onstant and the domain is subdivided into uniform right-angled triangle elements with mesh size h, then the stability ondition of the sheme(2:11) beomes C 4 th � 0:18: (3:32)



306 X.M. SHAO AND Z.L. LANProof. Repeat the proof of Theorem 1 and utilize the inequalities of the Lemma 3.Then (3.32) an be obtained.Theorem 3. Consider the �nite element spae of isoparametri quadrilateral ele-ments and bilinear basis funtions. If the onditionCmax 4 thmin � �CmaxCmin hmaxhmin 8<:�1 +s1 + 1� �CminCmax�2 � hminhmax�29=;� ";� = sin �4�2q (3.33)is satis�ed, then the sheme (2:11) is stable in the sense of (3:17). Here � is theminimum interior angle of elements, q is the maximum number of elements at nodes,� is de�nd as in (3:6), and " is any given positive number small enough.Proof. It is a diret onsequene of Theorem 1 and Lemma 2.Corollary. If C(x; y) is onstant and the elements are all squares with mesh sizeh, then the stability ondition of the shemes (2:11) beomesC 4 th � 0:3: (3:34)Proof. If the Lemma 4 is utilized in the proof of Theorem 1, then (3.34) an beobtained.The authors thank Zhang Guan-quan for his important opinions after reading thepaper. Referenes[1℄ D. Givoli, Numerial Methods for Problems in In�nite Domains, Elsevier Siene PublishersB. V., 1992.[2℄ R. Clayton, B. Engquist, Absorbing Boundary Conditions for Aousti and Elasti WaveEquations, Bull. Seismol. So. Amer., 67 (1977), 1529{1540.[3℄ B. Engquist, A. Majda, Absorbing Boundary Conditions for the Numerial Simulation ofWaves, Math. Comput., 31 (1977), 629{652.[4℄ B. Engquist, A. Majda, Radiation Boundary Conditions for Aousti and Elasti Calula-tions, Comm. Pure Appl. Math., 32 (1979), 313{357.[5℄ Xiumin Shao, Zhiling Lan, Absorbing Boundary Conditions for Anisotropi Elasti WaveEquations, J. Geophy., 1995 (In Chinese).[6℄ D. Sheen, Seond-Order Absorbing Boundary Conditions for the Wave Equation in a Ret-angular Domain, Math. Comput., 61 (1993), 595{606.[7℄ Yulin Zhou, Appliations of Disrete Funtional Analysis to the Finite Di�erene Method,International Aademi Publishers, 1990.


