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THE STEP-TRANSITION OPERATORS FOR MULTI-STEP
METHODS OF ODE’S∗1)
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Abstract

In this paper, we propose a new definition of symplectic multistep methods.
This definition differs from the old ones in that it is given via the one step method
defined directly on M which is corresponding to the m step scheme defined on M
while the old definitions are given out by defining a corresponding one step method
on M×M×· · ·×M = Mm with a set of new variables. The new definition gives out
a steptransition operator g : M −→ M . Under our new definition, the Leap-frog
method is symplectic only for linear Hamiltonian systems. The transition operator
g will be constructed via continued fractions and rational approximations.

Key words: Multi-step methods, Explike and loglike function, Fractional and ra-
tional approximation, Simplecticity of LMM, Nonexistence of SLMM.

1. Introduction

The disadvantage of symplectic methods in using the information from past time
steps leads to their needing more function evaluation than nonsymplectic methods. This
disadvantage can be overcome if one could construct symplectic multi-step methods.
But the first problem should be solved is to give out the definition of symplectic multi-
step method. Until now, a popular idea is that an m-step method on M may be
written as a one-step method on Mm. In paper [2, 7], the authors have investigated
the circumstance under which a difference scheme can preserve the product symplectic
structure on Mm. In this paper, a completely different criterion is given because the
induced one-step method corresponding to the original multi-step method is defined, it
gives out a transition operator g : M −→ M .

Consider the autonomous ODE’s on Rn

dz

dt
= a(z), (1.1)

where z = (z1, · · · , zn) and a(z) = (a1(z), · · · , an(z)) is a smooth vector field on Rn

defining the system. For equation (1.1), we define a linear m step method (LMM) in
standard form by

m∑

j=0

αjzj = τ
m∑

j=0

βjaj , (1.2)
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where αj and βj are constants subject to the conditions

αm = 1, |α0|+ |β0| 6= 0.

If m = 1, we call (1.2) a one step method. In other cases, we call it a multi-step method.
Here linearity means the right hand of (1.2) linearly dependent on the value of a(z) on
integral points. For the compatibility of (1.2) with equation (1.1), it must at least of
order one and thus satisfies

1◦. α1 + α2 + · · ·+ αm = 0.

2◦. β0 + β2 + · · ·+ βm =
m∑

j=0

jαj 6= 0.

LMM method (1.2) has two characteristic polynomials

ζ(λ) =
m∑

i=0

αiλ
i, σ(λ) =

m∑

i=0

βiλ
i. (1.3)

Equation (1.2) can be written as

ζ(E)yn = τa(σ(E)yn). (1.4)

In section 2, we will study symplectic multi-step methods for linear Hamiltonian
systems. We will give a new definition via transition operators which are corresponding
to the multi-step methods. We will point out that if these operators are of exponential
forms and their reverse maps are of Log forms then the original multi-step method are
symplectic. In section 3, we will use continued fractions and rational approximations
to approximate the transition operators. In section 4, we show that for non-linear
Hamiltonian systems, there exists no symplectic multi-step methods in the sense of our
new definition. Numerical examples are also presented.

2. Symplectic LMM for Linear Hamiltonian Systems

First we consider a linear Hamiltonian system

dz

dt
= az, (2.1)

where a is an infinitesimal n× n symplectic matrix. Its phase flow is z(t) = exp(ta)z0.
The LMM for (2.1) is

αmzm + · · ·+ α1z1 + α0z0 = τa(βmzm + · · ·+ β1z1 + β0z0). (2.2)

Our goal is to find a matrix g, i.e., a linear transformation g : R2n −→ R2n which
can satisfy (2.2)

αmgm(z0) + · · ·+ α1g(z0) + α0z0 = τa(βmgm(z0) + · · ·+ β1g(z0) + β0z0). (2.3)

Such a map g exists for sufficiently small τ and can be represented by continued fractions
and rational approximations. We call this transformation is step transition operator.
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Definition 2.1. If g is a symplectic transformation, then we call its corresponding
LMM (2.2) is symplectic.(We simply call it the method a SLMM.)

From (2.3), we have

τa =
α0I + α1g

1 + · · ·+ αmgm

β0I + β1g1 + · · ·+ βmgm
. (2.4)

The characteristic equation for LMM is

ζ(λ) = τµσ(λ), (2.5)

where µ is the eigenvalue of the infinitesimal symplectic matrix a and λ is the eigenvalue
of g.

Let

ψ(λ) =
ζ(λ)
σ(λ)

, (2.6)

then (2.5) can be written as
τµ = ψ(λ). (2.7)

It’s reverse function is
λ = φ(τµ). (2.8)

To study the symplecticity of the LMM, one only needs to study the properties of
functions φ and ψ. We will see if φ is of the exponential form or ψ is of logarithmic form,
the corresponding LMM is symplectic. We first study the properties of the exponential
functions and logarithmic functions.

Explike and Loglike functions:
First we give out the properties of exponential functions
1◦. exp(x)|x=0 = 1.

2◦.
d

dx
exp(x)|x=0 = 1.

3◦. exp(x + y) = exp(x) · exp(y).
If we substitute y by −x, we have

exp(x) exp(−x) = 1. (2.9)

Definition 2.2. If function φ(x) satisfies φ(0) = 1, φ′(0) = 1 and φ(x)φ(−x) = 1,
we call this function is an explike function.

It’s well known, the inverse function of an exponential function is a logarithmic
function x −→ log(x). It has the following properties

1◦. log(x)|x=1 = 0.

2◦.
d

dx
log(x)|x=1 = 1.

3◦. log(xy) = log(x) + log(y).
If we take y = 1/x, we get

log(x) + log
(1
x

)
= 0. (2.10)
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Definition 2.3. If a function ψ satisfies ψ(1) = 0, ψ′(1) = 1 and

ψ(x) + ψ
(1
x

)
= 0, (2.11)

we call it a loglike function.
Obviously, polynomials can not be explike functions or loglike functions, so we try

to find explike and loglike functions in the form of rational functions.
Theorem 2.1[3]. LMM is symplectic for linear Hamiltonian systems iff its step

transition operator g = φ(τa) is explike, i.e., φ(µ) · φ(−µ) = 1, φ(0) = 1, φ′(0) = 1.
Theorem 2.2[4]. LMM is symplectic for linear Hamiltonian systems iff ψ(λ) =

ζ(λ)
σ(λ)

is a loglike function, i.e., ψ(λ) + ψ
( 1
λ

)
= 0, ψ(1) = 0, ψ′(1) = 1.

Proof. From Theorem 1, we have φ(µ)φ(−µ) = 1, so λ = φ(µ),
1
λ

= φ(−µ).

The inverse function of φ satisfies ψ(λ) = µ, ψ
( 1
λ

)
= −µ, i.e., ψ(λ) + ψ

( 1
λ

)
= 0,

ψ(0) = 1, ψ′(1) = 1 follows from consistency condition 1◦, 2◦.

On the other side, if ψ(λ) = −ψ
( 1
λ

)
, let ψ(λ) = µ, then its inverse function is

φ(µ) = λ and φ(−µ) =
1
λ

, we then have φ(µ)φ(−µ) = 1.

Theorem 2.3. If ξ(λ) antisymmetric polynomial, σ(λ) is a symmetric one, then

ψ(λ) =
ξ(λ)
σ(λ)

satisfies

ψ(1) = 0, ψ
( 1
λ

)
+ ψ(λ) = 0

Proof.

ξ̃(λ) = λmξ
( 1
λ

)
=

m∑

i=0

αm−iλ
i = −Σαiλ

i = −ξ(λ)

σ̃(λ) = λmσ
( 1
λ

)
=

m∑

i=0

βm−iλ
i = Σβiλ

i = σ(λ)

ψ(λ) =
ξ(λ)
σ(λ)

, ψ
( 1
λ

)
=

ξ( 1
λ)

σ( 1
λ)

=
λmξ( 1

λ)
λmσ( 1

λ)
= −−ξ(λ)

σ(λ)

we obtain ψ(λ) + ψ
( 1
λ

)
= 0. Now ξ(1) =

m∑

k=0

αk = 0, σ(1) =
m∑

k=0

βu 6= 0, then

ψ(1) =
ξ(1)
σ(1)

= 0.

Corollary 2.1. If above generating polynomials is consistency with ODE (1.1),

then ψ(λ) is loglike function. i.e. ψ
( 1
λ

)
+ ψ(λ) = 0, ψ(1) = 0, ψ′(1) = 1.

Proof. ψ′(1) =
ξ′σ − σ′ξ

σ2
=

ξ′(1)
σ(1)

= 1. This condition is not others just consistence

condition.
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Theorem 2.4. Let ψ(λ) =
ξ(λ)
σ(λ)

irreducible loglike function, then ξ(λ) is an

autisymmetric polynomial while σ(λ) is a symmetric one.
Proof. We write formally

ξ(λ) = αmλm + αm−1λ
m−1 + · · ·α1λ + α0

σ(λ) = βmλm + βm−1λ
m−1 + · · ·β1λ + β0

(if deg ξ(λ) = p < m, set ai = 0 for i > p, if deg Q(λ) = q < m, set βi = 0 for i > q).

ψ(1) = 0 =⇒ ξ(1) = 0, since otherwise, if ξ(1) 6= 0, then ψ(1) =
ξ(1)
σ(1)

6= 0. Now

ξ(1) = 0 ⇐⇒ σ(1) 6= 0, since otherwise ξ(1) = σ(1) = 0 =⇒ ξ(λ), σ(λ) would have
common factor. So we have

ξ(1) =
m∑

k=0

αk =
p∑

k=0

αk = 0, σ(1) =
m∑

k=0

βk =
q∑

k=0

βk 6= 0

If m = deg ξ = p, then αm = αp 6= 0. If m = deg σ = q, then βm = βp 6= 0

ψ
( 1
λ

)
=

ξ( 1
λ)

σ( 1
λ)

=
λmξ( 1

λ)
λmσ( 1

λ)
=

ξ̃(λ)
σ̃(λ)

Since ψ(λ) + ψ
( 1
λ

)
= 0, we have

ξ(λ)
σ(λ)

= − ξ̃(λ)
σ̃(λ)

⇐⇒ ξ(λ)σ̃(λ) = −ξ̃(λ)σ(λ) =⇒ ξ(λ) | ξ̃(λ)σ(λ), σ(λ) | σ̃(λ)ξ(λ).

Since ξ(λ), σ(λ) have no common factor, then ξ(λ) | ξ̃(λ), σ(λ) | σ̃(λ). If m =
deg ξ(λ) =⇒ deg ξ̃ ≤ deg ξ =⇒ ∃c

ξ(λ) = cξ̃(λ) =⇒ σ(λ) = −cσ̃(λ)

Since αm 6= 0 =⇒ αmλm + αm−1λ
m−1 + · · · + α0 = c(αm + · · ·α0w

m) =⇒ αm = cα0,
α0 = cαm ⇐⇒ αm = c2αm, therefore c2 = 1, c = ±1. Suppose c = +1, then
σ(λ) = −σ̃(λ),

∑m
r=0 βk = σ(1) = −σ̃(1) = σ(1) ⇐⇒ σ(1) = 0, this leads to a

contradiction with the assumption σ(1) 6= 0. Therefore c = −1, i.e.

ξ(λ) = −ξ̃(λ), αj = −αm−j , j = 0, 1, · · · ,m
σ(λ) = σ̃(λ), βj = βm−j , j = 0, 1, · · · ,m

The proof for the case m = deg σ(λ) proceeds in exactly the same manner as above.

3. Rational Approximations to Exponential and Logarithmic
Functions

1. We first study a simple example, the Leap-frog scheme

z2 = z0 + 2τaz1. (3.1)
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Let z1 = cz0, then z0 = c−1z1, insert this equation into (3.1), we get

z2 = 2τaz1 +
1
c
z1 =

(
2τa +

1
c

)
z1 = d1z1, z1 =

1
2τa + 1

c

z2 =
z2

d1
,

z3 = z1 + 2τaz2 =
(
2τa +

1

2τa +
1
c

)
z2 = d2z2, z2 =

1
2τa + 1

2τa+ 1
c

z3,

z4 =
(
2τa +

1
2τa + 1

2τa+ 1
c

)
= d4z3, · · · · · ·

where dk can be written in the form of continued fractions

dk = 2τa +
1

2τa +
1

2τa + . . . +
1

2τa + . . . , (3.2)

and
lim

k→∞
dk = g = τa +

√
1 + (τa)2. (3.3)

We assume the transition operator of Leap-frog to be g, from (3.1) we have g2 −
1 = 2τag, now we have g = τa ± √

1 + (τa)2. Here only sign + is meaningful, thus
g = τa +

√
1 + (τa)2 which is just the limit of continued fraction (3.2). It is easy to

verify that g is explike, i.e., g(µ)g(−µ) = 1. So the Leap-frog scheme is symplectic for
linear Hamiltonian systems in the sense our new definition.

2. For the exponential function

exp(z) = 1 +
∞∑

k=1

zk

k!
, (3.4)

we have Lagrange’s continued function

exp(z) = 1 +
z

1 +
−z

2 + . . . +
z

2n− 1 +
−z

2 + . . .

= b0 +
a1

b1 +
a2

b2 + . . . +
a2n−1

b2n−1 +
a2n

b2n + . . . , (3.5)

where

a1 = z, a2 = −z, · · · , a2n−1 = z, a2n = −z, n ≥ 1,

b0 = 1, b1 = 1, b2 = 2, · · · , b2n−1 = 2n− 1, b2n = 2, n ≥ 1,

and Euler’s contract expansion

exp(z) = 1 +
2z

2− z +
z2

6 + . . . +
z2

2(2n− 1) + . . .

= B0 +
A1

B1 +
A2

B2 +
· · ·

+
An

Bn + . . . , (3.6)

where

A1 = 2z, A2 = z2, · · · , An = z2, n ≥ 2,
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B0 = 1, B1 = 2− z, B2 = 6, · · · , Bn = 2(2n− 1), n ≥ 2.

We have

P0

Q0
=

p0

q0
= 1,

p1

q1
=

1 + z

1
,

p2

q2
=

P1

Q1
=

2 + z

2− z
,

p3

q3
=

6 + 4z + z2

6− 2z

p4

q4
=

P2

Q2
=

12 + 6z + z2

12− 6z + z2
+ · · · (3.7)

In general p2n−1(z) is a polynomial of degree n, q2n−1 is a polynomial of degree n− 1,
so p2n−1/q2n−1 is not explike. While p2n = Pn(x), q2n = Qn(z) are both polynomials
of degree n and from the recursions

P0 = 1, P = 2 + z, Pn = z2Pn−2 + 2(2n− 1)Pn−1,

Q0 = 1, Q = 2− z, Qn = z2Qn−2 + 2(2n− 1)Qn−1. (3.8)

It’s easy to see that for n = 0, 1, · · ·
Qn(z) = Pn(−z), Pn(0) > 0.

So the rational function
φn(z) =

Pn(z)
Qn(z)

=
Pn(z)

Pn(−z)

is explike and
φn(z)− exp(z) = O(|z|2n+1),

where

P0 = 1, P1 = 2 + z, Pn(z) = z2Pn−2(z) + 2(2n− 1)Pn−1(z), n ≥ 2. (3.9)

This is just the diagonal Padé approximation.
3. For the logarithmic function

log(w) =
∞∑

k=1

(w − 1)k

kwk
, (3.10)

we have the Lagrange’s continued fraction

log(w) =
w − 1

1 +
w − 1

2 +
w − 1

3 +
2(w − 1)

2 + . . . +
(n− 1)(w − 1)

2n− 1 +
n(w − 1)

2 + . . .

=
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 + . . . +
a2n−1

b2n−1 +
a2n

b2n + . . . , (3.11)

where

a1 = w − 1, a2 = w − 1, a3 = w − 1, a4 = 2(w − 1), · · · ,
b0 = 0, b1 = 1, b2 = 2, b3 = 3, b4 = 2, · · · ,

and

a2n−1 = (n− 1)(w − 1), a2n = n(w − 1), n ≥ 2,
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b2n−1 = 2n− 1, b2n = 2, n ≥ 2,

and the Euler’s contracted expansion

log(w) =
2(w − 1)
w + 1 −

2(w − 1)
6(w + 1) −

(2.2(w − 1))2

2.5(w + 1) − . . . −
(2(n− 1)(w − 1))2

2(2n− 1)(w + 1) − . . .

=
A1

B1 +
A2

B2 +
A3

B3 + . . . +
An

Bn + . . . , (3.12)

where

A1 = 2(w − 1), A2 = −2(w − 1), · · · , An = −(2(n− 1)(w − 1))2, n ≥ 3,

B0 = 0, B1 = w + 1, B2 = 6(w + 1), · · · , Bn = 2(2n− 1)(w + 1), n ≥ 2.

The followings can be get by recursion

P0

Q0
=

p0

q0
= 0,

p1

q1
= w − 1,

p2

q2
=

P1

Q1
=

2(w − 1)
w + 1

,

p3

q3
=

w2 + 4w − 5
4w + 2

,
p4

q4
=

P2

Q2
=

3(w2 − 1)
w2 + 4w + 1

, · · · . (3.13)

In general

p2n−1(w)
q2n−1(w)

− log(w) = O(|w − 1|2n),
p2n(w)
q2n(w)

− log(w) = O(|w − 1|2n+1).

The rational function p2n−1(w)
q2n−1(w) approximates log(w) only by odd order 2n − 1, it does

not reach the even order 2n, and is not loglike. However

Rn = ψn(w) =
p2n(w)
q2n(w)

=
Pn(w)
Qn(w)

is a loglike function. In fact, by recursion, it’s easy to see that

Pn(w) = −wnPn

( 1
w

)
, Qn(w) = wnQn

( 1
w

)
, (3.14)

and ∀n, Qn(1) 6= 0. We also have

P0 = 0, P1(w) = 2(w − 1), P2(w) = 3(w2 − 1),
Q0 = 1, Q1(w) = w + 1, Q2(w) = w2 + 4w + 1,

and for n ≥ 3,

Pn(w) = −(2(n− 1)(w − 1))2Pn−2(w) + 2(2n− 1)(w − 1)Pn−2(w),
Qn(w) = −((2n− 1)(w − 1))2Qn−2(w) + 2(2n− 1)(w − 1)Qn−2(w).

(3.15)

So we see R1(λ) is just the Euler midpoint rule and R2(λ) = 3(λ2−1)
λ2+4λ+1

is just the Simpson
scheme.
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Conclusion: The odd truncation of the continued fraction of the Lagrange’s ap-
proximation to exp(x) and log(x) is not explike nor loglike, while the even truncation
is explike and loglike. The truncation of the continued fraction got from Euler’s con-
tracted expansion is explike and loglike.

4. Another famous rational approximation to a given function is the Obreschkoff
formula[8],

Rm,n(x) :
n∑

k=0

ck
n

ck
m+nk!

(x0 − x)kf (k)(x)−
m∑

k=0

ck
m

ck
m+nk!

(x− x0)kf (k)(x0)

=
1

(m + n)!

∫ x

x0

(x− t)m(x0 − t)nf (m+n+1)(t) dt. (3.16)

1◦. Take f(x) = ex, x0 = 0, we obtain Padé approximation exp(x) .= Rm,n(x). If
m = n, we obtain Padé diagonal approximation Rm,m(x).

2◦. Take f(x) = log(x), x0 = 1, we obtain log(x) .= Rm,n(x). If m = n, we obtain
loglike function Rm(x),

Rm(λ) =
1

λm

m∑

k=1

ck
m

ck
2mk

(λ− 1)k(λm−k + (−1)k−1λm),

i.e.,

Rm(λ) + Rm

( 1
λ

)
= 0.

We have

Rm(λ)− log(λ) = O(|λ|2n+1),

R1 =
λ2 − 1

2λ
,

R2(λ) =
1

12λ2
(−λ4 + 8λ3 − 8λ + 1),

R3(λ) =
1

60λ3
(λ6 − 9λ5 + 45λ4 − 45λ2 + 9λ− 1),

· · · · · ·

where R1(λ) is just the leap-frog scheme.

4. Nonexistence of SLMM for Nonlinear Hamiltonian Systems

For nonlinear Hamiltonian systems, there exists no symplectic LMM. When equa-
tion (1.1) is nonlinear, how to define a symplectic LMM? The answer is to find the
step-transition operator g : Rn −→ Rn, let

z = g0(z),
z1 = g(z),
z2 = g(g(z)) = g ◦ g(z) = g2(z), (4.1)
· · · · · ·
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zn = g(g(· · · (g(z)) · · ·) = g ◦ g ◦ · · · ◦ g ◦ z) = gn(z),

we get from (1.2)
k∑

i=0

αig
i(z) = τ

n∑

i=0

βif ◦ gi(z). (4.2)

It’s easy to prove that if LMM (4.2) is consistent with equation (1.1), then for smooth
f and sufficiently small step-size τ , the operator g defined by (4.1) exists and it can be
represented as a power series in τand is near identity. Consider the case that equation
(1.1) is an Hamiltonian system, i.e., a(z) = J∇H(z), we have the following definition.

Definition 4.4. LMM is symplectic if the trsnsition operator g defined by (4.1) is
symplectic for all H(z) and all step-size τ , i.e.,

g∗(z)′Jg∗(z) = J. (4.3)

This definition is a completely different criterion that can include the symplectic
condition for one-step methods in the usual sense. But Tang in [5] has proven that non
linear multistep method can satisfy such a strict criterion. Numerical experiments due
to Li in [6] shows the explicit 3-level centered method(Leap-frog method) is symplectic
for linear Hamiltonian systems H = 1

2(p2 + 4q2)(See Fig 1 of [6]) but is non-symplectic
for nonlinear Hamiltonian system H = 1

2(p2 + q2) + 2
3q4(See Fig 2(a,b) of [6]).
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