
Journal of Computational Mathematis, Vol.17, No.5, 1999, 509{522.
REAL-VALUED PERIODIC WAVELETS: CONSTRUCTION ANDRELATION WITH FOURIER SERIES�1)Han-lin Chen(Institute of Mathematis, Aademia Sinia, Beijing 100080, China)Xue-zhang Liang(Department of Mathematis, Jilin University, Jilin 130023, China)Si-long Peng Shao-liang Xiao(Institute of Mathematis, Aademia Sinia, Beijing 100080, China)AbstratIn this paper, we onstrut the real-valued periodi orthogonal wavelets. Themethod presented here is new. The deomposition and reonstrution formulas in-volve only 4 terms respetively. It demonstrates that the formulas are simpler thanthat in other kinds of periodi wavelets. Our wavelets are useful in appliationssine it is real valued. The relation between the periodi wavelets and the Fourierseries is also disussed.Key words: Periodi wavelet, Multiresolution, Fourier series, Linear independene.1. IntrodutionWavelets have reently reeived a great deal of attention in suh areas as signalproessing and image proessing ([12℄, [8℄). Various methods to onstrut waveletshave been given ([14℄, [13℄, [9℄, [7℄). It is well known that in mathematis and mathe-mati physis many periodi problems are enountered. In appliation areas, the inputsignals are usually �nite length whih may lead extra omputations. To avoid this,various e�orts have been made ([5℄, [10℄, [21℄), among whih periodization method isan important approah, i.e., the �nite length input signal is �rst periodized, then aperiodi wavelet is used whih motivated an extensive study of periodi wavelets.Y. Meyer ([14℄) studied periodi multiresolutions by periodizing known wavelets.Perrier and Basdevant ([16℄) stated the onstrution and algorithm of periodi wavelets,their algorithmmakes heavy use of the fast Fourier transform(FFT). Chui andMhasker[6℄� Reeived January 4, 1996.1)This work was supported by NNSFC grant.



510 H.L. CHEN, X.Z. LIANG, S.L. PENG AND S.L. XIAOonstruted the trigonometri wavelets. Plonka and Tashe ([17℄, [18℄) studied p-periodi wavelets for general periodi saling funtions. Their algorithms ([19℄) arebased on Fourier tehnique. Chen Han-Lin made a full study of periodi wavelets whenthe saling funtions are derived from di�erent kinds of spline funtions (see [1℄, [2℄,[3℄, [4℄). Eah equation in the deomposition and reonstrution algorithms involvesonly two terms whih does not depend on the regularity of the underlying wavelets.The disret Fourier transform is used impliitly. The approximation error estimationsare also given. Koh, Lee and Tan ([11℄) gave a general framework of periodi waveletswhere two terms are obtained and the two-term algorithms operate on the frequenydomain is also realized. Narowih and Ward[15℄ investigated the periodi salingfuntions and wavelets generated by ontinuously di�erentiable periodi funtions withpositive Fourier oeÆients. They also disussed the loalization of saling funtionsand wavelets. The method of using the periodi wavelets, e.g., to denoise and to detetsingularity, is also pointed out.Our interest in this paper is to onstrut real-valued periodi orthogonal wavelets.The relation between the periodi wavelets and the Fourier series is also disussed. Ourmethod to onstrut periodi wavelet is quite di�erent from Narowih and Ward's([15℄). The onditions of the underlying funtion ' is original.This hapter is organized as follows. We will �nish this setion with some notations.The periodi saling funtions and nested subspaes will be onstruted in Setion 1.In Setion 2, the dilation equations and periodi wavelets are disussed. Setion 3 willdevoted to the disussion of the relations between periodi wavelets and the Fourierseries. Some examples will be given in Setion 4.We will use the following notations.Let T = Kh where K is a positive even integer, h a positive real number,K = 2N .We also use Nj := 2jN;Kj := 2jK;hj := T=Kj = h=2j . Note that hjKj = hK =T: oL2 [0; T ℄ represents the set of all periodi, square-summable funtions de�ned on[0; T ℄, equipped with the inner produt < f; g >= 1T Z T0 f(x)g(x)dx:2. The Saling FuntionsIn this this setion, we will onstrut the saling funtions and disuss their prop-erties. To do this, we suppose that a ompatly supported real valued funtion '(x) 2L2(R) satis�es(i) For some p 2 Z+; 2p � N the support of ' : supp' � [�ph; ph℄(ii) ' is re�nable, i.e. there exists fkg 2 l2, s.t.'(x) = Xk2Z k'(2x � kh) (2:1)



Real-Valued Periodi Wavelets: Constrution and Relation with Fourier Series 511(iii) ZR '(x)dx 6= 0 (2:2)(iv) f'(x � lh)gk+p�1l=�p+1 are linearly independent on [0; T ℄We note that the summation in ondition (2:1) is �nite sine ' is ompatly sup-ported ( f. [R℄ ). Therefore we also have'(x) = Xjkj�p k'(2x � kh) (2:3)De�nion 2.1. We denote the 2j{ dilation of ' as 'j, i.e. 'j(x) = '(2jx). TheT -periodization of ' is denoted by �j�.�j�(x) := X�2Z 'j(x+ �T � �hj) for � 2 Z; j 2 Z+ x 2 [0; T ℄Our onstrution will heavely depend on the following two funtionsCj�(x) = Kj�1X�=0 os 2���Kj �j�(x) (2.4)Sj�(x) = Kj�1X�=0 sin 2���Kj �j�(x) for � 2 Z (2.5)Whih an be regarded as the Disrete Cosine Transform (DCT in abbreviation)and Disrete Sine Transform (DST) of f�j�(x)gKj�1�=0 .De�nition 2.2. A periodi multiresolution analysis (PMA) is a nested subspaesequene fVjgj�0 satisfyingi) Vj � Vj+1 for any j � 0 (2:6)ii) [j�0Vj is dense in oL2 [0; T ℄ (2:7)iii) For any j � 0, there exists a funtion fj in Vj suh that the hj{shifts offj : ffj(� � lhj)gKj�1l=0 produe Vj, i.e.Vj = spanffj(� � lhj) : l = 0; � � � ;Kj � qgTo onstrut a PMA, we �rst note that :Lemma 2.1. �j�(x) = Xjkj�p k�j+1k+2�(x) for x 2 [0; T ℄



512 H.L. CHEN, X.Z. LIANG, S.L. PENG AND S.L. XIAOThis is a simple onlusion of De�nition 2.1 and (2:1)Therefore, if we de�ne Vj = spanf�j� : � = 0; 1; � � � ;Kj � 1g, then Vj � Vj+1. Toshow that fVjgj�0 is a PMRA, we need to verify thatLemma 2.2. [j�0Vj = oL2 [0; T ℄Proof. Let V = [j�0Vj , we shall show that v? = f0g:First, for f 2 V ; we have f(x � hj) 2 V for any j � 0 whih implies that V is ahj{shift invariant spae for any j � 0.Suppose that g(x) 2 v?, then 0 =< f; g >=< f(� � �hj); g > for � 2 Z; j 2 Z+Let the Fourier oeÆients of f(x) and g(x) be fs�g�2Z and f��g�2Z respetively,i.e. g(x) = X�2Z ��exp(�2�i�x=T )f(x) = X�2Z s�exp(�2�i�x=T )Then f(x� �hj) = X�2Z s�exp(�2�i�x=T )exp(2�i��hj=T )and 0 =< f(� � �hj); g(�) >= X�2Z s����exp(�2�i��hj=T )= Kj�1X�=0 X�2Z s�+�Kj ���+�Kjexp(�2�i��hj=T )By the DCT theory, we getX�2Z s�+�Kj ���+�Kj = 0 for j > 0; � = 0; 1; � � � ;Kj � 1Sine X�2Z s��� is absolutely onvergent. We haves� ��� = � X�2Z�6=0 s�+�Kj ���+�Kjtends to zero as j !1, henes� ��� = 0 for any � 2 ZPutting f(x) = �j0 note that the support of '(x) is ontained in one period,s� = 1T Z T2�T2 �j0exp(2�ix�=T )dx= 1T Z T2�T2 '(x)exp(2�ix�2�j=T )dx � 2�j



Real-Valued Periodi Wavelets: Constrution and Relation with Fourier Series 513We obtain 1T Z T2�T2 '(x)exp(2�ix�2�j=T )dx � 2�j ��� = 0Let j !1,then we have Z T2�T2 '(x)dx��� = 0Reall that (2.2) and supp' � [�ph; ph℄ � [�T2 ; T2 ℄. It follows that �� = 0 for � 2 Zwhih implies that g(x) � 0 and V ? = f0g. The Lemma follows.Now, we turn to disuss the basis in Vj .Lemma 2.3. Suppose �jl ; l = 0; 1; � � � ;Kj � 1 is de�ned by De�nition 1, thenf�jl gKj+p�1l=�p+1 is linearly independent in [0; T ℄Proof. To this end, suppose thatKj+p�1Xl=�p+1 l'j(x� lhj) = 0 for x 2 [0; T ℄A hange of variable y = 2jx yields thatKj+p�1Xl=�p+1 l'(y � lh) = 0 for y 2 [0; 2jT ℄if y is restrited to the subinterval [mT; (m+ 1)T ℄,thenmK+p�1+KXl=mK�p+1 l'(y � lh) = 0 for y 2 [mT; (m+ 1)T ℄whih is equivalent tomK+p�1+KXl=mK�p+1 l'(t+mkh� lh) = 0 for t 2 [0; T ℄therefore K+p�1Xl=�p+1 l+mk'(t� lh) = 0 for t 2 [0; T ℄By the linear independene of f'(t� lh)gK+p�1l=�p+1, we obtain thatl = 0 for l = mK � p+ 1; � � � ; (m+ 1)K + p� 1when m varies from 0 to 2j � 1, we havel = 0 for l = �p+ 1; � � � ; 2jK + p� 1



514 H.L. CHEN, X.Z. LIANG, S.L. PENG AND S.L. XIAOwhih implies that f'j(t� lhj)gKj+p�1l=�p+1 is linearly independent on [0; T ℄. The proof ofLemma 2.3 is �nished.Lemma 2.3 gives a basis for Vj whih is generally non-orthogonal. Now, we want togive another basis for Vj whih is orthogonal. Before doing that, we prove the followinglemma.Lemma 2.4. For � = 0; 1; � � � ;Kj � 1�j�(x) = 1Kj Kj�1X�=0 (Cj�(x) os 2���Kj + Sj�(x) sin 2���Kj )Proof. By the de�nitions of �j�, Cj� and Sj�, reall the following trigonometriidentity, Kj�1Xl=0 os 2�l�1Kj os 2�l�2Kj = Njfor �1 + �2 = 0 (mod Kj) and �1 � �2 6= 0 (mod Kj)or �1 � �2 = 0 (mod Kj) and �1 + �2 6= 0 (mod Kj)For 0 � � � Nj, we haveKj�1X�=0 Cj�(x) os 2���Kj = Kj�1X�=0 os 2���Kj Kj�1X�=0 os 2���Kj �j�(x)= Kj�1X�=0 (Kj�1X�=0 os 2���1Kj os 2���2Kj )�j�(x)= Nj(�j�(x) + �jKj��(x))Similarly, for 0 � � � Nj , we haveKj�1X�=0 Sj�(x) sin 2���Kj = Nj(�j�(x)� �jKj��(x))It follows that for 0 � � � Nj�j�(x) = 1Kj Kj�1X�=0 (Cj� os 2���Kj + Sj�(x) sin 2���Kj )�jKj��(x) = 1Kj Kj�1X�=0 (Cj� os 2���Kj � Sj�(x) sin 2���Kj )



Real-Valued Periodi Wavelets: Constrution and Relation with Fourier Series 515whih is eqivalent to�j�(x) = 1Kj Kj�1X�=0 (Cj� os 2���Kj + Sj�(x) sin 2���Kj )for 0 � � � Kj � 1.The proof of the lemma is ompleted.Theorem 2.1. Suppose Cj�; Sj� is de�ned by De�nition 1, Sj = fCj� : � =0; 1; � � � ; Nj, Sj� : � = 1; 2; � � � ; Nj � 1g: Then Sj is an orthogonal basis for Vj.Proof. First, we note that the periodiity of Cj� and Sj�.Cj� = Cj�Kj+� = Cj�KJ��; Sj� = Sj�Kj+� = �Sj�KJ��for � 2 ZFrom the de�nition of Cj�; Sj�, we know that eah element of Sj an be representedby the linear ombination of f�j�gKj�1�=0 . Lemma 2.4 and the periodiity of Cj� and Sj�imply that eah element of Sj an be represented by linear ombination of funtions inSj. Sine f�j�gKj�1�=0 is a basis for Vj. Therefore Sj is a basis for Vj .Now, we need only to prove that di�erent elements of Sj are orthogonal.Only one equality< Cj�1 ; Cj�2 >= 0 for 0 � �1; �2 � Nj; �1 6= �2needs to proved, sine others are similar.By the de�nition of Cj�, reall the periodiity of �j0(x) and osx, for �1 6= �2; 0 ��1; �2 � Nj; �1 6= �2, we have< Cj�1 ; Cj�2 >= Kj�1X�1=0 Kj�1X�2=0 os 2��1�1Kj os 2��2�2Kj < �j�1 ;�j�2 >= Kj�1X�1=0 Kj�1X�2=0 os 2��1�1Kj os 2��2�2Kj � 2T Z T0 �j0(y)�j0(y + (�1 � �2)hj)dy= Kj�1X�1=0 Kj�1��1X�=��1 os 2��1�1Kj os 2�(�1 + �)�2Kj � 2T Z T0 �j0(y)��j�dy= Kj�1X�1=0 Kj�1X�=0 os 2��1�1Kj os 2�(�1 + �)�2Kj < �j0;�j� >= Kj�1X�=0 < �j0;�j� > os 2���2Kj � Kj�1X�1=0 os 2��1�1Kj os 2��1�2Kj= 0



516 H.L. CHEN, X.Z. LIANG, S.L. PENG AND S.L. XIAOThe theorem follows.3. Saling Relations and Periodi WaveletsIn this setion, the saling relations of the orthogonal basis are given and the periodiwavelets are onstruted. We will note that the saling relations are very simple, eahequation has only four terms whih is independent of the regularity of wavelets orsaling funtions and if the underlying funtion ' is symmetri, then only two termsare involved.Theorem 3.1. Let Cj�; Sj� be de�ned as in De�nition 2.1, '(x) satisfy the two-saleequation (2:3), and�j� = Xj�j�p � os 2���Kj ; Æj� = Xj�j�p � sin 2���Kj ;Then, we have the following re�nable equationsCj�(x) = �j+1� Cj+1� (x) + Æj+1� Sj+1� (x) +�j+1Kj��Cj+1Kj��(x) + Æj+1Kj��Sj+1Kj��(x); (3:1)for 0 � � � NjSj�(x) = �Æj+1� Cj+1� (x) +�j+1� Sj+1� (x) + Æj+1Kj��Cj+1Kj��(x)��j+1Kj��Sj+1Kj��(x); (3:2)for 1 � � � Nj � 1Proof. Reall (2.3), Lemma 2.1, Lemma 2.4 and the de�nition 2.1, we have, for1 � � � Nj � 1Cj�(x)= Kj�1X�=0 os 2���Kj �j�(x)= Kj�1X�=0 os 2���Kj Xj�j�p ��j+1�+2�(x)= Kj�1X�=0 os 2���Kj Xj�j�p � 1K j Kj+1�1X�=0 (Cj+1� os 2�(�+ 2�)�Kj+1 + Sj+1� sin 2�(�+ 2�)�Kj+1 )= 1K j Xj�j�p � Kj+1�1X�=0 (Cj+1� os ���Kj + Sj+1� sin ���Kj )Kj�1X�=0 os 2���Kj os 2���Kj= 12 1Xt=0fCj+1�+tKj�j+1�+tKj + Sj+1�+tKjÆj+1�+tKj + Cj+1(t+1)Kj���j+1(t+1)Kj��+Sj+1(t+1)Kj��Æj+1(t+1)Kj��g



Real-Valued Periodi Wavelets: Constrution and Relation with Fourier Series 517Sine �j�(Æj�) also possesses periodiity ( antiperiodiity), the equality (3.1) followsimmediately.The proof of formula (3.2) is similar.Theorem 3.1 establishes the relations between the basis for Vj and Vj+1. Now wede�ne Wj as the orthogonal omplement of Vj in Vj+1 , that is, Wj?Vj and Vj+1 =Vj +Wj, we will denote this orthogonal sum byVj+1 = VjMWj (3:3)A simple onlusion of (2.6), (2.7) and (3.3) is thatWj?Wr for j 6= rand oL2 [0; T ℄ = V0MMj�0WjNow, we onstrut an orthogonal basis for eah Wj.Theorem 3.2. Let �j�;Æj� be de�ned in Theorem 1, Cj�; Sj� be de�ned in De�nition2.1, for 1 � � � Nj � 1, we de�ne Aj� and Bj� as followsAj�(x) := ~�j+1Kj�� ~Cj+1� + ~Æj+1Kj�� ~Sj+1� � ~�j+1� ~Cj+1Kj�� � ~Æj+1� ~Cj+1Kj��Bj�(x) := ~Æj+1Kj�� ~Cj+1� � ~�j+1Kj�� ~Sj+1� + ~Æj+1� ~Cj+1Kj�� � ~�j+1� ~Sj+1Kj��andAj0(x) := ~�j+1Kj ~Cj+10 � ~Æj+10 ~Cj+1Kj AjNj (x) := 2(~Æj+1Nj ~Cj+1Nj � ~�j+1Nj ~Sj+1Nj )where~Cj� = Cj�jjCj�jj ; ~Sj� = Sj�jjSj�jj ; ~�j� = �j� � jjCj�jj; ~Æj� = Æj� � jjSj�jj;Then, fAj� : 0 � � � Nj ;Bj� : 1 � � � Nj � 1g is an orthogonal basis for Wj. Weall these Aj�; Bj� periodi wavelets.Proof. From the de�nitions of Aj� and Bj�, we know that eah element of Sj :=fAj� : 0 � � � Nj; Bj� : 1 � � � Nj � 1g belongs to Vj+1. A simple alulation showsthat < Aj�1 ; Cj�2 >=< Bj�1 ; Cj�2 >=< Aj�1 ; Sj�2 >=< Bj�1 ; Sj�2 >= 0whih implies that Sj �Wj .



518 H.L. CHEN, X.Z. LIANG, S.L. PENG AND S.L. XIAOBut, < Aj�1 ; Aj�2 >= 0 for �1 6= �2; 0 � �1; �2 � Nj< Bj�1 ; Bj�2 >= 0 for �1 6= �2; 1 � �1; �2 � Nj � 1< Aj�1 ; Bj�2 >= 0 for 0 � �1 � Nj 1 � �2 � Nj � 1and < Aj�; Aj� >= k~�j+1Kj��k2 + k~Æj+1Kj��k2 + k~�j+1� k2 + k~Æj+1� k2 6= 0for 0 � � � Nj< Bj�; Bj� >= k~Æj+1Kj��k2 + k~�j+1Kj��k2 + k~Æj+1� k2 + k~�j+1� k2 6= 0for 1 � � � Nj � 1whih show that Sj is an orthogonal basis for Wj, and the proof of the theorem is�nished.In general, the two-sale equations involve four terms , but, when the underlyingfuntion ' is symmetri, i.e. '(x) = '(�x), then, there are only two terms in thesaling relations and the same in the onstrution of the basis for Wj, that is, we havethe following Theorem.Theorem 3.3. If '(x) = '(�x), and Æj� is de�ned as in Theorem 3.1, thenÆj� = 0.Proof. By (2.3) and the linear independene of f'(��`h)gK+p�1`=�p+1 on [0; T ℄, we have,'(x) = '(�x) = Xj�j�p �'(�2x� �h) = Xj�j�p ��'(2x� �h)Xj�j�p(� � ��)'(2x � �h) = 0 for x 2 lRwhih shows that � = �� for j�j � p.Hene Æj� = 0 , the result follows.4. Periodi Wavelets and Fourier SeriesIn this setion, we will show that in some speial ases, the saling funtions Cj�and Sj� will onverge to osine and sine funtions respetively whih implies that thesaling funtions onstruted in this paper have some stationary properties.



Real-Valued Periodi Wavelets: Constrution and Relation with Fourier Series 519To this end, we suppose that '(x) is ontinuous, supp' � [�T2 ; T2 ℄ and satisfy thepartition of unity, Xk2ZZ'(x+ kh) = 1 for x 2 lRDe�ne operator Aj : C[0; T ℄! C[0; T ℄ byAjf(x) = Kj�1X�=0 f(�hj)�j�(x)where �j�(x) = P�2ZZ '(2j(x + �T ) � �h); C[0; T ℄ is the ontinuous funtion spae on[0; T ℄. Then, we have the following theorem.Theorem 4.1. limj!1 jjAjf � f jj1 = 0Proof. We note �rst that PKj�1�=0 �j�(x) = 1 for x 2 [0; T ℄, therefore,jAjf(x)� f(x)j � Kj�1X�=0 jf(x)� f(�hj)j � j�j�(x)j= Xj��[ xh j ℄j�K2 +1 jf(x)� f(�hj)j � j�j�(x)j�M Xj��[ xh j ℄j�K2 +1 jf(x)� f(�hj)j�M(K + 2)maxjx�tj�(K2 +1)hj jf(x)� f(t)jwhih shows that limj!1 jjAjf � f jj1 = 0:Corollary 4.1. If '(x) is ontinuous, and satis�es the onditions in Setion 2.Cj�; Sj� are de�ned by (2.4), (2.5), thenlimj!+1Cj�(x) = os 2��xT for � = 0; 1; � � �limj!+1Sj�(x) = sin 2��xT for � = 1; 2; � � �Remarks:1. Corallary 4.1 shows that, for g 2 C[0; T ℄, let Pjg be the projetion of g on Vj ,then, < Pjg; Cj� >;< Pjg; Sj� > are the "step" approximation of the FourieroeÆients of g(x).



520 H.L. CHEN, X.Z. LIANG, S.L. PENG AND S.L. XIAO2. From the proof of Theorem 4.1, we know that, if f(x) is smooth, and jf 0(x)j �M1,then jAjf(x)� f(x)j �M �M1 (K + 2)22 hj =M22�jwhere M2 is a onstant independent of j, whih shows that the approximationorder is O(2�j). 5. ExampleIn this setion, we will use the above proedure to onstrut real value waveletswith B-spline. We point out that if  (x) is symmetri, the �nal saling relations willbe simpler. Therefore we will use entered B-spline of degree 3.Suppose h = 1; T = 10 and K = 10.The B-spline funtions are de�ned as follows:N0(x) = �[� 12 ; 12 ℄(x)Nm(x) = (Nm�1 +N1)(x) = Z 12� 12 Nm�1(x� t)dt; m � 1Hene N3(x) = 16 4Xj=0(�1)j 4j!(x� j + 2)3and N3(x) = 2�3 2Xk=�2 4k + 2!N3(2x� k)Putting  (x) = N3(x). By using the de�nitions in Setion 2, we obtainCj�; Sj�; Aj�; Bj�,for di�erent j and '(x).Here we only give the pitures of C01 (x); C31 (x); C04 (x); C34 (x). From the �gures wean �nd C01(x) and C31 (x) give good approximations of os(�x5 ) while C04 (x) is a badapproximation of os(4�x5 ). But C34 (x) approximates os(4�x5 ) very well.
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