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Abstract

In this paper some properties of refinable functions and some relationships
between the mask symbol and the refinable functions are studied. Especially, it
is illustrated by examples that the linear spaces formed by the translates over the
lattice points of refinable functions may contain polynomial spaces of degree higher
than the smooth order of the corresponding refinable functions.

Key words: Mask, Symbol, Refinable Function.

1. Introduction

It is well-known that refinable functions play an important role in the studying of
wavelet. Usually, one hopes that refinable functions have some particular properties
such as smoothness and integrability. In this note, the zeros of an integrable refin-
able function are obtained. In particalar by examples one shows that the linear space
associating the translates over the lattice points of a refinable function could include
polynomial space of degree higher than its smooth order.

Let s be a positive integer and let R® (resp. C*) be the s-dimensional real (complex)
space equipped with the norm |- | given by

s 1
|| = (Z |xj|2)2 for z=(x1,---,z,) €ER® (resp. C°).
j=1

By a mask a = {a,; a € Z°} we mean a mapping of finitely supported from Z* to C.
For 1 < p < o0, we use L, = L, (R®) to denote the Banach space of all functions f on

R? such that
1
sl = ([ @P)? < oo,
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where f could be complex valued.
A function on R? is called refinable if it satisfies

o(z) = Z anp(2r — ), xR’ (1)
a€Zs

for a mask a = {aq, a € Z°}, and

p(z) =27° Y aqz" (2)

a€Zs

is called the symbol of the mask a.
¢ € LP is called Ly-stable if there exists a positive constant ¢ of independent with
a and ¢ such that

)
P

lally < | 3 aap(@ - )

a€Zs

where by ¢ € £LP we mean

&= Y lpla - o)l € L,(0,1])
a€Z?

(see [7]) and by I, := [,(Z*) we denote the Banach space of all elements a defined on

Z° for which
lall, = (Y laal?)

a€Z*

3 -

< 00

equipped with the norm || - ||.

Note 1: Let ¢ be a continuous function with compact support. Then the (see
[2] Theorem 4.1 and Theorem 4.2) the L,—stability of ¢ for some 1 < p < oo implies
that of ¢ for all 1 < p < oco. Furthermore, it is easy to show that L,-stability of the
function ¢ is equivalent to the I, linear independence, where by {¢(z — a),a € Z°}
being [, linearly dependent we mean that there exists 0 # A € [, such that

D dap(z —a) =0, z € R

a€Zs '
In fact, if {¢(z — a),a € Z°} are Il linearly independent, then ¢ is Loo-stable (see
[2] page 24). In other way round, it is easy to see that {p(x — a),a € Z*} being I
linearly dependent implies >, cz« Aaw(z — @) = 0 for some 0 # X € lo. Therefore, ¢
could not be L,-stable.

Finally, in this note we will use f(u) = / f(x)e™™%dx (u € C*%) to denote the
Rs

Fourier-Laplace transform of f, where for u = (uy,---,us) € C* and @ = (ry,---,x5) €
R®, u-2 = }77_; ujr;. Restricted to R®, f become the Fourier transform of f.

2. Main Results

Our first result will be about the Fourier-Laplace transform of a refinable func-
tion. From [2], we know that if ¢ € L; is refinable, then ¢ is an entire function and
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Yoaczs Ga = 2° if $(0) # 0, where a = {aq,a € Z°} is the mask of ¢, and that for a
mask a, there exists at most one function ¢ € L;, $(0) = 1, such that (1) holds. Unless
otherwise stated we assume that $(0) = 1 if ¢ € Ly. Using these results, we could get
the following

Theorem 1. If ¢ is refinable and for some p,1 < p < 2, it holds

ﬁ (e 2J Ly, (3)

then p € Ly and ¢ = H?‘;lp(e_%i).
Before proving Theorem 1, we introduce a result from [8] (Theorem 3.2.5).
Lemma 1. If entire function g(u) = g(z+1iy) of exponential type p = (p1,-- -, ps) >
0, i.e., for every e >0 there exists a positive number A, such that |g(z)| < Ae e2oi=1Citelzl

holds for all z = (z1,-- -, z;) € C®, belongs to the class L,(R®) where 1 < p < oo, then

lim g(z) =0, ze€R°

|z] 200

The proof of Theorem 1: Firstly, it is easy to prove that

ple 2J (4)
j=1

is an entire function of exponential type A = (d1,---,65), where §; = max{|a;|, a =
(-++,04,---) € suppa}. In fact, set u; = z; + y;i, z;,y; € R. Noting 3 czs aa = 2%, it
holds

u . Zj 15 'le ,
lp(e”2")| <e 27 min {2 ° Z lag|, 14 27°778|ul Z Iaal}, (5)

acZs a€Z?

where § = maxé;. From (4) and (5), we obtain
j

N s 1 21-3§jy s |ea s g
|f(u)] < cedoimt éjlygi(z—s Z |aa|) g3 ( [ul ez laal) < cedaim 5]|y]||u|ﬂ, (6)

a€Z?

where ¢ and 8 are some positive constants depending only on the mask a and they could
be different when they appear in different places. ThlS shows that f is an entire function

of type A. In another hand, since f = []72, p(e” P} ) € L, for some p,1 < p <2, we
know from Lemma 1 that

f =TI ple @) € Ly. (7)

—s

[
—

J

Thus, there is ¢ € Lo such that § = f. By the uniqueness of Fourier Transform, we
know

(ngELQ, (8)
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i.e., o = f. By (8), to complete Theorem 1, we only need to prove that ¢ has a bounded
support, and this could be obtained from L. Schwartz Theorem [8] (Theorem 3.1.5),
since ¢ = f is an entire function of exponential type A = (61, --,d,).8

Our next result is about the zero point set of the Fourier-Laplace transform of a
refinable function. From the well-known result, there exists unique irreducible algebraic
polynomials p;,j = 1,---,m with p;(1) = 1 such that

p(z) = = [[ 77 (2). ©)
7=1

where o = (af?,---.af), af* = min{ay, (---,@;,---) € suppa}t, r; > 1,5 =1,---,m,
are integers. In the following, we denote by Zy := {z € C?®| f(z) = 0} the zero point
set of f. For ¢, it holds

Theorem 2. If p € Ly is refinable, then

u .
i plu) = e 7G (u) - - g (u), where ¢i(u) = 152, pu(e” 7).
it. Zy ={u= 23(2k:7r -0 j>1,keZ% e e Z,},l=1,---,m, and as a clear
corollary, we have Z; = U;nzl Zy;-
Proof. Since p;(1) = 1, it is easy to prove that the sequence ¢y x(u) = H;?:l pl(e“'ffi),

u .
k =1,2,--- converge uniformly to ¢;(u) = [[;2; pi(e”27") on each compact domain of
C?. Therefore,

H(u) = lim pre % Y = hm e X 3o Prhe(w) - P (u)

Ic—)oo
:e_iu ‘7@;1 (u) “e e QO:Y"Z"- (u)
and 1 follows. The proof of 7. If @;(u) = 0, we will prove that there exists some index
j such that
u .
p(e”2") = 0. (10)
To this end, we assume that pi(z) = > 4 <n ba2z®, where N is a positive integer.

Supposing that ug is a zero of @(u), similar to (6), for sufficiently large number k and
|u] < |ug|, we have

| oo
=k

u .
where N’ = 'ug|NelwlV Yjai<n Ibal- Since |52, p(e”2")| > 0 when 2k > 2N’ from
11) we know (10) holds for some j, and iz is an obvious conclusion.m
From Theorem 2, we know that if 27ru € Z5, U---UZy, and if z = 27u is a zero

o (R GRS | (RS D ESE S

=k la|l<N

point of order ¢, ; of ., then z = 27u is a zero point of order at least r,, := 23:1 Gu,jT1;
of ¢. By setting

re = min e, (12)

we obtain the following usefulness
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Corollary 1. If ¢ € Ly is refinable, then
DPp(2am) =0, |B]<r,—1,0+#ac€Z (13)
In fact, according to [2], we know
$(2ar) =0, 0#a€Z. (14)

Thus, Corollary 1 could be directly obtained from Theorem 2. The following lemma
([4]) is usful in this paper.

Lemma 2. Let ¢ is of compact support and integrable, and let V, := span{¢(2™ -
—a); a € 2°}. Then T, C Vip, m > 0, if DP@(2am) =0, |B| <7, 0 # a € Z°, where
I1; stands for all polynomials of total degree < d.

From corollary 1 and Lemma 2, we have

IL,,—1 C Vin := span {p(@™ - —a),a € Z°}, m > 0.

Recall from [2] Theorem 8.4 that, whenever ¢ € W™! (Sobolev space) is refinable,
then the space span {¢(- — a),a € Z*} contains all polynomials of degree < r. We will
illustrate by examples that there does exist refinable function ¢ such that ¢ ¢ Wre—L1,
Before giving out such examples, we will particularly study some properties of refinable
functions in the case of s = 1. For s = 1, we denote by

1 o — z1\" — Zm\Tm e .
p(z) = §Z_a Z a]-z””:z‘“(i_‘:) 1~--(i_im) =271 (2) - P (2),
j=—a

where z; # z; when 1 # j.
It is convenient to set

z;=€%, 0;=0;+06i, 6,0]cR,0<06; <2 (15)

From Theorem 2, we have
Corollary 2. If ¢ € L; is refinable, then

(6,
.. azb . o . sin| 5+ 5571
i @) = TG () - Gy (u) where u(u) = T2 (Sin 7).
X 2
1. Z@t = {u = 23(2]{?77—91)1 j>1lke Z}, l=1,---,m and Z@ = UT:I Z(ZJ_,"
its. If z= —1 is a zero of order r of p(z), then

DPp(2mk) =0,0<B<r—-1,0#keZ.

i can be immediately obtained from Theorem 2. To prove i by using Theorem 2, we

need only to note
N . (9; u
e — z B sin (E—F*———?jﬂ) u
1—2:]' N . 0]‘
sin -
"3
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Now we prove iii. Assume z,, = —1, then 0, = w. Therefore,
i (97" + u ) k sin u sin u
oo sin | — + —— in — —
1 . n .
2 277 _ lim ] cos —~ = lim 2u = u2 . (16)
! . Om k—ro0 1 21+l koo ok b
=1 sin == =1 sin oy 2

The assertion of 111 is held from i and (16).

Examples: From now on, we will use obtained results to construct examples of
refinable function which generate linear function spaces of containing polynomials of
degree higher than their smooth order, and begin with univariate case.

In i of Corollary 2, weset 11 =r, m = 2, r; = 1, 6; = 7, and 62/2 = 6, and let
sinf =2P p=k+1/2—¢,0 < 6 < n/2, for some positive integer k and for some
positive number ¢ of satisfying

3 ‘/—2_)) < (17)

0<e< - (1+log2(z—?

1
Z.
sin (0 + 5’%)

_ . Since le(a_b)“il = 1 when u is real,
sin @

Then, ¢(2u) = ele~ b)’“(Slzu) 152,

we need only to discuss

oo sin (9+ 2])

sinu
fw) = (= ) 1:[ 2 (18)
According to the assumption of 8, it holds
sin (0 + )
_ N2 < min{ 2P p—J 19
g < min{2?, 1+ |u|2P77}. (19)
Thus, similar to (6), we derive
oo sin (0 + = )
[T —== 22| < cluP, (20)
=1 sin 8

where c is a constant of depending only on p. From (18) and (20), it is concluded that

|f(u)] € Le (21)
) | sin u| .
when 7 = k + 1, since | f(u)| < c=—— for real number u, where c is also a constant of
Ju|27*

depending only on p. From Theorem 1, ¢ € L,. Next, we will prove f(u) ¢ H V(H! is
the Sobolev space) for all positive integer k. It is well-known that

feH* < (1+u))*f(u) € Ly. (22)
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From Lemma 1, to prove f(u) ¢ H', we need only to prove that there is some sequence
{un}$°(up = 00) such that

|unf(un)| — 400, N — 00, (23)

since uf(u) is also an entire function and has the same exponential type as f(u).
To this end, we choose

Up = 22;7r (24)
Then
cos(O—i—%), J=2d+1, 0<d<n-1,
'sin(ﬂ-{-%)‘: sin(@—}-g), j=2d, 1<d<n,
sin (6 + éx—;_—%) i>2m+1,
25
From above equality, we further obtain =
o sin 0+u—7.l o sin (0 + T
Ial;[l (sin92])‘=(22pcos(0+%) sin (0+§))nd=10 (sing'm)
> (2% cos (0 + g) sin (6 + -’33))" > cul, (26)

1
where 7 = p+ ) log, [ cos (0—}—%) sin (0+g)] and c is a positive constant depending only

on p. In addition, in the first step we have used the assumption of 8 that siné = 27,
According to the definations of 7,p and 8, we have

T=p+%logzcos(0+%)sin(0+g) =k+%_5+%10g2 (%—sinze)
=k+%—e+%log2 (%—2‘2"_”25) >k+%—e+%log2 (2—2‘2’“”%) > 1227)

Therefore, from (18) and (26) we conclude
[tnf(un)| > cJun]"™% — 400, n — oo,

since, according to (27), 7 — k > 0, where ¢’ is still a positive constant depending only
on p. And the proof of (23) is completed, i.e., ¢ & H1.

Note 2: From (18) and Corollary 1, this example demonstrates that for any pos-
itive integer k, no matter how large it is, there always exists a refinable function ¢,
¢ € Ly (p € Ly as well according to Theorem 1) and ¢ ¢ H', such that the space
span{p(- — a): a € Z} contains all polynomials of degree < k.

Let ¢ be the same as above. Then, f(z1, - -,zs) = o(x1)p(x2) - p(xs), f € Ly
but f & H'. It is clear that the space span{f(- — a): a € Z° } contains all polynomials
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of degree < k no matter how large k is. Certainly, the more important case is of non-
product form. The following example shows that there even exists non-product form
refinable functions which belong to Lo but not in H!, such that the space span{f(-—a) :
a € Z°} contains all polynomials of degree < k no matter how large k is. In fact, we
set

U1+u2+'-~'+us)

ki1 oo sin (H—f— 57

f(m,---,us):(

sin uq sin ug sin ug )

b

Ul U9 Ug sin @

J=1

1
where sinf =277, p =k + 3~ g, the same as the first example. Obviously, we have

DPf(2ar) = 0,0 # o € Z*, |3] < k. By Corollary 1 and the results in [4], we know
that the space span{f(- — a): a € Z*} contains all polynomials of degree < k. What
left for us is to prove f € Ly but f € H'. f € Ly could be derived from f € Lo, since

~ sin<9+ u1+u2;"'+us>
‘JI;II sin 6 1 < c(Jur|P + |ugl? + - - + |us|?),

where ¢ is constant depending only on p and s. And f & H' can be obtained similarly

from Unf(Un) — 400, n — 00, where U, = (up,0,---,0) and u,, is defined as (24).
Note 3:  All the above example functions don’t belong to the Sobolev space Wt
If f/ € Ly, then

fr(u) = iuf(u).
This means uf(u) € Loo. This is contradicting with (23).
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