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SPIRALS IN 2-D GAS DYNAMICS SYSTEMS�1)Xiu-huan Gu(Department of Mathematis, Jiamusi University, Jiamusi 154000, China)Shu-li Yang(Institute of Applied Mathematis, Aademia Sinia, Beijing 100080, China)Li-xin Tao(Department of Computer Siene, University of Conordia, Canada)AbstratIn this paper, the phenomena of spirals are numerially presented by MmBsheme [1℄ for initial value problems of 2-D gas dynamis ( = 1:4), whih inlude 2-D Riemann problems and ontinuous initial value problems. The numerial resultsare well oinide with on the exat solution in [2℄ and the onjetures on solutionstruture in [3℄ for 2-D isentropi and adiabati ows. In isentropi ow, for highspeed rotation (v0=0 > p2), there is a region of vauum at the origin and forlow speed rotation (v0=0 < p2), there is no vauum, and for adiabati ow, thestruture of spirals is also disussed.Key words: Spiral, MmB sheme, Conservation laws.1. Preliminaries(I) ModelsConsider the two models: isentropi and adiabati ows,(a) 2-D isentropi ow 8><>: �t + (�u)x + (�v)y = 0(�u)t + (�u2 + p)x + (�uv)y = 0(�v)t + (�uv)x + (�v2 + p)y = 0 (1:1)(b) 2-D adiabati ow8>>>>><>>>>>: �t + (�u)x + (�v)y = 0(�u)t + (�u2 + p)x + (�uv)y = 0(�v)t + (�uv)x + (�v2 + p)y = 0(�(e + u2 + v22 ))t + (�u(h + u2 + v22 ))x + (�v(h + u2 + v22 ))y = 0 (1:2)� Reeived June 6, 1995.1)Supported by NNSF of China.



464 X.C. GU S.L. YANG AND L.X. TAOe = p( � 1)�; h = e+ p�where �, (u,v) and p is density, veloity and presure, respetively.and with the 2-D Riemann data(�; u; v)jt=0 = (�i; ui; vi); (i) = 1; 2; 3; 4 (1:3)or (�; p; u; v)jt=0 = (�i; pi; ui; vi); (i) = 1; 2; 3; 4 (1:4)where (i)-states are desribed to

Problem (1.1)(1.3) and (1.2) (1.4) have theoretially studied by harateristi meth-ods [2℄, and a set of onjetures on the solution struture were presented for the 2-DRiemann problem under the assumption,Assumption: Eah jump in initial data outside the origin projetes exatly one shokwave, rarefation wave, and slip planes.The most most interesting onjeture is that there is a spiral in the solution forsome Riemann data.The exat solutions were obtained in the ase  = 2 for isentropi ow by Zhangand Zheng in [2℄, the initial data were taken to(u; v; �)jt=0 = (v0 sin �;�v0 os �; �0)and they got the onlusion that for high speed rotation 220 < v20 (0 = pp�), thesolution has region of vauum at the enter; for low speed rotation 220 > v20 , thesolution has no vauum.(II) Charateristis and hoies of initial data



Spirals in 2-D Gas Dynamis Systems 465The system (1.1) and (1.2), for smooth solutions, an be written to,0BB� �uv 1CCAt +0BB� u � 0p0=� u 00 0 u 1CCA0BB� �uv 1CCAx +0BB� v 0 �0 v 0p0=� 0 v 1CCA0BB� �uv 1CCAy = 0 (1:5)and0BBBB� �uvp 1CCCCAt +
0BBBB� u � 0 00 u 0 1=�0 0 u 00 p 0 u 1CCCCA0BBBB� �uvp 1CCCCAx +

0BBBB� v 0 � 00 v 0 00 0 v 1=�0 0 p v 1CCCCA0BBBB� �uvp 1CCCCAy = 0 (1:6)then the harateristi roots are �0 = u; �� = u� where  is sound speed  = pp0 for isentropi ow and  = pp=� for adiabatiow. From [2℄, we list the following onditions to hoose initial data that satisfy theassumption in the above setion.(i) onditions for rarefation waves.v1 = v2; u2 = u1 � Z �2�1 pp0� d�; for isentropi owor v1 = v2; u2 = u1 � Z �2�1 �d�; d(p��) = 0; for adiabati owwhere � is relate to forward rarefation wave (�!R ) or bakward rarefation wave ( �R ).(ii) onditions for shok waves.v2 = v1; u2 = u1 � (r�2�1 p012 �r�1�2 p021); �2 > �1 or �2 < �1; for isentropi owor v2 = v1; u2 = u1 � (r�2�1 p012 �r�1�2 p021); p2p1 = ( + 1)�2 � ( � 1)�1( + 1)�1 + ( � 1)�2 ;�2 > �1 or �2 < �1; for adiabati owwhere p012 = p021 = p2 � p1�2 � �1 , � is forward shok wave (�!S ) or bakward shok wave ( �S ).(iii) onditions for ontat disontinuities.u2 = u1; �2 = �1; for isentropi owor u2 = u1; p2 = p1; for adiabati ow



466 X.C. GU S.L. YANG AND L.X. TAOthen the diretion of a ontat disontinuity was de�ned asJ� := Curl(u; v) = vx � uy = �1There are two kinds of distributions for veloity (u,v) aording to the signals of J's.If the four Js have same signals, the distribution of veloity is in a ounter lokwisediretion; if not same, the distribution of veloity is in a lokwise diretion. See Figure1.1.

Figure 1.1: a. ounter lokwise, b. lokwiseFor the di�erent distribution of the veloity, there are two kinds of great di�erentsolutions. For the same signal of Js, there is spiral in the solution [3℄; otherwise thereare shok waves or more singular waves in the solutions (see [4℄).(III) Numerial methodThe numerial solutions are presented by using MmB (loally Maximum-minimumBounds preserving) shemes, whih have high resolution and nonosillatory properties.For 2-D salar onservation law, the solution of the sheme (un+1i;j = (Lun)i;j) satisfys:un+1i;j is a onvex ombination of the point values at step nThe generalized of MmB sheme form is for the following 2-D hyperboli systemsUt + F (U)x +G(U)y = 0,Un+1i;j = Uni;j�A+i� 12 ;j�x�xuni� 12 ;j � 12�x��;x(T xi+ 12 ;j�x;i+ 12 ;j(I � �x;+i+ 12 ;j�x)Sx;�i+ 12 ;jT x;�1i+ 12 ;j�xUni+ 12 ;j)�A�i+ 12 ;j�x�xUni+ 12 ;j + 12�x��;x(T xi+ 12 ;j�x;�i+ 12 ;j(I +�x;�i+ 12 ;j�x)Sx;+i+ 12 ;jT x;�1i+ 12 ;j�xUni+ 12 ;j)�B+i� 12 ;j�y�yUni;j� 12 � 12�y��;y(T yi;j+ 12�y;+i;j+ 12 (I � �y;+i;j+ 12�y)Sy;�i;j+ 12T y;�1i;j+ 12�yUni;j+ 12 )�B�i;j+ 12�y�yUni;j+ 12 + 12�y��;y(T yi;j+ 12�y;�i;j+ 12 (I +�y;�i;j+ 12�y)Sy;+i;j+ 12T y;�1i;j+ 12�yUni;j+ 12 )+12�x�y[A+i� 12 ;j� 12�x(B+i� 12 ;j� 12�yUni� 12 ;j� 12 ) +B+i� 12 ;j� 12�y(A+i� 12 ;j� 12�xUni� 12 ;j� 12 )℄�12�x�y[A+i� 12 ;j+ 12�x(B�i� 12 ;j+ 12�yUni� 12 ;j+ 12 ) +B�i� 12 ;j+ 12�y(A+i� 12 ;j+ 12�xUni� 12 ;j+ 12 )℄�12�x�y[A�i+ 12 ;j� 12�x(B+i+ 12 ;j� 12�yUni+ 12 ;j� 12 ) +B+i+ 12 ;j� 12�y(A�i+ 12 ;j� 12�xUni+ 12 ;j� 12 )℄+12�x�y[A�i+ 12 ;j+ 12�x(B�i+ 12 ;j+ 12�yUni+ 12 ;j+ 12 ) +B�i+ 12 ;j+ 12�y(A�i+ 12 ;j+ 12�xUni+ 12 ;j+ 12 )℄



Spirals in 2-D Gas Dynamis Systems 467where �x(y)ij = T x(y)(�diag;x(y);+ij +�diag;x(y);�ij )T x(y);�1�F = A(U)�U �G = B(U)�UA(U) = T x�xT x;�1; �x = diag(�x1 ; �x2 ; :::; �yn)B(U) = T x�yT y;�1; �y = diag(�y1 ; �y2; :::; �yn)�diag;x(y);�ij = diag(�x(y);�x(y)1 ;�ij ; :::;�x(y);�x(y)n ;�ij )�x(y);�x(y)k ;�i = Z x(y)+�x(y);�k �tx �ijdx�x(y);�k = 12(�x(y)k � j�x(y)k j); k = 1; 2; :::; nSx;�i+ 12 ;j = diag(s1;x;�i+ 12 ;j; :::; sn;x;�i+ 12 ; j)Sy;�i;j+ 12 = diag(s1;y;�i;j+ 12 ; :::; sn;y;�i;j+ 12 )sk;x;+i+ 12 ;j = (T x;�1i� 12 ;j�xUni� 12 ; j)k(T x;�1i+ 12 ;j�xUni+ 12 ; j) k sk;x;�i+ 12 ;j = (T x;�1i+ 32 ;j(�xUni+ 32 ;j)k(T x;�1i+ 12 ;j�xUni+ 12 ;j)ksk;y;+i;j+ 12 = (T y;�1i;j� 12�yUni;j� 12 )k(T y;�1i;j+ 12�yUni;j+ 12 ) k sk;y;�i;j+ 12 = (T y;�1i;j+ 32 (�yUni;j+ 32 )k(T y;�1i;j+ 12�yUni;j+ 12 )kk = 1; 2; :::; nIn this paper, we only onsider the ase that ontat disontinuities have samesignal in initial data, that is, the veloity of initial data is in the ounter lokwisedistribution. In setion 2 and 3, spirals, whih ontain the two ases, low speed rotationand high speed rotation, are numerial presented by MmB shemes for isentropi owand adiabati ow, respetively.2. Isentropi FlowFor the model of isentropi ow, the exat solution has been obtained by Zhangand Zheng [3℄ for  = 2, then they studied the solution struture for the initial data,(�0; u0; v0) = (v0 sin �; v0 os �; �0) (2:1)where � belongs to the polar oordinates (r; �)x = r os �; y = r sin �They de�ned:



468 X.C. GU S.L. YANG AND L.X. TAO2p0(�0) < v20 , high speed rotation2p0(�0) > v20 , low speed rotationand got the onlusion: the solution of density has region of vauum at the enterfor high speed rotation and no vauum for low speed rotation. Here we present thenumerial solutions for both ontinuous initial data (2.1) and 2-D Riemann problemsin the ase ( = 1:4). The distributions of veloity are desribed as,

It is ounter lokwise related to four onstants.As de�ned in [3℄, here we divid initial data into two lasses: low speed rotation andhigh speed rotation.(I) low speed rotation.The ontinuous data are hoosen to:v0 = 1; �0 = 20See Figure 2.1,

Figure 2.1: a. Density ontour lines b. Veloity �eldn=200 M-P=101 � 101 � = 0:08



Spirals in 2-D Gas Dynamis Systems 469For Riemann datau1 = u2 = �u3 = �u4 = 1; v2 = �v1 = v3 = �v4 = 1;�1 = �2 = �3 = �4 = 20See Figure 2.2

Figure 2.2: a. Density Contour Lines b. Veloity Fieldn=250 M-P=201 � 201, � = 0:1Here and in the following, n and M-P expresses time steps and mesh points, re-spetively. From the veloity �elds of Figures (2.1) and (2.2), we know that there is aspiral in eah ase, and from labels for the density ontour lines, there is no vauumin the low speed rotation, in the ase vo=o < p2, here hoose vo = maxi qu2i + v2i forRiemann problem.(II) high speed rotationFor ontinuous data, v0 = 3; �0 = 1See Figure 2.3,

Figure 2.3: a. Density ontour lines b. Veloity �eldn=200 M-P=101 � 101 � = 0:08



470 X.C. GU S.L. YANG AND L.X. TAOfor Riemann datau1 = u2 = �u3 = �u4 = 3; v2 = �v1 = v3 = �v4 = 3;�1 = �2 = �3 = �4 = 1See Figure 2.4

Figure 2.4: a. Density ontour lines b. Veloity �eldn=200 M-P=151 � 151, � = 0:1From the density ontour lines in Figures 2.3 and 2.4, we an see that the densityis zero in the region of the enter (0,0). In the region, the veloity is almost to zero,and the region of vauum is serround by a rotation. The results are well oinide withthe onlusion of paper [3℄. 3. Adiabati FlowFor adiabati ow, as we known, there is no exat solution even for speial initialvalue problem. In [3℄, the onjeture on the spiral was presented for only ontainingfour ontat disontinuities on initial data. In this setion, we present two lassesof numerial solutions for both ontinuous initial data and Riemann data to justifysolution struture and ompare to the solution struture for isentropi ow.



Spirals in 2-D Gas Dynamis Systems 471Here we list the numerial results by density, pressure and pseudo-Mah numberontour lines, and veloity �elds in the �gures, where pseudo-Mah number is writtento, V=; V = (u� x=t; v � y=t)(i) the solutions no vauum region.For ontinuous initial data, we take:uo = sin �; vo = � os �; �0 = 0:5 + j sin �j; po = 20:See Figure 3.1,

Figure 3.1: a. Density ontour lines b. Pressure ontour lines. Veloity Field d. Pseudo-Mah ontour linesn=120 M-P=101 � 101, � = 0:08



472 X.C. GU S.L. YANG AND L.X. TAOFor 2-D Riemann data: (see Figure 3.2)u1 = u2 = �u3 = �u4 = 1:0; v1 = �v2 = �v3 = v4 = �1:0�1 = �3 = 1:5; �2 = �4 = 0:5; p1 = p2 = p3 = p4 = 20:

Figure 3.2: a. Density ontour lines b. Pressure ontour lines. Veloity �eld d. Pseudo-Mah ontour linesn=200 M-P=201 � 201, � = 0:08(i) the solutions ontaining vauum region.For ontinuous initial data: (see Figure 3.3)uo = 2 sin �; vo = �2 os �; �0 = 0:5 + j sin �j; po = 2:
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Figure 3.3: a. Density ontour lines b. pressure ontour lines. Veloity �eld d. Pseudo-Mah ontour linesn=160 M-P=101 � 101, � = 0:1For 2-D Riemann data: (see Figure 3.4)u1 = u2 = �u3 = �u4 = 2:0; v1 = �v2 = �v3 = v4 = �2:0�1 = �3 = 1:5; �2 = �4 = 0:5; p1 = p2 = p3 = p4 = 2:In Figures 3.1 and 3.2, the density of the solutions has no vauum region for thelow speed rotation, and Figures 3.3 and 3.4, there are vauum regions in the solutionsof the density. However the initial data do not satisfy the ondition given in [2℄ whenthe solutions have vauum states from Figures 3.3 and 3.4. By pseudo-Mah numberontour lines, we learly see the subsoni, transoni and supersoni regions in pseudo-stationary.
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Figure 3.4: a. Density ontour lines b. Pressure ontour lines. Veloity �eld d. Pseudo-Mah ontour linesn=200 M-P=151 � 151, � = 0:1Referenes[1℄ S.L. Yang, T. Zhang, The MmB di�erene solutions of Riemann problems for two dimen-sional 2�2 nonlinear onservation laws, IMPACT of Computing in Siene and Engineering,3 (1991), 146-180.[2℄ T. Zhang, Y.X. Zheng, Conjeture on the struture of solutions of the Riemann problemfor two-dimensional gas dynamis systems, SIAM J. Math. Anal., 21 (1990), 593-630.[3℄ T. Zhang, Y.X. Zheng, Exat spiral solutions of the two dimensional ompressible Eulerequations, to appear.[4℄ S.L. Yang, Lixin Tao, Singularities in solutions for 2-D gas dynamis systems, in preparation.


