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Abstract

In this paper, the initial value problem of nonlinear reaction-diffusion equation
is considered. The Dufort-Frankel finite difference approximation for the long time
scheme is given for the d-dimensional reaction-diffusion equation with the two
different cases. The global solution and global attractor are discussed for the
Dufort-Frankel scheme. Moreover properties of the solution are studied. The error
estimate is presented in a finite time region and in the global time region for
some special cases. Finally the numerical results for the equation are investigated
for Allen-Cahn equation and some other equations and the homoclinic orbit is
simulated numerically.
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1. Introduction

In this paper we consider the following initial-value problem of nonlinear reaction-
diffusion equation: 




ut = γ∆u− f(u); (x, t) ∈ Ω×R+

u = 0, x ∈ ∂Ω

u(x, 0) = u0(x), x ∈ Ω

(1.1a)

(1.1b)

(1.1c)

Here Ω is a bounded domain in Rd (d ≤ 3) with a Lipschitz boundary ∂Ω and γ is a
positive constant.

Let the set {|u?| : f(u?) = 0} be not empty and ū = max{|u?| : f(u?) = 0}.
∗ Received April 30, 1996.
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Assumption on the nonlinear function f(u) is either (i). rf(r) > 0 for |r| ≥ ū; or
(ii). f(−ū) = f(ū).

Remark 1.1. Indeed, the assumption (ii) can be reduced as: there exist at least
two different real roots for the nonlinear term f(u) because we only need introduce a
transform v = u − (umax + umin)/2. Under this transform, the case (ii) holds for the
new equation in which v(x, t) is a new unknown function. Where umax and umin are
the maximum and minimum roots of the nonlinear function f(u).

The assumption (i) can be found in Hale[1]. Temam[2] who studied the global
attractor for the equation (1.1) with the nonlinear term

f(s) =
2p−1∑

j=0

bjs
j , b2p−1 > 0.

In particular, the equation (1.1) which satisfies the condition (i) contains the Allen-
Cahn equation[3] provided that f(s) = βs(s2 − 1). It is clear that the Allen-Cahn
equation satisfies both assumptions (i) and (ii).

We also shall discuss the attractor for the case (ii) which the nonlinear function f

satisfies (ii) but (i). For example, f(s) = β(s2− 1), or f(s) = β(|s| − 1). The nonlinear
function f(·) which satisfy the assumptions(i) and (ii) are sketched on the Figures 1
and 2 respectively.

Fig.1 Case (i). rf(r) > 0 for |r| ≥ ū Fig.2 Case (ii). f(ū) = f(−ū)

Throughout this paper, similar to discuss in Lu Bainian and Wan Guihua[4], we shall
discuss the absorbing set and attractor of the discrete Dufort-Frankel finite difference
equation of the equation (1.1) under condition (i) for any initial data and under (ii) for
small initial data respectively. Moreover in section 2, we shall give some notations and
some lemmas. In section 3, we shall study the global attractor for the finite difference
equation and some properties of the difference equation. In section 4, we give the
convergent theorem. Finally in section 5, we shall give several numerical examples to
check our theoretical results which discussed in section 3. Furthermore, we study some
properties for equation (1.1) with nonlinear term in the case (ii).

Elliott and Stuart[5] studied the Euler scheme for the equation (1.1). We know if we
simulate the global solution or global attractor numerically to discuss the properties of
the solution of (1.1), it will take a lots of CPU time on computer. So it is necessary to
find a numerical scheme with large discrete step-lengthen. Indeed, Dufort-Frankel finite
difference scheme is unconditionally stable for linear reaction-diffusion equation, but
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the Euler scheme is conditionally stable[6]. Therefore, in this paper we shall use Dufort-
Frankel finite difference scheme to discrete the nonlinear reaction-diffusion equation and
to discuss its properties. In order to discrete the nonlinear function f(u), we apply the
mean value around the center lattice but not including the center lattice. Taking the
2-d as an example, the nonlinear term is taken by f((ui+1,j +ui−1,j +ui,j+1+ui,j−1)/4).
It is very interesting if we take the nonlinear term as f(ui,j) the numerical experiments
show that it is not stable. Moreover, we have not got the mathematical analysis in
this case. We know in linear case the Dufort-Frankel scheme is unconditionally stable,
unfortunately, in view of mathematical analysis we have not got unconditional stability
for the Dufort-Frankel scheme. But in view of numerical experiments, we shall see that
the time-step length of the Dufort-Frankel scheme is much larger than the one of Euler
scheme.

2. Dufort-Frankel Finite Difference Approximation and Some
Lemmas

In this section we consider the Dufort-Frankel discretisation of (1.1), for simplicity
sake, we only discuss in the case two-dimension but in order to get general d-dimensional
results, in many places we still write d instead of 2 in supplied conditions and some
notations.

Let Ω = [0, l] × [0, l]. The solution domain in (x, y) − t space is covered by a
rectangular grid with grid spacings of h and τ in the x, y and t directions respectively.
Where h = l/J , J is a positive integer.

We introduce the following notations: tn := nτ , xi = ih, yj = jh, un
i,j = u(xi, yj , tn)

and un = (un
i,j)1≤i,j≤J−1. un

t̂
=

un+1 − un−1

2τ
, un

t =
un+1 − un

τ
and un

t̄ =
un − un−1

τ
.

un
i,j x =

un
i+1,j − un

i,j

h
, un

i,j x̄ =
un

i,j − un
i−1,j

h
and un

i,j xx̄ = (un
i,j x)x̄.

We may similarly define: un
y , un

ȳ and un
yȳ. The notations un

x = (un
i,j x)1≤i,j≤J−1

and un
y = (un

i,j y)1≤i,j≤J−1 and so on. The discrete Laplace operator ∆h is defined by
∆hun = un

xx̄ + un
yȳ.

∇hun is the discrete gradient which is defined by (un
x, un

y ).
We consider the Dufort-Frankel finite difference approximation:





un
t̂

= γ∆hun − dγ
(τ

h

)2
∆τu

n − f(ûn);

u0
t = γ∆hu0 − f(u0);

u0 = u0.

(2.1a)

(2.1b)

(2.2c)

Where ûn
i,j = 2−d

∑

|k−i|+|m−j|=1

un
k,m and f(ûn) = (f((ûn

i,j)))1≤i,j≤J−1.

We introduce the discrete inner product (·, ·) as following

(un, vn) = hd
J−1∑

j=1

un
i,j vn

i,j
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so the norm is ‖un‖2 = (un, un).
Lemma 2.1. For any discrete function un, there is

(i). (un
t , un+1) =

1
2
‖un‖2

t +
τ

2
‖un

t ‖2. (ii). (un
t , un) =

1
2
‖un‖2

t −
τ

2
‖un

t ‖2.
Lemma 2.2. For any discrete function un, there is

(un
t̂
, un+1) =

1
2
‖un‖2

t̂
+

τ

4
(‖un

t ‖2 + ‖un−1
t ‖2) +

τ

2
(un−1

t , un
t )

Proof. By the Lemma 2.1 (i), implies

(un
t̂
, un+1) =

1
2
[(un

t , un+1) + (un−1
t , un+1)]

=
1
4
[‖un‖2

t + τ‖un
t ‖2] +

1
2
[(un−1

t , un) + τ(un−1
t , un

t )]

=
1
4
[(‖un‖2

t + ‖un−1‖2
t ) + τ(‖un

t ‖2 + ‖un−1
t ‖2)] +

τ

2
(un−1

t , un
t )

=
1
2
‖un‖2

t̂
+

τ

4
(‖un

t ‖2 + ‖un−1
t ‖2) +

τ

2
(un−1

t , un
t ).

Lemma 2.3. For any discrete function un, there is

−(∆hun, un+1) =
1
2
(‖∇hun+1‖2 + ‖∇hun‖2)− τ2

2
‖∇hun

t ‖2.

Proof. By the Lemma 2.1(ii), implies

−(∆hun, un+1) = −(∆hun, un)− τ(∆hun, un
t ) = ‖∇hun‖2 + τ(∇hun,∇hun

t )

= ‖∇hun‖2 +
τ

2
‖∇hun‖2

t −
τ2

2
‖∇hun

t ‖2

=
1
2
(‖∇hun+1‖2 + ‖∇hun‖2)− τ2

2
‖∇hun

t ‖2.

Lemma 2.4. For any discrete function un, there is

(∆τu
n, un+1) = −(un−1

t , un
t ) + (un

t , un+1)t̄.

Proof. It is clear that

(∆τu
n, un+1) =

1
τ
[(un

t , un+1)− (un−1
t , un+1)]

=
1
τ
[(un

t , un+1)− (un−1
t , un+1 − un)− (un−1

t , un)]

= −(un−1
t , un

t ) + (un
t , un+1)t̄.

Lemma 2.5. For any discrete function un, there is

(un, un+1) =
1
2
(‖un+1‖2 + ‖un‖2)− τ2

2
‖un

t ‖2.
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Proof. By the Lemma 2.1, implies

(un, un+1) = ‖un‖2 + τ(un, un
t ) = ‖un‖2 + τ

[1
2
‖un‖2

t −
τ

2
‖un

t ‖2
]
.

Lemma 2.6. If the discrete function un satisfies un|∂Ωh
= 0, then

‖∇hun‖2 ≥ 2d

l2
‖un‖2.

Proof. When d = 1, Zhou[7] gave proof of the Lemma. In the following, we discuss
for d−dimensional case:

un
i,j =h

i−1∑

k=0

un
k,j x, |un

i,j |2 ≤ h2i
i−1∑

k=0

|un
k,j x|2

‖un‖2 =hd
J−1∑

i=1

J−1∑

j=1

|un
i,j |2 ≤ h2+d

J−1∑

i=1

J−1∑

j=1

i
J−1∑

k=0

|un
k,j x|2

=h2
J−1∑

i=1

i
(
hd

J−1∑

j=1

J−1∑

k=0

|uk,j x|2
)
≤ h2 J2

2
‖un

x‖2 =
l2

2
‖un

x‖2.

Similar to prove that ‖un‖2 ≤ l2

2
‖un

y‖2.
So by two inequalities above, we have

d‖un‖2 ≤ l2

2
(‖un

x‖2 + ‖un
y‖2) =

l2

2
‖∇hun‖2.

Lemma 2.7. Assume that {fn}n≥0 is a non-negative series, α and β are positive
constants. If {fn} satisfies

fn+1 ≤ αfn + βfn−1 (2.2)

Then
fn+1 ≤ 1√

α2 + 4β
[(λn+1

1 − λn+1
2 )f1 + β(λn

1 − λn
2 )f0]

Where λ1 =
α +

√
α2 + 4β

2
and λ2 =

α−√
α2 + 4β

2
.

Proof. Let the matrix A and the 2-dimensional vector x be defined by

A =
[
α β

1 0

]
, xn =

[
fn+1

fn

]
.

It is easy to check that λ1 and λ2 are two eigenvalues of the matrix A, and (λ1, 1)T

and (λ2, 1)T are the eigenvectors respectively associated to λ1 and λ2. Where (·, ·)T

denotes transformation of the vector.

Set a1 =
f1 − λ2f

0

√
α2 + 4β

and a2 =
λ1f

0 − f1

√
α2 + 4β

. Then x0 = a1(λ1, 1)T + a2(λ2, 1)T .

Because the matrix A and the vector xn are positive, by (2.2) we have

xn ≤ Axn−1 (2.3)

then (2.3) implies xn ≤ Anx0 = a1λ
n
1 (λ1, 1)T + a2λ

n
2 (λ2, 1)T . So fn+1 ≤ a1λ

n+1
1 +

a2λ
n+1
2 . This completes the proof.



280 B.N. LU, G.H. WAN AND B.L. GUO

3. Existence of Absorbing Sets and Attractors

In the first part of this section the assumption (i) to the nonlinear term f is made.
In the last part of this section we shall give the remarks to illustrate the same results
hold to the assumption (ii) provided that the initial data is small.

Lemma 3.1. If the mesh parameters and the first level data satisfy

τ

h2
< (2dγ)−1, and Kh2 < 2dγ, (3.1)

‖u1‖∞ ≤ max{ū, ‖u0‖∞}

then sup
0≤n<∞

‖un‖∞ ≤ max{ū, ‖u0‖∞}. Where K = max
|s|≤max{ū,‖u0‖∞}

|f ′(s)|.
Proof. Say that a = max{ū, ‖u0‖∞}. We write (2.1a) componentwise as

un+1
i,j − a = un−1

i,j − a + 2τγ∆h(un
i,j − a)− 2dτγ

(τ

h

)2
∆τ (un

i,j − a)− 2τf(ûn
i,j) (3.2)

Rewrite (3.2) as the following

(
1 +

2dτγ

h2

)
(un+1

i,j − a) =
(
1− 2dτγ

h2

)
(un−1

i,j − a)

+
2τγ

h2

∑

|k−i|+|m−j|=1

(un
k,m − a)− 2τ(f(ûn

i,j)− f(a))− 2τf(a).

By the Talyor’s formula, it implies

f(ûn
i,j)− f(a) = f ′(ξn

i,j)2
−d

∑

|k−i|+|m−j|=1

(un
k,m − a).

Assume that sup
0≤k≤n

‖uk‖∞ ≤ a, by the definition of ûn, then |ξn
i,j | ≤ a. So

(
1 +

2dτγ

h2

)
(un+1

i,j − a) ≤
(
1− 2dτγ

h2

)
(un−1

i,j − a)

+
(2τγ

h2
− 21−dτK

) ∑

|k−i|+|m−j|=1

(un
k,m − a)− 2τf(a)

Since a ≥ ū, so f(a) ≥ 0, and by the assumption (3.1), imply, un+1
i,j ≤ a. Similarly the

proof prove above, write (2.1a) componentwise as

(
1 +

2dτγ

h2

)
(un+1

i,j + a) =
(
1− 2dτγ

h2

)
(un−1

i,j + a)

+
2τγ

h2

∑

|k−i|+|m−j|=1

(un
k,m + a)− 2τ(f(ûn

i,j)− f(−a))− 2τf(−a).

By the Talyor’s formula, it implies

f(ûn
i,j)− f(−a) = f ′(ξ̄n

i,j)2
−d

∑

|k−i|+|m−j|=1

(un
k,m + a).
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Assume that sup
0≤k≤n

‖uk‖∞ ≤ a, by the definition of ûn, then |ξ̄n
i,j | ≤ a. So

(
1 +

2dτγ

h2

)
(un+1

i,j + a) ≤
(
1− 2dτγ

h2

)
(un−1

i,j + a)

+
(2τγ

h2
− 21−dτK

) ∑

|k−i|+|m−j|=1

(un
k,m + a)− 2τf(−a)

Since −a ≤ −ū, so f(−a) ≤ 0, and by the assumption (3.1), imply, un+1
i,j ≥ −a.

Therefore, the lemma holds.
Lemma 3.2. If the assumption (3.1) holds, then for any ε > 0 there exists an

N > 0 when n > N ,
sup

1≤n<∞
‖un‖∞ ≤ ū + ε

Proof. Similar to prove in the Lemma 3.1,

(
1 +

2dτγ

h2

)
(un+1

i,j − ū)+ ≤
(
1− 2dτγ

h2

)
(un−1

i,j − ū)+

+
(2τγ

h2
− 21−dτK

) ∑

|k−i|+|m−j|=1

(un
k,m − ū)+ − 2τf(ū).

Where the positive part of un
i,j − ū is defined by

(un
i,j − ū)+ =

{
0; If un

i,j − ū < 0;

un
i,j − ū; If un

i,j − ū ≥ 0

It is clear that
(
1 +

2dτγ

h2

)
‖(un+1 − ū)+‖∞ ≤

(
1− 2dτγ

h2

)
‖(un−1

i,j − ū)+‖∞

+ 2d
(2τγ

h2
− 21−dτK

)
‖(un − ū)+‖∞

Set δ =
2dτγ

h2
, α =

1− δ

1 + δ
, β =

2(δ − 21−ddτK)
1 + δ

and fn = ‖(un − ū)+‖∞, then we

have that (2.2) holds. By the lemma 2.7, implies

‖(un+1 − ū)+‖∞ ≤ 1√
α2 + 4β

[(λn+1
1 − λn+1

2 )‖(u1 − ū)+‖∞ + β(λn
1 − λn

2 )‖(u0 − ū)+‖∞.

By the assumption (3.1), it is not difficult to get max{|λ1|, |λ2|} < 1, implies

lim
n→∞ sup ‖(un − ū)+‖∞ = 0. (3.3)

Similarly we define the notation (un
i,j + ū)− as the negative part by

(un
i,j + ū)− =

{
0; If un

i,j + ū ≥ 0;

−(un
i,j + ū); If un

i,j + ū < 0
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and similar to the proof above we have

(
1 +

2dτγ

h2

)
‖(un+1 + ū)−‖∞ ≤

(
1− 2dτγ

h2

)
‖(un−1

i,j − ū)−‖∞

+ 2d
(2τγ

h2
− 21−dτK

)
‖(un − ū)−‖∞.

Thus,
lim

n→∞ sup ‖(un + ū)−‖∞ = 0. (3.4)

By (3.3) and (3.4) the lemma is proved.
Remark 3.1. By the Lemmas 3.1 and 3.2, we know if the initial data satisfies

‖u0‖∞ ≤ ū, then ‖un‖∞ ≤ ū for all integer n > 0; If the initial data does not satisfy
‖u0‖∞ ≤ ū, then lim

n→∞ ‖u
n‖∞ ≤ ū. So when we compute the global attractor, we only

take the initial data satisfies ‖u0‖∞ ≤ ū.
Lemma 3.3. Suppose that the mesh parameters satisfy (3.1) and h2 ≤ 2dγ, then

sup
1≤n<∞

‖un+1‖ ≤ [C/D + (F 0 − C/D)(1 + Dτ)−(n+1)]/
(h2

2
+ dγτ

)
.

Where C = 2h2a2ld(max
|s|≤a

|f(s)− s|+ 2) and D = h2/ max
(h2

2
+ dγτ , 2dτγ

)
.

Proof. We rewrite (2.1a) as the following

un
t̂
− γ∆hun + dγ

(τ

h

)2
∆τu

n + ûn = g(ûn). (3.5)

where g(s) = −f(s)+s. It is clear that ûn = h22−d∆hun +un so the (3.5) is equivalent
to

un
t̂
− (γ − 2−dh2)∆hun + dγ

(τ

h

)2
∆τu

n + un = g(ûn). (3.6)

Taking the discrete inner product between (3.6) and un+1, by the lemmas 2.2–2.6,
follows

1
2
‖un‖2

t̂
+

τ

4
(‖un

t ‖2 + ‖un−1
t ‖2) +

τ

2
(un−1

t , un
t )

+
γ − 2−dh2

2
(‖∇hun+1‖2 + ‖∇hun‖2)− (γ − 2−dh2)τ2

2
‖∇hun

t ‖2

+−dγ
(τ

h

)2
(un−1

t , un
t ) + dγ

(τ

h

)2
(un

t , un+1)t̄

+
1
2
(‖un+1‖2 + ‖un‖2)− τ2

2
‖un

t ‖2 = (g(ûn), un+1). (3.7)

By the assumption of the Lemma, implies

(
dγ

(τ

h

)2 − τ

2

)
(un−1

t , un
t ) ≤

[τ

4
− dγ

2

(τ

h

)2]
(‖un−1

t ‖2 + ‖un
t ‖2) (3.8)

τ2

4
(γ − 2−dh2)‖∇hun

t ‖2 ≤ 1
2
(γ − 2−dh2)(‖∇hun+1‖2 + ‖∇hun‖2) (3.9)
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τ2

4
(γ − 2−dh2)‖∇hun

t ‖2 ≤ τ2d

2h2
(γ − 2−dh2)‖un

t ‖2 (3.10)

substitution (3.8), (3.9) and (3.10) into (3.7), we get

1
2
‖un‖2

t̂
+ 2−(1+d)dτ2‖un

t ‖2 +
dγ

2

(τ

h

)2‖un−1
t ‖2 + dγ

(τ

h

)2
(un

t , un+1)t̄

+
1
2
(‖un+1‖2 + ‖un‖2) ≤ (g(ûn), un+1) +

τ2

2
‖un

t ||2. (3.11)

By the Lemma 3.1, we get

τ2

2
‖un

t ‖2 ≤ 1
2
‖un+1 − un‖2 ≤ ‖un+1‖2 + ‖un‖2 ≤ 2(Jh)d sup

j∈Z
‖uj‖∞ ≤ 2a2ld. (3.12)

Where a = max{ū, ‖u0‖∞}.
By the definition of ‖un‖2

t̂
, we have

1
2
‖un‖2

t̂
=

1
4
(‖un+1‖2 + ‖un‖2)t̄ (3.13)

Substitute lemma 2.1(i), (3.12) and (3.13) into (3.11), follows

[1
4
(‖un+1‖2 + ‖un‖2) +

dγ

2

(τ

h

)2
(‖un‖2

t + τ‖un
t ‖2)

]
t̄
+ 2−(1+d)dτ2‖un

t ‖2

+
dγ

2

(τ

h

)2‖un−1
t ‖2 +

1
2
(‖un+1‖2 + ‖un‖2) ≤ a2ld(M + 2)

(3.14)

where M = max
|s|≤a

|g(s)|.
Substitute ‖un‖2

t = (‖un+1‖2 − ‖un‖2)/τ into (3.14), multiple 2h2 and omit the
nonnegative term dγτ2‖un−1

t ‖2, implies

[(h2

2
+ dγτ

)
‖un+1‖2 +

(h2

2
− dγτ

)
‖un‖2 + τ3dγ‖un

t ‖2
]
t̄

+ 2−dh2dτ2‖un
t ‖2 + h2(‖un+1‖2 + ‖un‖2) ≤ 2h2a2ld(M + 2) (3.15)

For the sake of convenience, we introduce the following symbols

Fn =
(h2

2
+ dγτ

)
‖un+1‖2 +

(h2

2
− dγτ

)
‖un‖2 + τ3dγ‖un

t ‖2,

D = min
{ h2

h2/2− dγτ
,

h2

h2/2 + dγτ
,

2−dh2

τγ

}
.

Then (3.15) may be write: Fn
t ≤ C −DFn+1.

In fact D = h2/ max
(h2

2
+ dγτ , 2dτγ

)
. By the Lemma[4,8], we get Fn ≤ C/D +

(F 0 − C/D)(1 + Dτ)−(n+1). Therefore, by the definition of Fn, this completes the
lemma.
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Remark 3.2. We may check the proofs of the Lemmas 3.1-3.3, it is still hold for
the assumption (ii) when the initial data ‖u0‖∞ ≤ ū. Moreover, when the nonlinear
function f(s) satisfies (ii) but (i), if f(s) > 0 for |s| > ū, then the solution un of (2.1)
is up-bounded and satisfies

lim
n→∞ supun ≤ max{‖u0‖∞, ū}.

On the other hand if f(s) < 0 for |s| > ū, the un is blow-bounded and satisfies

lim
n→∞ inf un ≥ −max{‖u0‖∞, ū}.

Theorem 3.1. If the mesh parameters satisfy

τ

h2
< (2dγ)−1, and Kh2 < 2dγ min(1,K) (3.16)

then
(i). For any discrete function u0 ∈ RdJ , there exists a unique solution of (2.1) un

for all n > 0. The mapping u0 → un is continuous in L2 and L∞ for each n > 0
and hence the family of solution operators {Sn}n>0, defined by Snu0 = un, form a
continuous semigroup on L2 and L∞.

(ii). There exist constants {ρ̄i}2
i=1 independent of h, τ and J such that the balls

B1 = {u ∈ L∞ : ‖u‖∞ ≤ ρ̄1}, B2 = {u ∈ L2 : ‖u‖ ≤ ρ̄2}

are absorbing sets for the semigroup {Sn}n>0, that is, for each u0 ∈ L∞ there exists
{Ni}2

i=1 (depending on {u0, ρi}) such that Snu0 ∈ Bi, ∀n > Ni (i = 1, 2).
(iii). There exists a global attractor A ⊂ L∞(or L2) for the semigroup {Sn}n>0.

Furthermore A is connected and there exists a constant ρ independent of h, τ and J

such that max{‖u‖∞, ‖u‖} ≤ ρ, ∀u ∈ A.
Proof. It is clear that (2.1) is an explicit difference scheme, then follows the existence

and uniqueness. Because L∞ and L2 are finite dimensional vector space, by Lemmas
3.1 and ‖un‖ ≤ ld/2 we have (i) holds.

(ii). By the lemma 3.2, taking ρ1 = ū and ρ̄1 = ρ1 + ε, we have B1 is a absorbing
set.

By Lemma 3.3, we have

lim
n→∞ sup ‖un‖ ≤ 2C

D(h2 + 2τdγ)
. (3.17)

By (3.16), when d ≤ 2, we have D = 2h2/(h2 + 2τdγ); when d ≥ 3, we have
D = h2/2dτγ. By (3.17), implies,

lim
n→∞ sup ‖un‖ ≤





a2ld(max
|s|≤ū

|f(s)− s|+ 2); for d ≤ 2,

2d−1d−1a2ld(max
|s|≤ū

|f(s)− s|+ 2); for d ≥ 3.
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So we take

ρ2 =





a2ld(max
|s|≤ū

|f(s)− s|+ 2) for d ≤ 2

2d−1d−1a2ld(max
|s|≤ū

|f(s)− s|+ 2) for d ≥ 3

and ρ̄2 = ρ2 + ε, then B2 is a absorbing set.
(iii). It is clear {Sn}n>0 is a uniform compact semigroup in L∞ and L2, by the

results of Temma[2], we have this result holds.

4. Error Estimate of the Dufort-Frankel Scheme

In this section we shall give the convergent result:
Theorem 4.1. Assume that un and U(x, y, t) are the solutions of (2.1) and (1.1)

respectively and U ∈ C3(R+; H1
0 (Ω) ∩ H4(Ω)). Suppose that the mesh parameters

satisfy
τ

h2
< (2dγ)−1,

then for any integer M , there exists a constant C(T ) independent of h and τ

sup
0≤n≤M

‖un − U(tn)‖ ≤ C(h2 + τ)

where T ≥ Mτ .
Proof. Set en = U(tn) − un, here U(tn) = (U(xi, yj , tn))1≤i,j≤J−1. Substitute Un

into (2.1a), implies

Un
t̂

= γ∆hUn − dγ
(τ

h

)2
∆τU

n − f(Ûn) + rn. (4.1a)

Where rn is the truncation error, it is clear that rn = O(h2+(τ/h)2). By the assumption
of the theorem, rn = O(h2 + τ).

(4.1a)−(2.1a), yields

en
t̂
− γ∆hen + dγ

(τ

h

)2
∆τ ê

n = f ′(η̂n)en +O(rn). (4.2)

Taking the discrete inner product between (4.2) and en+1, by the lemmas 2.2–2.6,
follows

1
2
‖en‖2

t̂
+

τ

4
(‖en

t ‖2 + ‖en−1
t ‖2) +

τ

2
(en−1

t , en
t ) +

γ

2
(‖∇hen+1‖2 + ‖∇hen‖2)

− γτ2

2
‖∇hen

t ‖2 − dγ
(τ

h

)2
(en−1

t , en
t ) + dγ

(τ

h

)2
(en

t , en+1)t̄

=(f ′(η̂n)en + rn, en+1). (4.3)

By the assumption of the Theorem, implies

(
dγ

(τ

h

)2 − τ

2

)
(en−1

t , en
t ) ≤

[τ

4
− dγ

2

(τ

h

)2]
(‖en−1

t ‖2 + ‖en
t ‖2) (4.4)
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γτ2

2
‖∇hen

t ‖2 ≤ γτ2d

h2
‖en

t ‖2, (4.5)

substitution (4.4)–(4.5) into (4.3), we get

1
2
‖en‖2

t̂
− dγτ

2

(τ

h

)2‖en
t ‖2

t̄ +
γ

2
(‖∇hen+1‖2 + ‖∇hen‖2) + dγ

(τ

h

)2
(en

t , en+1)t̄

≤(f ′(η̂n)ên + rn, en+1). (4.6)

Substituting lemma 2.1(i) into (4.6), follows

1
2
‖en‖2

t̂
+

γ

2
(‖∇hen+1‖2 + ‖∇hen‖2) +

dγ

2

(τ

h

)2
(‖en‖2

t )t̄ ≤ (f ′(η̂n)ên + rn, en+1). (4.7)

By the following identifies

1
2
‖en‖2

t̂
=

1
4
(‖en+1‖2 + ‖en‖2)t̄ (4.8)

and
dγ

2

(τ

h

)2
(‖en‖2

t )t̄ =
dγ

2τ

(τ

h

)2
(‖en+1‖2 − ‖en‖2)t̄. (4.9)

Substituting (4.8) and (4.9) and ε inequality into (4.7) yields
[(1

4
+

dγτ

2h2

)
‖en+1‖2 +

(1
4
− dγτ

2h2

)
‖en‖2

]
t̄
+

γ

2
(‖∇hen+1‖2 + ‖∇hen‖2)

≤
(L

2
+ ε

)
(‖en‖2 + ‖en+1‖2) + C(ε)(h4 + τ2) (4.10)

where L = max
|s|≤a

|f ′(s)|.
By the Lemma 2.6, (4.10) can be rewritten

[(1
4

+
dγτ

2h2

)
‖en+1‖2 +

(1
4
− dγτ

2h2

)
‖en‖2

]
t̄
+

γd

l2
(‖en+1‖2 + ‖en‖2)

≤
(L

2
+ ε

)
(‖en‖2 + ‖en+1‖2) + C(ε)(h4 + τ2). (4.11)

For the sake of convenience, we introduce the following symbol

Fn =
(1
4

+
dγτ

2h2

)
‖en+1‖2 +

(1
4
− dγτ

2h2

)
‖en‖2.

By Gronwall’s inequality, implies

Fn ≤ C(h2 + τ + ‖e1‖) (4.12)

Similarly, we can prove
‖e1‖ ≤ C(h2 + τ) (4.13)

Therefore by (4.12) and (4.13), the Theorem holds.
Remark 4.1. We prove the error estimate Theorem 4.1. Unfortunately, the error

is only estimated in a finite time region [0, T ]. In some special cases, such as for any

δ > 0 with
γd

l2
− L

2
−ε > δ, then error estimate theorem 4.1 holds in global time region.

For the generalized case we have not got the estimate theorem.
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5. Numerical Results

In this section we shall present some numerical results which illustrate the material
in section 3.

The energy function, i.e. Lyapunov function[1], is defined by

I(un) =
γ

2
‖∇hun‖2 + (F (un), 1)

where F (un) is defined by
∫

f(s)ds.
Experiment 1. In order to simulate Allen-Cahn equation, we take f(s) = βs(s2−

1). Here set β = 1, γ = 0.0025, τ = 0.473, l = 1 and J = 100 with the initial data

ui(0) =

{
sin(7πih) + 0.002 ∗ random for 1 ≤ i ≤ J − 1

0.0 for i = 0, J
(5.1)

Fig.3a u(x, tn) for tn = 0, 16, 30 Fig.3b Evolution of u(x, t) Fig.3c Energy I(un)

The Figure 3 shows the numerical results that are simulated by Dufort-Frankel
scheme and Euler explicit scheme[5] respectively. For the Euler scheme, when we take
the time step-length τ = 0.007, i.e

τ

h2
= 70, the solution is overflow for 8’th level; but

for Dufort-Frankel scheme, when τ = 1.473, i.e.
τ

h2
= 1473, the solution is still stable.

Therefore we take that τ = 0.0004736 to calculate the Allen-Cahn equation with the
initial data (5.1) by Euler and τ = 0.473 by Dufort-Frankel schemes respectively. In
Figure 3a, we draw the pictures of t = 0, t = 16 and t = 30 by the Dufort-frankel
scheme. In the Figure 3b we draw the picture by the Dufort-frankel scheme with the
evolution as the time increasing. In the Figure 3c we draw the picture of energy I(un)
from t = 0 to t = 100 by the Dufort-frankel scheme. It is clear that the energy function
is decreasing from t = 0 to t = 16. The energy is a constant between t = 1.7 to
t = 16. Therefore, the solution is an state steady solution[4,5]. Moreover the energy
is a constant again between t = 24 to t = 100, so the solution is another state steady
solution (see figure 3b). By the figures 3a–3c, we know that the numerical solution is
a homoclinic orbit.

From the pictures 3a and 3b, we know that the phase change is very slowly, this
phenomena has been analyzed in Carr[9] for the small γ.

For the Euler scheme, the time length is much smaller than one of Dufort-Frankel
scheme provided the same space length. the numerical is almost same. So the Dufort-
frankel scheme is a large time step length algorithm.
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Experiment 2. In this example we take that the parameters as same as the
experiment 1 but the initial data as

ui(0) =

{
sin(7πih)− 0.002 ∗ random for 1 ≤ i ≤ J − 1

0.0 for i = 0, J

the numerical results can be seen in figure 4. We may compare our results with Eillott
and Stuart[5].

Experiment 3. In this example we take that f(s) = 0.1(s2 − 1), initial data and
the parameters as same as the experiment 1 but the τ = 0.002. The numerical results
can be seen in figure 5 at the time t = 3000.

Fig.4 Evolution of u(x, t) Fig.5 Solution at t = 2000
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