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Abstract

In this paper, we first give a new equivalent optimization form to nonlinear
complementarity problems and then establish a damped Newton method in which
penalty technique is used. The subproblems of the method are lower-dimensional
linear complementarity problems. We prove that the algorithm converges globally
for strongly monotone complementarity problems. Under certain conditions, the
method possesses quadratic convergence. Few numerical results are also reported.
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1. Introduction

Consider the following nonlinear complementarity problems NCP(F) of finding an
x ∈ Rn, such that

x ≥ 0, F (x) ≥ 0 and xT F (x) = 0 (1.1)

where F is a mapping from Rn into itself. It is an important form of the following
variational inequality VI (F,X) of finding an x ∈ X, such that

(y − x)T F (x) ≥ 0, ∀y ∈ X (1.2)

where X ⊂ Rn is a closed convex set. When X = Rn
+, (1.1) is equivalent to (1.2).

NCP(F) and VI (F,X) can be transformed into optimization problem to be solved. So,
many good techniques for solving optimization problems can be used. The first one
may due to Marcotte and Dussault[6] who introduced a line search technique in the
traditional linearized Newton method. A gap function was used as the merit function.
When F is strongly monotone the algorithm converges globally and local quadrati-
cally. However, there is a disadvantage, i.e. the difficulty of the calculation of the
merit function. In 1993, a new damped Newton method was established by Taji,
Fukushima and Ibaraki[8] based on an equivalent differentiable optimization problem
given by Fukushima[2]. The method still possesses global and local quadratic conver-
gence if F is strongly monotone. The drawback of the method is that the merit function
relies on a projective operator. Moreover, one has to estimate a positive definite matrix
in practice.
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In both of the methods, the subproblems are linear complementarity problems of
dimension n. In this paper, we will give another equivalent optimization of NCP(F) by
using penalty technique. We also present a damped Newton method with the subprob-
lems being lower-dimensional linear complementarity. Global convergence is obtained.
For some special problems, local quadratic convergence is also established.

The paper is organized as follows: in the next section, we first deduce a new equiv-
alent optimization problem of NCP(F) and then describe the algorithm. In section 3,
we prove the global convergence and local quadratic convergence of the algorithm. At
last, in section 4, we give some numerical results.

2. The Equivalent Form and the Algorithm

It is easy to see that NCP(F) is equivalent to the following optimization problem
(e.g. see [4]):

min f(x) = xT F (x) (2.1)

s.t. x ≥ 0, F (x) ≥ 0 (2.2)

with the optimal f(x∗) = 0. Generally, the feasible domain D = {x ∈ Rn|x ≥ 0,
F (x) ≥ 0} is not convex. In 1992, Fukushima considered the merit function below

f(x) = −F (x)T (H(x) − x) −
1

2
(H(x) − x)T G(H(x) − x). (2.3)

and cast NCP(F) as the following optimization problem

min
x≥0

f(x), (2.4)

where H(x) = ProjG(x − G−1F (x))),and ProjG(x) denotes the unique solution of the
following mathematical programming:

min
y≥0

‖y − x‖G = {(y − x)T G(y − x)}1/2 .

Of course, the feasible domain (2.4) is convex. However, the calculation of f(x) relies
on the projective operator H(x). To overcome these disadvantages, we give a new
equivalent optimization problem of NCP(F).

Our approach follows the way of Fukushima′s. We consider the following mathe-
matical programming problem

min φr(x) = xT max{F (x), 0} +
1

2
r‖min{F (x), 0}‖2 (2.5)

s.t. x ≥ 0 (2.6)

Obviously, φr(x) = 0 if and only if x solves NCP(F).
The function φr in (2.5) is not differentiable but directional differentiable. The

derivative of φr at x along direction p is given by

φ′
r(x, p) = lim

α→0+

1

α
[φr(x + αp) − φr(x)] = pT max{F (x), 0}
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+
∑

Fi=0

xi max{∇F T
i p, 0} +

∑

Fi>0

xi∇F T
i p + r

∑

Fi<0

Fi∇F T
i p.

(2.7)

We wish to find a direction p to be a descent direction of φr. In the paper we choose p
as the solution of the following lower-dimensional linear complementarity problem:











xi + pi = 0, if Fi(x) > 0,

xi + pi ≥ 0, Fi(x) + ∇F T
i p ≥ 0

and (xi + pi)(Fi(x) + ∇F T
i p) = 0, if Fi(x) ≤ 0,

(2.8)

(2.9)

where xi, pi and Fi(x) denote the i-th elements of x, p and F (x) respectively. ∇Fi be
the gradient of Fi at x. It is clear that if p = 0 is a solution of (2.8) and (2.9), then x
is a solution of NCP(F).

In the rest of the paper, we assume that
Assumption (A). F : Rn → Rn is continuously differentiable and is strongly

monotone, i.e. there is a constant µ > 0 such that

[F (x) − F (y)]T (x − y) ≥ µ‖x − y‖2, ∀x, y. (2.10)

If we denote F ′ the Jacobian of F at x, then (2.10) is equivalent to

vT F ′(x)v ≥ µ‖v‖2, ∀x, v ∈ Rn. (2.11)

To describe the algorithm, we first justify the descent property of φr.
Proposition 2.1. Let assumption (A) hold. x ≥ 0, p is determined by (2.8) and

(2.9). If r > 1/(2µ), then

φ′
r(x, p) ≤ −

1

2
pT F ′(x)p ≤ −

µ

2
‖p‖2. (2.12)

Proof. Notice that p satisfies (2.8), we have ∇F T
i p ≥ 0 when Fi(x) = 0. Thus from

(2.7) we deduce that

φ′
r(x, p) =

∑

Fi>0

piFi +
∑

Fi>0

xi∇F T
i p +

∑

Fi=0

xi∇F T
i p + r

∑

Fi<0

Fi∇F T
i p

= −
∑

Fi>0

xiFi −
∑

Fi>0

pi∇F T
i p +

∑

Fi=0

xi(Fi + ∇F T
i p) + r

∑

Fi<0

(Fi + ∇F T
i p − Fi)Fi

≤ −
∑

Fi≥0

pi∇F T
i p − r

∑

Fi<0

F 2
i = −pTF ′(x)p +

∑

Fi<0

pi∇F T
i p − r‖min{F (x), 0}‖2

= −pT F ′(x)p +
∑

Fi<0

pi(Fi + ∇F T
i p) − pT min{F (x), 0} − r‖min{F (x), 0}‖2

≤ −
1

2
pT F ′(x)p −

{1

2

pTF ′(x)p

‖p‖2
‖p‖2 + pT min{F (x), 0} + r‖min{F (x), 0}‖2

}

= −
1

2
pT F ′(x)p −

1

2

pT F ′(x)p

‖p‖2

∥

∥

∥p +
‖p‖2

pTF ′(x)p
min{F (x), 0}

∥

∥

∥

2

−
(

r −
‖p‖2

2pT F ′(x)p

)

‖min{F (x), 0}‖2
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≤ −
1

2
pT F ′(x)p −

(

r −
‖p‖2

2pT F ′(x)p

)

‖min{F (x), 0}‖2

≤ −
1

2
pT F ′(x)p −

(

r −
1

2µ

)

‖min{F (x), 0}‖2.

If r >
1

2µ
, then (2.12) holds true. Q.E.D.

Now, we state the damped Newton method.
Algorithm 1. Initial. Given constants ρ, σ ∈ (0, 1). Take x0 ∈ Rn

+. k ⇐= 0.
Step 1. Solve (2.8) and (2.9) for x = xk to get pk.
Step 2. Select λk = ρmk , where mk is the smallest nonnegative integer satisfying

that:

φr(x
k + ρmpk) − φr(x

k) ≤ −
1

2
σλk(p

k)T F ′(xk)pk. (2.13)

Step 3. xk+1 = xk + λkp
k, k + 1 ⇒ k, go to Step 1.

3. Global and Local Convergence

In this section, we will prove the global and locally quadratic convergence of algo-
rithm 1. First, we see that the sequence {xk} generated by algorithm 1 are in Rn

+ if
x0 ∈ Rn

+. The following lemma shows that {xk} is bounded.
Lemma 3.1. For any x0 ∈ Rn

+, every r > 0, if F is strongly monotone, then the
level set

Ωr = {x|x ≥ 0, φr(x) ≤ φr(x
0)} (3.1)

is bounded.
Proof. Assume that {uk} is an unbounded nonnegative sequence. Then for every

r > 0, by a simple inequality that

max(a, 0) + min(b, 0) ≤ max(a + b, 0) ≤ max(a, 0) + max(b, 0) (3.2)

we get

φr(u
k) ≥ (uk)T max{F (uk), 0} = (uk)T max{[F (uk) − F (0)] + F (0), 0}

≥ max{(uk)T [F (uk) − F (0)], 0} + min{(uk)T F (0), 0}

≥ µ‖uk‖2 − ‖uk‖‖F (0)‖,

this implies that φr(u
k) tends to ∞. Thus Ωr is bounded since φr(x) ≤ φr(x

0) for all
x ∈ Ωr. Q.E.D.

From lemma 3.1, it is easy to see that {xk} generated by algorithm 1 is bounded.
So there is a subsequence {xk} with a limit x∗ ∈ Ωr.

Let I, J ⊂ Zn = {1, 2, · · · , n}. We say I, J a partition of Zn if I ∩ J = Ø and
I ∪ J = Zn.

Lemma 3.2. Let assumption (A) hold. Then the sequence {pk} is bounded.
Proof. Since F is strongly monotone, for every partition I, J of Zn, we claim that

the matrix G(I, J, x) ≡ ((e)i∈I , (∇Fj(x))j∈J)T is uniformly nonsignular, that is there
is a constant µ1 > 0 independent of I, J such that

‖G(I, J, x)v‖ ≥ µ1‖v‖, ∀v ∈ Rn, ∀x ∈ Rn
+
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Recall that for every i ∈ Zn, we have either

xk
i + pk

i = 0

or

Fi(x
k) + ∇Fi(x

k)T pk = 0

That is to say, there is a partition Ik, Jk of Zn such that

G(Ik, Jk, xk)pk = −H(xk)

where H(xk) = (h1(x
k), h2(x

k), · · · , hn(xk)), hi(x
k) = xk

i or Fi(x
k). But {xk} ⊂ Ωr is

bounded and F (x) is continuous, we conclude the proof by the uniform nonsingularity
of G(I, J, xk). Q.E.D.

The following lemma is useful for the proof of the global convergence of algorithm
1.

Theorem 3.3. Let F : Rn → Rn be continuously differentiable. {xk} and {pk} are
generated by algorithm 1. If there are subsequences {xk}k∈K and {pk}k∈K taking limits
x̄ and p̄ respectively with p̄ = 0, then x̄ is a solution of NCP(F ).

Proof. We verify the conclusion by partition the index set Zn into three subsets.
Define

ᾱ = {i|Fi(x̄) > 0}, β̄ = {i|Fi(x̄) = 0}, γ̄ = {i|Fi(x̄) < 0}

We will show that x̄i = 0, ∀i ∈ ᾱ, x̄i ≥ 0, ∀i ∈ β and γ̄ is empty. This means that x̄ is
a solution of NCP(F).

For i ∈ ᾱ, when k ∈ K sufficiently large, Fi(x
k) > 0. Which implies from (2.8) that

xk
i + pk

i = 0, ∀i ∈ ᾱ and k ∈ K sufficiently large. So we get that x̄i = 0, ∀i ∈ ᾱ.

For i ∈ γ̄, it is clear that when k ∈ K sufficiently large, (2.9) is always true for
x = xk and p = pk. Thus Fi(x

k) + ∇F T
i (xk)pk ≥ 0 for all i ∈ γ̄ and k ∈ K sufficiently.

Taking limits in the inequality, we get that Fi(x̄) ≥ 0, ∀i ∈ γ̄. This contradiction means
that γ̄ = Ø.

For the case i ∈ β̄, we have from (2.8) and (2.9) that xk
i + pk

i ≥ 0 for all i ∈ β̄ and
k. This, of course, implies that x̄i ≥ 0, ∀i ∈ β̄. Q.E.D.

Now we prove the global convergence of the algorithm 1.

Theorem 3.4. Let assumption (A) hold. Let also r >
1

2µ
. Then for any x0 ∈

Rn
+, the sequence {xk} generated by the algorithm converges to the unique solution of

NCP(F ).

Proof. Since the level set Ωr is bounded, there exists a convergent subsequence
{xk}k∈K . By lemma 3.3, we only need to find a subsequence {pk}k∈K ′ ⊂ {pk}k∈K

taking the limit p̄ = 0.

From the line search condition (2.13) and the monotonity of {φr(x
k)} we get

lim
k→∞

λk‖p
k‖2 = 0. (3.3)

Denote λ∗ = inf{λk|k ≥ 0}. If λ∗ > 0, then pk → p̄ = 0.
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Now, we consider the case that λ∗ = 0. Without loss of generality, we assume that
{pk}k∈K → p̄. By the line search rule, it is clear that when k ∈ K sufficiently large,
λ′

k ≡ λk/ρ does not satisfy (2.13). That is to say that when k ∈ K sufficiently large,

φr(x
k + λ′

kp
k) − φr(x

k) > −
1

2
σλ′

k(p
k)T F ′(xk)pk. (3.4)

For convenience, in the following proof we omit the index k. Consider the left side of
(3.4). Denote

ηi =(xi + λ′pi)max{Fi(x + λ′p), 0} − xi max{Fi(x), 0}

+
1

2
r[min2{Fi(x + λ′p), 0} − min2{Fi(x), 0}].

Then

φr(x
k + λ′

kp
k) − φr(x

k) =
n

∑

i=1

ηi. (3.5)

Let ᾱ, β̄ and γ̄ be defined by lemma 3.3. If i ∈ ᾱ, then when k ∈ K sufficiently
large Fi(x) > 0, and Fi(x + λ′p) > 0. Thus

ηi = xi[Fi(x + λ′p) − Fi(x)] + λ′piFi(x + λ′p) = λ′[xi∇F T
i p + piFi(x)] + o(λ′) .

If i ∈ γ̄, then when k ∈ K sufficiently large Fi(x) < 0, and Fi(x + λ′p) < 0. Thus

ηi =
1

2
r[Fi(x + λ′p) + Fi(x)][Fi(x + λ′p) − Fi(x)] = λ′rFi∇F T

i p + o(λ′) .

If i ∈ β̄, from the inequality (3.2) and that

min(a + b, 0) ≥ min(a, 0) + min(b, 0),

we deduce that

ηi =xi[max{Fi(x + λ′p), 0} − max{Fi(x), 0}] + λ′pi max{Fi(x + λ′p), 0}

+
1

2
r[min{Fi(x + λ′p), 0} + min{F (x), 0}][min{Fi(x + λ′p), 0} − min{F (x), 0}]

≤xi max{Fi(x + λ′p), 0} − Fi(x), 0} + λ′pi max{Fi(x + λ′p), 0}

+
1

2
r[min{Fi(x + λ′p), 0} + min{F (x), 0}]min{Fi(x + λ′p) − F (x), 0}

=λ′[xi max{∇F T
i p, 0} + pi max{Fi(x), 0} + rλ′Fi(x)min{∇F T

i (x)p, 0} + o(λ′) .

Substitute all the above estimation to (3.5), we get that

φr(x
k + λ′

kp
k) − φr(x

k) ≤λ′
{

∑

Fi(x̄)>0

[xi∇F T
i p + piFi(x)] + r

∑

Fi(x̄)<0

Fi(x)∇F T
i p

+
∑

Fi(x̄)=0

[xi max{∇F T
i p, 0} + pi max{Fi(x), 0}

+ rFi(x)min{∇F T
i p, 0}

}

+ o(λ′).
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Using this inequality to (3.4) and dividing by λ′
k then taking limit as k ∈ K and k

tends to infinity, we deduce that

∑

Fi(x̄)>0

[

x̄i∇F T
i (x̄)p̄ + p̄iFi(x̄)

]

+ r
∑

Fi(x̄)<0

Fi(x̄)∇F T
i (x̄)p̄

+
∑

Fi(x̄)=0

[x̄i max{∇Fi(x̄)T p̄, 0} + p̄i max{Fi(x̄), 0}

+ rFi(x̄)min{∇F T
i (x̄)p̄, 0}

]

≥−
1

2
σp̄T F ′(x̄)p̄.

But the left side of the above inequality is just φ′
r(x̄, p̄). So by means of (2.12), this

implies that

−
1

2
p̄T F ′(x̄)p̄ ≥ −

1

2
σp̄T F ′(x̄)p̄.

From this we claim that p̄ = 0 since σ ∈ (0, 1). Thus x̄ solves NCP(F).

The above discussion has shown that there is an accumulation point of {xk} which
solves NCP(F). Again by the monotonity of {φr(x

k)}, every accumulation point of
{xk} takes the same value φr(x

∗) = 0, i.e. a solution of NCP(F). However the strong
monotonity of F guarantees the uniqueness of the solution. The proof is completed.

We now analyze the convergent rate of algorithm 1. From the proof of lemma 3.2
and theorem 3.4, we get {pk} → 0.

Theorem 3.5. Let the conditions of theorem 3.3 hold. Let also that F ′(x) is
Lipschitz continuous on Ωr, i.e. there is a constant L > 0 such that

‖F ′(x) − F ′(y)‖ ≤ L‖x − y‖, ∀x, y ∈ Ωr. (3.6)

Then there exists a constant C > 0 such that when k is sufficiently large

‖xk + pk − x∗‖ ≤ C‖xk − x∗‖2, (3.7)

where x∗ is the unique solution of NCP(F ).

Proof. Set

α∗ = {i|Fi(x
∗) > 0}, β∗ = {i|Fi(x

∗) = x∗
i = 0}, γ∗ = {i|x∗

i > 0}. (3.8)

Then α∗ ∪ β∗ ∪ γ∗ = Zn. For all i ∈ α∗, it follows that x∗
i = 0 and that Fi(x

k) > 0
when k is sufficiently large. Thus from (2.8), we get

xk
i + pk

i − x∗
i = 0, ∀i ∈ α∗ (3.10)

For every i ∈ β∗, we have either (3.10) or

Fi(x
k) − Fi(x

∗) + ∇F T
i (xk)pk = 0. (3.11)

For i ∈ γ∗, we get that xk
i + pk

i > 0 when k is sufficiently large, and so (3.11) holds.
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On the other hand (3.11) can be rewritten as

∇F T
i (xk)(xk + pk − x∗) = −(Fi(x

k) − Fi(x
∗) −∇F T

i (xk)(xk − x∗)) (3.12)

The above discussion shows that when k is sufficiently large

Gk(x
k + pk − x∗) = −Hk, (3.13)

where Gk = (gT
1 (xk), gT

2 (xk), · · · , gT
n (xk)) with gi(x

k) = ei or ∇Fi(x
k) and Hk =

(hk
1 , h

k
2 , · · · , hk

n) with hk
i = 0 or the right side of (3.12). Since F is strongly mono-

tone, Gk is uniformly nonsingular. Moreover, (3.6) implies that there is a constant
C1 > 0 such that ‖Hk‖ ≤ C1‖x

k − x∗‖2. Therefore we get (3.7) from (3.13). Q.E.D.
We now want to get the quadratic convergence.

Theorem 3.6. Let the conditions of theorem 3.4 hold. Let also that there is a
neighbourhood of x∗, say N(x∗), such that

Fi(y) − Fi(x) ≤ ∇F T
i (x)(y − x), ∀i ∈ γ∗ and x, y ∈ N(x∗) ∩ Rn

+. (3.14)

If we take σ < 1/2 in algorithm 1, then algorithm 1 has locally quadratically convergent
property.

Proof. From theorem 3.5, it suffices to verify that when k is sufficiently large,
λk ≡ 1. In other words, we only need to verify that

φr(x
k + pk) − φr(x

k) ≤
1

2
φ′

r(x
k, pk) + o(‖pk‖2). (3.15)

Then proposition 2.1 guarantees λk = 1. To prove (3.15), first we note that when k is
sufficiently large, both xk and xk + pk are in N(x∗)∩Rn

+. We rewrite (3.15) in another
form by means of (2.7)

T1 + T2 ≤ o(‖pk‖2), (3.16)

where

T1 ≡
n

∑

i=0

εk ≡
n

∑

i=0

[(xk
i + pk

i )max{Fi(x
k + pk), 0} − xk

i max{Fi(x
k), 0}]

−
1

2

∑

Fi(xk)≥0

[pk
i Fi(x

k) + xk
i ∇F T

i (xk)pk],

T2 ≡
1

2
r

n
∑

i=1

ε̄k
i ≡

1

2
r
[

n
∑

i=0

min2{Fi(x
k + pk), 0} −

∑

Fi(xk)<0

(F 2
i (xk) + Fi(x

k)∇F T
i (xk)pk)],

εk
i =























(xk
i + pk

i )max{Fi(x
k + pk), 0} −

1

2
(xk

i + pk
i )Fi(x

k)

−
1

2
xk

i (Fi(x
k) + ∇F T

i (xk)pk), if Fi(x
k) ≥ 0,

(xk
i + pk

i )max{Fi(x
k + pk

i ), 0}, if Fi(x
k) < 0

ε̄k
i =

{

min2{Fi(x
k + pk), 0}, if Fi(x

k) ≥ 0,

min2{Fi(x
k + pk), 0} − Fi(x

k)(Fi(x
k) + ∇F T

i (xk)pk), if Fi(x
k) < 0
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We now estimate T1 and T2. For convenience, in the later of the proof, we still omit
the index k. For every i ∈ α∗, it follows that Fi(x) > 0 when k is sufficiently large and
thus xi + pi = 0. Therefore

εi = −
1

2
xi(Fi(x) + ∇F T

i (x)p) ≤ 0.

For i ∈ β∗, x∗
i = Fi(x

∗) = 0. So

εi ≤ (xi + pi − x∗)max{Fi(x + p), 0} = o(‖p‖2).

For i ∈ γ∗, x∗
i > 0. This implies that xi + pi > 0 when k is sufficiently large. So

Fi(x) ≤ 0 and Fi(x) + ∇F T
i (x)p = 0. In this case, by the assumption of the theorem

we have
εi = (xi + pi)max{Fi(x + p) − Fi(x) −∇F T

i (x)p, 0} = 0.

We have now proved that when k is sufficiently large

T1 ≤ o(‖p‖2). (3.17)

We turn to estimate T2. For i ∈ α∗, when k is sufficiently large, ε̄i = 0. For
i ∈ β∗ ∪ γ∗, Fi(x

∗) = 0. From this we deduce that

Fi(x + p) = Fi(x + p) − Fi(x
∗) = ∇F T

i (x̃)(x + p − x∗) = o(‖p‖2),

where x̃ is a point between x + p and x∗. This follows that

min2{Fi(x + p), 0} = o(‖p‖2).

So we have the estimation that

ε̄i =

{

o(‖p‖2), if Fi(x) ≥ 0,

o(‖p‖2) − (Fi(x) − Fi(x
∗))(Fi(x) − Fi(x

∗) + ∇F T
i (x)p), if Fi(x) < 0.

=o(‖p‖2).

Anyway, we have
T2 = o(‖p‖2). (3.18)

The estimation (3.17) and (3.18) imply (3.16). The proof is completed. Q.E.D.
Remark 1. The condition (3.14) means that ∀i ∈ γ∗, Fi is concave in some

neighbourhood of x∗. For some practical problems such as the piecewise linear elastic-
plastic problem etc, these conditions are often satisfied.

Remark 2. For algorithm 1, we see that the descent property and global conver-

gence of algorithm 1 rely on the requirement that r ≥
1

2µ
. This is not convenient in

practice since it is difficult to estimate µ in advance. To overcome such disadvantage,
we can change rk successively by obeying the following rule which very like the way
used in [7] for constrained optimization problem. If

φ′
r(xk, pk) ≤ −

1

2
pT

k F ′(xk)pk, (3.19)
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then we need not change rk, i.e. rk+1 = rk. Otherwise we choose rk+1 by

rk+1 = max
{

2rk,
‖pk‖

2

2pT
k F ′(xk)pk

}

The following theorem shows that the global and locally quadratic convergence
results for the revised algorithm remain true.

Theorem 3.7. Let assumption (A) hold. Then there exists an integer k0 such that
when k ≥ r0, rk = rk0 .

Proof. By the rule for the determination of the penalty factor, it suffices to verify
that there exists a constant η > 0 such that (3.19) holds for all r ≥ η. This is just the
conclusion of proposition 2.1. Q.E.D.

4. Numerical Results

In this section, we present our numerical results. Two test functions are considered.
Problem 1.

F (x) = C(x) + Ax + b,

where

C(x) = (c1(x1), c2(x2), · · · cn(xn))T , ci(xi) = arctan (xi), i = 1, 2, · · · , n

and

A =























2 −1
−1 2 −1

−1 2 −1
· · · · · ·

· · ·
· · · −1

−2 2























,

b = (−n/2,−n/2 + 1,−n/2 + 2, · · · ,−n2 + (n − 1),−n/2 + n)T .

Problem 2. (Simplified as P2)

F1(x) = 3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6,

F2(x) = 2x2
1 + x1 + x2

2 + 3x3 + 2x4 − 2,

F3(x) = 3x2
1 + x1x2 + 2x2

2 + 2x3 + 3x4 − 1,

F4(x) = x2
1 + 3x2

2 + 2x3 + 3x4 − 3.

By using ‖pk‖∞ ≤ 10−6 as the stopping criterion, the iterative numbers are given
in table 1 and table 2. Table 1 shows the iterative number of problem 1. In the table,
Taji stands for the method proposed by Taji et al. (1993) with G = I and LZ stands
for the algorithm 2 in our paper. We choose the initial penalty factor r0 = 1 in the
revised algorithm.



50 D.H. LI AND J.P. ZENG

Remark. In the two problems, F is strongly monotone for problem 1 but not for
problem 2.

Table 1.

x
0 (1, · · · , 1) (0, · · · , 0) (1, · · · , n) (n, · · · , 1) (104

, · · · , 104)

n = 5
Taji 6 8 7 8 15
LZ 4 4 4 5 5

n = 10
Taji 16 16 16 16 25
LZ 9 10 9 11 11

n = 20
Taji 23 23 23 20 31
LZ 16 15 15 17 17

Table 2.

x
0 (1, 1, 1, 1) (10, 20, 30, 40) (1, 0, 0, 0) (1, 0, 1, 0) (10, 10, 10, 10) (104

, · · · , 104)

P2 8 7 4 4 7 7

Acknowledgement. The authors thank Professor S.Z. Zhou and the referees for
their helpful comments on the paper.

References

[1] M. Fukushima, A successive quadratic programming algorithm with global and superlinear
convergence properties, Mathematical Programming, 35 (1986), 253–264.

[2] M. Fukushima, Equivalent differentiable optimization problems and descent methods for
asymmetric variational inequality problems, Mathematical Programming, 53 (1992), 99–
110.

[3] S.P. Han, A globally convergent method for nonlinear programming, Mathematical Pro-
gramming, 11 (1976), 87–113.

[4] P.T. Harker, J.S. Pang, Finite-dimensional variational inequality and nonlinear complemen-
tarity problems: a survey of theory, algorithms and applications, Mathematical Program-
ming, 48 (1990), 161–220.

[5] P. Marcotte, J.P. Dussault, A note on global convergent Newton method for solving varia-
tional inequalities, Operations Research Letters, 6 (1987), 35–42.

[6] P. Marcotte, J.P. Dussault, A sequential linear programming algorithm for solving monotone
variational inequalities, SIAM Journal on Control and Optimization, 27 (1989), 1260–1278.

[7] M.J.P. Powell, Y. Yuan, A recursive quadratic programming algorithm that uses differen-
tiable exact penalty functions, Mathematical Programming, 35 (1986), 265–278.

[8] K. Taji, M. Fukushima, T. Ibaraki, A globally convergent Newton method for solving
strongly monotone variational inequalities, Mathematical Programming, 58 (1993), 369–
383.

[9] K. Taji, M. Fukushima, A globally convergent Newton method for solving variational in-
equality problems with inequality constraints, In: Recent Advances in Nonsmooth Opti-
mization (eds. D.-Z. Du, L. Qi and R. Womersley), World Scientific Publishing, Singapore-
New Jersey-London-Hong Kong, 1995, 405–417.


