MULTIGRID METHODS FOR MORLEY ELEMENT ON NONNESTED MESHES*1)

Zhong-ci Shi
(The State Key Laboratory of Scientific \& Engineering Computing, ICMSEC, Chinese Academy of Sciences, Beijing 100080, China)
Zheng-hui Xie
(LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100080, China)

Abstract

In this paper, we consider some multigrid algorithms for the biharmonic problem discretized by Morley element on nonnested meshes. Through taking the averages of the nodal variables we construct an intergrid transfer operator that satisfies a certain stable approximation property. The so-called regularity-approximation assumption is then established. Optimal convergence properties of the W-cycle and a uniform condition number estimate for the variable V-cycle preconditioner are presented. This technique is applicable to other nonconforming plate elements.

Key words: Multigrid method, Morley element, Nonnested meshes.

1. Introduction

We consider some multigrid algorithms for the biharmonic equation discretized by Morley element on nonnested meshes. To define a multigrid algorithm, certain intergrid transfer operator has to be constructed. Through taking the averages of the nodal variables, we construct an intergrid transfer operator for Morley element on nonnested meshes that satisfies a certain stable approximation property which plays a key role in multigrid methods for nonconforming plate elements on nonnested meshes. The so-called regularity-approximation assumption is established by using the stable approximation property of the intergrid transfer operator. Optimal convergence properties of the W-cycle and a uniform condition number estimate for the variable V-cycle preconditioner are obtained by applying the abstract theory of Bramble, Pasciak and $\mathrm{Xu}[2]$. This technique is applicable to other nonconforming plate elements.

There are some earlier papers on multigrid methods for nonconforming plate elements. Peisker and Braess [6] considered the W-cycle for the Morley element. Brenner [3] studied the W-cycle for Morley element through defining the intergrid transfer operator by taking the averages of the nodal variables and simplified the algorithms and analysis. Shi, Yu and Xie [8] studied the W-cycle for Bergan's energy-orthogonal plate

[^0]element through defining the intergrid transfer operator by taking a linear combination of the nodal parameters of the same coarse grid element. Recently, Bramble [1] discussed variable V-cycle preconditioner for Morley element. All these papers consider the case when the triangulations are nested.

The paper is organized as follows. In section 2, we briefly describe the Morley approximation of the biharmonic Dirichlet problem. In section 3, we define an intergrid transfer operator and establish a certain stable approximation property of the intergrid transfer operator using a direct technique [9]. In section 4, we describe the multigrid methods, and establish the optimal convergence properties of the W-cycle and a uniform condition number estimate for the variable V-cycle preconditioner for Morley element on nonnested meshes.

2. Morley Element Approximation

We consider the biharmonic problem in Ω with Dirichlet boundary conditions $\Delta^{2} u=$ f, in Ω and $u=\frac{\partial u}{\partial n}=0$, on $\partial \Omega$, where Ω is a convex polygon in $R^{2}, f \in H^{-l}(l=0,1)$. The variational form of the problem is: Find $u \in H_{0}^{2}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=(f, v), \forall v \in H_{0}^{2}(\Omega) \tag{2.1}
\end{equation*}
$$

where

$$
a(u, v)=\sum_{|\alpha|=2} \int_{\Omega} D^{\alpha} u D^{\alpha} v d x,(f, v)=\int_{\Omega} f v d x
$$

Let $\left\{\Gamma_{k}\right\}, k \geq 1$, be a family of quasi-uniform triangulations of Ω. Let $h_{k}=$ $\max \left\{\operatorname{diam} \tau ; \tau \in \Gamma_{k}\right\}$. We allow nonnested triangulations; however, we assume that the mesh parameters h_{k} satisfy $0<\gamma_{1} \leq h_{k+1} / h_{k} \leq \gamma_{2}<1$, where $\gamma_{i}(i=1,2)$ are constants independent of k. From this assumption we see that for $\tau \in \Gamma_{k}$, the number of elements $\left\{\tau^{\prime} \in \Gamma_{k-1}\right.$ or $\left.\tau^{\prime} \in \Gamma_{k+1} ; \bar{\tau}^{\prime} \cap \tau \neq \phi\right\}$ is finite and is independent of k. Let V_{k} be Morley element space with respect to $\Gamma_{k}[4,7]$ such that
a) for each triangle $\tau \in \Gamma_{k},\left.u\right|_{\tau}$ is a quadratic polynomial,
b) u is continuous at vertices and vanishes at vertices along $\partial \Omega$,
c) the normal derivative $\frac{\partial u}{\partial n}$ is continuous at the midpoints of each $\tau \in \Gamma_{k}$ and vanishes at midpoints along $\partial \Omega$.

The finite element method of the problem (2.1) is: Find $u_{k} \in V_{k}$ such that

$$
\begin{equation*}
a_{k}\left(u_{k}, v_{k}\right)=(f, v), \forall v \in V_{k} \tag{2.2}
\end{equation*}
$$

where

$$
a_{k}(u, v)=\sum_{\tau \in \Gamma_{k}} \sum_{|\alpha|=2} \int_{\tau} D^{\alpha} u D^{\alpha} v d x
$$

Denote the induced norm $\|u\|_{2, h_{k}}=\left(a_{k}(u, u)\right)^{1 / 2}$. Let Π_{k} be the nodal interpolation operator of Morley element from $H^{3}(\Omega) \cap H_{0}^{2}(\Omega)$ onto V_{k}. The following estimate for the interpolation error is known (cf. $[4,7]$):

$$
\begin{equation*}
\left\|w-\Pi_{k} w\right\|_{2, h_{k}} \leq C h_{k}|w|_{H^{3}(\Omega)} \tag{2.3}
\end{equation*}
$$

for all $w \in H^{3}(\Omega) \cap H_{0}^{2}(\Omega)$. Through this paper we let C (with or without subscripts)
be a generic positive constant independent of the mesh parameter k. The following error estimate of Morley element is known [7]

$$
\begin{equation*}
\left\|u-u_{k}\right\|_{2, h_{k}} \leq C h_{k}\left(\|u\|_{3, \Omega}+h_{k}\|f\|_{0, \Omega}\right), \tag{2.4}
\end{equation*}
$$

where and from now on $\|u\|_{i, \Omega}=\|u\|_{H^{i}(\Omega)}$.

3. Intergrid Transfer Operator

The intergrid transfer operator from a coarse grid to fine grid plays an important role in the analysis of multigrid methods.

For Morley element on nested meshes, Brenner [3] has defined an intergrid transfer operator by taking averages of the nodal parameters between two adjacent elements. For Bergan's energy-orthogonal plate element, Shi, Yu and Xie [8] defined an intergrid transfer operator by taking a linear combination of the nodal parameters of the same coarse grid element. For Morley element on nonnested meshes, we now define an intergrid transfer operator $I_{k}: V_{k-1} \longrightarrow V_{k}$ as follows.

For $v \in V_{k-1}, I_{k} v \in V_{k}$ is defined so that
a) if p is a vertex of Γ_{k} which is also a vertex of Γ_{k-1} or in the interior of $\tau \in \Gamma_{k-1}$, then $\left(I_{k} v\right)(p)=v(p)$;
b) for other vertices p of Γ_{k}, v may have jumps at p and $I_{k} v$ takes the average of all values of v at p;
c) if m is a midpoint of an edge of Γ_{k} which is in the interior of $\tau \in \Gamma_{k-1}$, then $\frac{\partial\left(I_{k} v\right)}{\partial n}(m)=\frac{\partial v}{\partial n}(m) ;$
d) for other midpoints m associated with $\Gamma_{k}, \frac{\partial v}{\partial n}$ may have jumps and $\frac{\partial\left(I_{k} v\right)}{\partial n}(m)$ takes the average value of $\frac{\partial(v)}{\partial n}$ at m.

Our analysis is based on the three properties of the intergrid transfer operator I_{k} as follows

$$
\begin{align*}
& \left\|I_{k} v\right\|_{2, h_{k}} \leq C\|v\|_{2, h_{k-1}}, \quad \forall v \in V_{k-1} \tag{3.1}\\
& \left\|u_{k}-I_{k} u_{k-1}\right\|_{2, h_{k}} \leq C h_{k}\left(\|u\|_{3, \Omega}+h_{k}\|f\|_{0}\right) \tag{3.2}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|I^{k-1} v-I^{k} I_{k} v\right\|_{1, \Omega} \leq C h_{k}\|v\|_{2, h_{k-1}}, \quad \forall v \in V_{k-1}, \tag{3.3}
\end{equation*}
$$

where u_{k} and u_{k-1} are Morley approximations to the solution u of (2.1) on Γ_{k} and Γ_{k-1}, respectively. $I^{k-1} v$ refers to the Γ_{k-1}-linear interpolation of v and $I^{k} I_{k} v$ is the Γ_{k}-linear interpolation of $I_{k} v$.

Brenner [3] proved (3.1)-(3.3) for Morley element on nested meshes. We will use a direct technique (cf.[9]) to prove that (3.1)-(3.3) are still valid on nonnested meshes.

Lemma 1. Let G be the interior of the union of two adjacent triangles τ_{1} and τ_{2} in $\in \Gamma_{k-1}$. Let p be an arbitrary point on the common edge $\overline{p_{1} p_{2}}$ (cf. Figure 1). For $v \in V_{k-1}$, let $v_{i}=\left.v\right|_{\tau_{i}}$. Then for $\forall v \in V_{k-1}$,

$$
\left\{\begin{array}{l}
\left|v_{1}(p)-v_{2}(p)\right| \leq C h_{k-1}\left(|v|_{H^{2}\left(\tau_{1}\right)}+|v|_{H^{2}\left(\tau_{2}\right)}\right), \tag{3.4}\\
\left|\nabla v_{1}(p)-\nabla v_{2}(p)\right| \leq C\left(|v|_{H^{2}\left(\tau_{1}\right)}+|v|_{H^{2}\left(\tau_{2}\right)}\right) .
\end{array}\right.
$$

Proof. Using inverse estimates and the theory of discontinuous finite element in Feng [5] yields (3.4).

Lemma 2. Given $w \in H^{3}(G)$, let w_{1} (respectively w_{2}) be the Γ_{k-1}-Morley interpolation of w on τ_{1} (respectively $\left.\tau_{2}\right)$, i.e. $w_{i}=\left.\left(\Pi_{k-1} w\right)\right|_{\tau_{i}}(i=1,2)$. There exists a positive constant C such that for all $w \in H^{3}(\Omega)$

$$
\left\{\begin{array}{l}
\left|w_{1}(p)-w_{2}(p)\right| \leq C h_{k-1}^{2}|w|_{H^{3}(G)}, \tag{3.5}\\
\left|\nabla w_{1}(p)-\nabla w_{2}(p)\right| \leq C h_{k-1}|w|_{H^{3}(G)} .
\end{array}\right.
$$

Proof. Since $w \in H^{3}(G) \sqsubseteq C^{1}(\bar{G})$, (3.5) follows from standard interpolation error estimates(cf.[4]).

Lemma 3. (3.1) holds.
Proof. Let $\tau=\triangle p_{1} p_{2} p_{3} \in \Gamma_{k}$. The essential step is to establish the estimate

$$
\begin{equation*}
\left|I_{k} v\right|_{H^{2}(\tau)}^{2} \leq C \sum_{\substack{\bar{\tau}^{\prime} \cap \bar{\tau} \neq \phi \\ \tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime}}^{2}, \quad \forall v \in V_{k-1} \tag{3.6}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\left|I_{k} v\right|_{H^{2}(\tau)}^{2} \leq C \sum_{i=1}^{3}\left[\partial_{n}\left(I_{k} v\right)\left(m_{i}\right)-\partial_{n}\left(I^{k} I_{k} v\right)\left(m_{i}\right)\right]^{2} \tag{3.7}
\end{equation*}
$$

where $m_{i}, i=1,2,3$, are the midpoints of the edges of the element τ.

Figure 1
Figure 2
Figure 3
First we consider the case when τ belongs completely to a single $\tau^{\prime} \in \Gamma_{k-1}$. In this case, if $\partial \tau \cap \partial \tau^{\prime}=\phi$ (cf. Figure 2), then $I_{k} v=v$ and (3.6) holds. If $\partial \tau \cap \partial \tau^{\prime} \neq \phi$, then there exists at least an edge of $\tau \subset \partial \tau \cap \partial \tau^{\prime}$, say $\overline{p_{1} p_{2}}$ (cf. Figure 3), or $\partial \tau \cap \partial \tau^{\prime}=\left\{p_{1}\right\}$ or $\partial \tau \cap \partial \tau^{\prime}=\left\{p_{1}, p_{2}\right\}$ or $\partial \tau \cap \partial \tau^{\prime}=\left\{p_{1}, p_{2}, p_{3}\right\}$ (cf. Figure 4).
Set $w=\left.v\right|_{\tau}$. We first assume that there exists at least an edge of $\tau \subset \partial \tau \cap \partial \tau^{\prime}$. Let m be the midpoint of an edge $\overline{p_{1} p_{2}}$ of τ (cf. Figure 3), where $\overline{p_{1} p_{2}}$ is an arbitrary common edge of two triangles τ and τ^{\prime} belonging to Γ_{k-1}. Then from the definition of the operator $I_{k} v,(3.4)$ in Lemma 1, the mean value theorem, quasi-uniform property of the triangulations, and an inverse estimate we have

$$
\begin{align*}
\left|\partial_{n}\left(I_{k} v\right)(m)-\partial_{n}\left(I^{k} I_{k} v\right)(m)\right| & =\left|\overline{\partial_{n}(v)}(m)-\partial_{n}\left(I^{k} I_{k} v\right)(m)\right| \\
& \leq C \sum_{\substack{\bar{\tau}^{\prime} \cap \bar{\tau} \neq \phi \\
\tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime}}+\left|\partial_{n} w\left(p_{1}\right)-\partial_{n}\left(I^{k} I_{k} v\right)\left(p_{1}\right)\right| \tag{3.8}
\end{align*}
$$

where and from now on

$$
\overline{\partial_{n}(v)}(m)=\left.\frac{1}{n_{m}} \sum_{\substack{\bar{\tau}^{\prime} \cap \bar{\tau} \neq \phi \\ \tau^{\prime} \in \Gamma_{k-1}}} \partial_{n} v\right|_{\tau^{\prime}}(m), n_{m} \text { is the number of }\left\{\tau^{\prime} \in \Gamma_{k-1}, \bar{\tau}^{\prime} \cap \bar{\tau} \neq \phi\right\}
$$

Now we consider the second term on the right-hand side of (3.8). Using the mean value theorem and (3.4) in Lemma 1 yields

$$
\begin{aligned}
\mid \partial_{p_{1} p_{2}} w\left(p_{1}\right) & -\partial_{p_{1} p_{2}}\left(I^{k} I_{k} v\right)\left(p_{1}\right)\left|=\left|\partial_{p_{1} p_{2}} w\left(p_{1}\right)-\frac{I_{k} v\left(p_{2}\right)-I_{k} v\left(p_{1}\right)}{\left|p_{1} p_{2}\right|}\right|\right. \\
& \leq\left|\partial_{p_{1} p_{2}} w\left(p_{1}\right)-\frac{w\left(p_{2}\right)-w\left(p_{1}\right)}{\left|p_{1} p_{2}\right|}\right|+\frac{\mid\left(I_{k} v\left(p_{2}\right)-w\left(p_{2}\right)\right)-\left(I_{k} v\left(p_{1}\right)-w\left(p_{1}\right) \mid\right.}{\left|p_{1} p_{2}\right|} \\
& \leq C \sum_{\substack{\tau^{\prime} \cap \bar{\tau} \neq \phi \\
\tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime} .}
\end{aligned}
$$

Similarly,

$$
\left|\partial_{p_{1} p_{3}} w\left(p_{1}\right)-\partial_{p_{1} p_{3}}\left(I^{k} I_{k} v\right)\left(p_{1}\right)\right| \leq C \sum_{\substack{\bar{\tau}^{\prime} \cap \bar{\tau} \neq \phi \\ \tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime}}
$$

Therefore,

$$
\begin{equation*}
\left|\partial_{n} w\left(p_{1}\right)-\partial_{n}\left(I^{k} I_{k} v\right)\left(p_{1}\right)\right| \leq C \sum_{\substack{\tau^{\prime} \cap \overline{\tilde{F}} \neq \phi \\ \tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime}} \tag{3.9}
\end{equation*}
$$

and hence

$$
\begin{align*}
\left|\partial_{n}\left(I_{k} v\right)(m)-\partial_{n}\left(I^{k} I_{k} v\right)(m)\right| & \leq C \sum_{\substack{\tau^{\prime} \cap \bar{\tau} \neq \phi \\
\tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime}}+\left|\partial_{n} w\left(p_{1}\right)-\partial_{n}\left(I^{k} I_{k} v\right)\left(p_{1}\right)\right| \\
& \leq C \sum_{\substack{\bar{\tau}^{\prime} \cap \bar{\tau} \neq \phi \\
\tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime}} \tag{3.10}
\end{align*}
$$

Similarly, (3.10) holds for arbitrary edge midpoint m of τ belong to τ^{\prime}. For the cases $\partial \tau \cap \partial \tau^{\prime}=\left\{p_{1}\right\}$ or $\partial \tau \cap \partial \tau^{\prime}=\left\{p_{1}, p_{2}\right\}$ or $\partial \tau \cap \partial \tau^{\prime}=\left\{p_{1}, p_{2}, p_{3}\right\}$, we can discuss similarly. Therefore, (3.6) follows from (3.7), (3.8) and (3.10) in the first case.

Next we consider the case when τ does not belong completely to a single $\tau^{\prime} \in \Gamma_{k-1}$.
Let $\overline{p_{1} p_{2}}$ be cut into l piecewises $p_{1} q_{0}, \cdots, q_{1} q_{2}, \cdots q_{3} p_{2}$ (cf. Figure 5 x), by the coarse triangles $\tau_{1}, \cdots, \tau_{l}$ respectively, and $v(\cdot)$ is a polynomial on each piece, where $m \in \overline{q_{1} q_{2}}$, $m \in \bar{\tau}_{l_{0}}$. Set $v_{i}=\left.v\right|_{\tau_{i}}, i=1, \cdots, l$. Let $\left\{\tau^{\prime} \in \Gamma_{k-1} ; p_{1} \in \bar{\tau}^{\prime}\right\}=\left\{\tau_{1}^{p_{1}}, \cdots, \tau_{l_{p_{1}}}^{p_{1}}\right\}$, $\left\{\tau^{\prime} \in \Gamma_{k-1} ; p_{2} \in \bar{\tau}^{\prime}\right\}=\left\{\tau_{1}^{p_{2}}, \cdots, \tau_{l_{p_{2}}}^{p_{2}}\right\}$, and $\left\{\tau^{\prime} \in \Gamma_{k-1} ; m \in \bar{\tau}^{\prime}\right\}=\left\{\tau_{1}^{m}, \cdots, \tau_{l_{m}}^{m}\right\}$.

By the assumption on $\left\{\Gamma_{k}\right\}, l, l_{p_{1}}, l_{p_{2}}, l_{m} \leq C$. Therefore, using the definition of the operator I_{k}, the triangle inequality and (3.4) in Lemma 1 yields

$$
\begin{aligned}
\left|\partial_{n} I_{k} v(m)-\partial_{n} I^{k} I_{k} v(m)\right| & =\left|\overline{\partial_{n} v}(m)-\partial_{n}\left(I^{k} I_{k} v\right)(m)\right| \\
& \leq\left|\overline{\partial_{n} v}(m)-\partial_{n} v\right|_{\tau_{l_{0}}}(m)\left|+\left|\partial_{n} v\right|_{\tau_{l_{0}}}(m)-\partial_{n}\left(I^{k} I_{k} v\right)(m)\right|
\end{aligned}
$$

$$
\begin{align*}
\leq & \left|\partial_{n} v\right|_{\tau_{1}}\left(p_{1}\right)-\left.\partial_{n} v\right|_{\tau_{0}}(m)\left|+\left|\partial_{n} v\right|_{\tau_{1}}\left(p_{1}\right)-\partial_{n}\left(I^{k} I_{k} v\right)\left(p_{1}\right)\right| \\
& +C \sum_{\substack{\overline{\tau^{\prime}} \cap \neq \neq \phi \\
\tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime}} \equiv I_{1}+I_{2}+C \sum_{\substack{\tau^{\prime} \cap \overline{\tau_{\neq \phi}} \\
\tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime}}, \tag{3.11}
\end{align*}
$$

where $m \in \tau_{l_{0}}$.

Figure 4
Figure 5
We now estimate I_{1}. Using the triangle inequality, (3.4) in Lemma 1 , the mean value theorem, and inverse estimates yields

$$
\begin{align*}
I_{1} \leq & \left|\partial_{n} v_{1}\left(p_{1}\right)-\partial_{n} v_{1}\left(q_{0}\right)\right|+\left|\partial_{n} v_{1}\left(q_{0}\right)-\partial_{n} v_{2}\left(q_{0}\right)\right| \\
& +\cdots+\left|\partial_{n} v_{l_{0}}\left(q_{1}\right)-\partial_{n} v_{l_{0}}(m)\right| \leq C \sum_{\substack{\tau^{\prime}\left(\bar{\pi} \neq \phi \\
\tau^{\prime} \in \Gamma_{k-1}\right.}}|v|_{2, \tau^{\prime}} . \tag{3.12}
\end{align*}
$$

For I_{2}, similarly we have

$$
\begin{align*}
& \mid \partial_{p_{1} p_{2}} v_{1}\left(p_{1}\right)-\partial_{p_{1} p_{2}}\left(I^{k} I_{k} v\left(p_{1}\right) \mid\right. \\
& \leq\left|\partial_{p_{1} p_{2}} v_{1}\left(p_{1}\right)-\frac{1}{\left|p_{1} p_{2}\right|}\left(\left.\frac{1}{l_{p_{2}}} \sum_{j=1}^{l_{p_{2}}} v\right|_{\tau_{j}^{p_{2}}}\left(p_{2}\right)-\left.\frac{1}{l_{p_{1}}} \sum_{j=1}^{l_{p_{1}}} v\right|_{\tau_{j}^{p_{1}}}\left(p_{1}\right)\right)\right| \\
& \leq\left|\partial_{p_{1} p_{2}} v_{1}\left(p_{1}\right)-\frac{\left(v_{l}\left(p_{2}\right)-v_{1}\left(p_{1}\right)\right)}{\left|p_{1} p_{2}\right|}\right|+C \sum_{\substack{\bar{\tau}^{\prime} \cap \bar{\tau} \neq \phi \\
\tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime}} \\
& \leq\left|\partial_{p_{1} p_{2}} v_{1}\left(p_{1}\right)-\frac{\left(v_{l}\left(p_{2}\right)-v_{l}\left(q_{3}\right)\right)+\left(v_{l}\left(q_{3}\right)-v_{l-1}\left(q_{3}\right)\right)+\cdots+\left(v_{1}\left(q_{0}\right)-v_{1}\left(p_{1}\right)\right)}{\left|p_{1} p_{2}\right|}\right| \\
& +C \sum_{\substack{\bar{\tau}^{\prime} \cap \overline{\tilde{\tau}} \neq \phi \\
\tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime}}=\mid \partial_{p_{1} p_{2}} v_{1}\left(p_{1}\right)-\left(t_{1} \partial_{p_{1} p_{2}} v_{1}\left(\xi_{1}\right)+\cdots+t_{l} \partial_{p_{1} p_{2}} v_{l}\left(\xi_{l}\right) \mid\right. \\
& +C \sum_{\substack{\tau^{\prime} \cap \bar{\sim} \neq \phi \\
\tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime}} \leq C \sum_{\substack{\tau^{\prime}\left(\bar{\pi} \neq \phi \\
\tau^{\prime} \in \Gamma_{k-1}\right.}}|v|_{2, \tau^{\prime}}, \tag{3.13}
\end{align*}
$$

where $\xi_{1} \in \overline{p_{1} q_{0}}, \cdots, \xi_{l} \in \overline{q_{3} p_{2}}, \cdots$, and $0 \leq t_{i} \leq 1, \sum t_{i}=1$. Similarly,

$$
\begin{equation*}
\left|\partial_{p_{1} p_{3}} v\right|_{1}\left(p_{1}\right)-\partial_{p_{1} p_{3}}\left(\left.I^{k} I_{k} v\left(p_{1}\right)\left|\leq C \sum_{\substack{\tilde{\tau}^{\prime} \bar{\sim} \neq \neq \phi \\ \tau^{\prime} \in \Gamma_{k-1}}}\right| v\right|_{2, \tau^{\prime}} .\right. \tag{3.14}
\end{equation*}
$$

Combining (3.13) with (3.14) yields

$$
\begin{equation*}
I_{2} \leq C \sum_{\substack{\bar{\tau}^{\prime} \prime \bar{\tau} \neq \phi \\ \tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime}}^{2} \tag{3.15}
\end{equation*}
$$

(3.6) follows from (3.7), (3.11), (3.12) and (3.15) for the second case.

Summing (3.6) over τ in Γ_{k} and noting that the number of repetitions, for each τ, in the summation is finite, yield (3.1).

Lemma 4. (3.2) holds.
Proof. By (2.3), (2.4), Lemma 1 and the method similar to Theorem 2 in [3], we can prove the Lemma.

Lemma 5. (3.3) holds.
Proof. For $v \in V_{k-1}$, we have

$$
\begin{equation*}
\left\|I^{k-1} v-I^{k}\left(I_{k} v\right)\right\|_{1, \Omega} \leq\left\|I^{k-1} v-I^{k}\left(I^{k-1} v\right)\right\|_{1, \Omega}+\left\|I^{k}\left(I^{k-1} v\right)-I^{k}\left(I_{k} v\right)\right\|_{1, \Omega} \tag{3.16}
\end{equation*}
$$

Now we estimate the first term on the right-hand side of (3.16). Set $g=I^{k-1} v-$ $I^{k}\left(I^{k-1} v\right)$. For $\tau=\triangle p_{1} p_{2} p_{3} \in \Gamma_{k}$, we have

$$
\begin{equation*}
|g|_{H^{1}(\tau)}^{2} \leq C h_{k}^{2} \sum_{\substack{\tau \in \tilde{\tau} \neq \phi \\ \tau \in \Gamma_{k-1}}}|g|_{1, \infty, \tau^{\prime} \cap \tau}^{2} . \tag{3.17}
\end{equation*}
$$

For arbitrary $\tau_{1}, \tau_{2} \in \Gamma_{k-1}, \partial \tau_{1} \cap \partial \tau_{2} \neq \phi, \bar{\tau}_{1} \cap \bar{\tau} \neq \phi$ and $\bar{\tau}_{2} \cap \bar{\tau} \neq \phi$, by using mean theorem and inverse estimates we can prove that

$$
\begin{align*}
|\nabla g|_{\tau_{1} \cap \tau}-\left.\nabla g\right|_{\tau_{2} \cap \tau} \mid & =\left|\nabla\left(I^{k-1} v\right)\right|_{\tau_{1} \cap \tau}-\left.\nabla\left(I^{k-1} v\right)\right|_{\tau_{2} \cap \tau} \mid \\
& \leq C\left(|v|_{2, \tau_{1}}+|v|_{2, \tau_{2}}\right) \leq C \sum_{\substack{\bar{\tau}^{\prime} \cap \bar{\tau} \neq \phi \\
\tau^{\prime} \in \Gamma_{k-1}}}|v|_{2, \tau^{\prime}} \tag{3.18}
\end{align*}
$$

For $\tau \in \Gamma_{k}$, set $\left\{\tau_{1}, \cdots, \tau_{j}, \cdots, \tau_{l_{\tau}}\right\}=\left\{\tau^{\prime} \in \Gamma_{k-1} ; \bar{\tau}^{\prime} \cap \bar{\tau} \neq \phi\right\}$. It follows from (3.18) that

$$
\begin{equation*}
|\nabla g|_{\tau_{i} \cap \tau}-\left.\left.\nabla g\right|_{\tau_{j} \cap \tau}\left|\leq C \sum_{\substack{\bar{\tau}^{\prime} \cap \bar{\sim} \neq \phi \\ \tau^{\prime} \in \Gamma_{k-1}}}\right| v\right|_{2, \tau^{\prime}} \quad\left(i, j \leq l_{\tau}\right) \tag{3.19}
\end{equation*}
$$

Since $g\left(p_{1}\right)=g\left(p_{2}\right)=0$, using mean value theorem yields (cf. Figure 5)

$$
\left\{\begin{array}{l}
g\left(q_{1}\right)-g\left(p_{1}\right)=\partial_{p_{1} p_{2}} g\left(\xi_{1}\right)\left(q_{1}-p_{1}\right) \\
g\left(q_{2}\right)-g\left(q_{1}\right)=\partial_{p_{1} p_{2}} g\left(\xi_{2}\right)\left(q_{2}-q_{1}\right) \\
\cdots \\
g\left(p_{2}\right)-g\left(q_{3}\right)=\partial_{p_{1} p_{2}} g\left(\xi_{l}\right)\left(p_{2}-q_{3}\right)
\end{array}\right.
$$

where $\xi_{1}, \cdots, \xi_{l} \in p_{1} q_{0}, \cdots, q_{3} p_{2}$ respectively. Therefore,

$$
\begin{equation*}
0=\partial_{p_{1} p_{2}} g\left(\xi_{1}\right) t_{1}^{\prime}+\partial_{p_{1} p_{2}} g\left(\xi_{2}\right) t_{2}^{\prime}+\cdots+\partial_{p_{1} p_{2}} g\left(\xi_{l}\right) t_{l}^{\prime} \tag{3.20}
\end{equation*}
$$

where $\sum t_{i}^{\prime}=1, t_{i}^{\prime} \geq 0$.

It follows from (3.19)-(3.20) that

$$
\begin{equation*}
\left.\left|\partial_{p_{1} p_{2}} g\right|_{\tau_{1} \cap \tau}\left(p_{1}\right)\left|\leq C \sum_{\substack{\bar{\tau}^{\prime} \cap \overline{\tilde{F}} \neq \phi \\ \tau \in \Gamma_{k-1}}}\right| v\right|_{2, \tau}, \tag{3.21}
\end{equation*}
$$

and similarly,

$$
\begin{equation*}
\left.\left|\partial_{p_{1} p_{3}} g\right|_{\tau_{p_{1}}^{1} \cap \tau}\left(p_{1}\right)\left|\leq C \sum_{\substack{\tau^{\prime} \cap \bar{\tau} \neq \phi \\ \tau \in \Gamma_{k-1}}}\right| v\right|_{2, \tau}, \tag{3.22}
\end{equation*}
$$

here the sense of τ_{1} and τ^{\prime} for p_{1} are the same as the proof of Lemma 2.
It follows from (3.21)-(3.22) and Lemma 1 that

$$
\left.|\nabla g|_{\tau_{1}}\left(p_{1}\right)\left|\leq \sum_{\substack{\tau \in \tilde{\tau} \neq \phi \\ \tau \in \Gamma_{k-1}}}\right| v\right|_{2, \tau}
$$

Similarly,

$$
\begin{equation*}
|\nabla g|_{0, \infty, \tau} \leq C \sum_{\substack{\bar{\tau} \cap \tilde{\tau} \neq \phi \\ \tau \in \Gamma_{k-1}}}|v|_{2, \tau} \tag{3.23}
\end{equation*}
$$

Combining (3.23) with (3.17) yields

$$
\begin{equation*}
|g|_{H^{1}(\tau)}^{2} \leq C \sum_{\substack{\tau \pi \tilde{\tau} \neq \phi \\ \tau \in \Gamma_{k-1}}}|v|_{2, \tau}^{2} \tag{3.24}
\end{equation*}
$$

Summing (3.24) over all τ in Γ_{k} and noting that number of repetitions, for each τ, in the summation is finite, yields

$$
\begin{equation*}
\left\|I^{k-1} v-I^{k} I^{k-1} v\right\|_{1} \leq C h_{k}\|v\|_{2, h_{k-1}} \tag{3.25}
\end{equation*}
$$

It remains to estimate the second term on the right-hand side of (3.16).
Set $h=I^{k}\left(I^{k-1} v\right)-I^{k}\left(I_{k} v\right)$, then we have

$$
\begin{equation*}
\left.|h|_{1, \tau}^{2} \leq C\left(h\left(p_{1}\right)-h\left(p_{2}\right)\right)^{2}+\left(h\left(p_{2}\right)-h\left(p_{3}\right)\right)^{2}\right) \leq C\left(h\left(p_{1}\right)^{2}+h\left(p_{2}\right)^{2}+h\left(p_{3}\right)^{2}\right), \tag{3.26}
\end{equation*}
$$

where $h\left(p_{i}\right)=I^{k-1} v\left(p_{i}\right)-I_{k} v\left(p_{i}\right)$. If p_{i} is a vertex of Γ_{k-1}, then $h\left(p_{i}\right)=0$. If p_{i} is a point of the common edge of τ_{1} and τ_{2} which belong to Γ_{k-1}, then by Lemma 1 we have

$$
\begin{align*}
\left|h\left(p_{i}\right)\right| & =\left|\frac{1}{2}\left(v_{1}+v_{2}\right)\left(p_{i}\right)-I^{k-1} v_{1}\left(p_{i}\right)\right| \leq\left|v_{1}\left(p_{i}\right)-I^{k-1} v_{1}\left(p_{i}\right)\right|+\left|\frac{1}{2}\left(v_{1}-v_{2}\right)\left(p_{i}\right)\right| \\
& \leq C h_{k}\left(|v|_{2, \tau_{1}}+|v|_{2, \tau_{2}}\right) \leq C h_{k} \sum_{\substack{\tau \cap \bar{\tau} \neq \phi \\
\tau \in \Gamma_{k-1}}}|v|_{2, \tau} \tag{3.27}
\end{align*}
$$

If p_{i} is an internal points of $\tau^{\prime} \in \Gamma_{k-1}$, then

$$
\begin{equation*}
\left|h\left(p_{i}\right)\right|=\left|I^{k-1} v\left(p_{i}\right)-v\left(p_{i}\right)\right| \leq C h_{k} \sum_{\substack{\tilde{\tau} \cap \tilde{\tau} \neq \phi \\ \tau \in \Gamma_{k-1}}}|v|_{2, \infty, \tau} . \tag{3.28}
\end{equation*}
$$

It follows from (3.26)-(3.28) that

$$
\begin{equation*}
|h|_{1, \tau}^{2} \leq C h_{k}^{2} \sum_{\substack{\bar{\pi} \bar{\pi} \neq \phi \\ \tau \in \Gamma_{k-1}}}|v|_{2, \tau}^{2} \tag{3.29}
\end{equation*}
$$

Summing (3.29) over all τ in Γ_{k} yields

$$
\begin{equation*}
\left\|I^{k} I^{k-1} v-I^{k} I_{k} v\right\|_{1} \leq C h_{k}\|v\|_{2, h_{k-1}} \tag{3.30}
\end{equation*}
$$

and hence (3.3) follows from (3.16), (3.25) and (3.30).

4. Multigrid Methods for Morley Element

Consider the discrete problem (2.2). Define $A_{k}: V_{k} \longrightarrow V_{k}$ by

$$
\begin{equation*}
\left(A_{k} u_{k}, v_{k}\right)=a_{k}\left(u_{k}, v_{k}\right), \quad \forall u_{k}, v_{k} \in V_{k} \tag{4.1}
\end{equation*}
$$

Let $R_{k}: V_{k} \longrightarrow V_{k}$ be a linear smoother and $R_{k}^{s}=R_{k}$ if s is odd and $R_{k}^{(s)}=R_{k}^{t}$ if s is even. Here R_{k}^{t} is the (\cdot, \cdot) adjoint of R_{k}. The spaces V_{k-1} and V_{k} are related by the intergrid transfer operator $I_{k}: V_{k-1} \longrightarrow V_{k}$. Define projection operators $P_{k-1}: V_{k} \longrightarrow$ V_{k-1} and $Q_{k-1}: V_{k} \longrightarrow V_{k-1}$ by

$$
\begin{equation*}
a_{k-1}\left(P_{k-1} w, v\right)=a_{k}\left(w, I_{k-1} v\right) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(Q_{k-1} w, v\right)=\left(w, I_{k} v\right) \tag{4.3}
\end{equation*}
$$

for all $v \in V_{k-1}$.
The multigrid operator $B_{k}: V_{k} \longrightarrow V_{k}$ is defined by induction as follows.
Algorithm Set $B_{0}=A_{0}^{-1}$. Define $B_{k} g=y^{2 m_{k}}$ in terms of B_{k-1} as follows:
(1) Set $x^{0}=0, q^{0}=0$ and define $x^{s}=x^{s-1}+R_{k}^{\left(s+m_{k}\right)}\left(g-A_{k} x^{s-1}\right), s=1, \cdots, m_{k}$.
(2) Define $y^{m_{k}}=x^{m_{k}}+I_{k} q^{p}$, where q^{i} for $i=1, \cdots, p$ is $q^{i}=q^{i-1}+B_{k-1}\left[Q_{k-1}(g-\right.$ $\left.\left.A_{k} x^{m_{k}}\right)-A_{k-1} q^{i-1}\right]$.
(3) Define y^{s} for $s=m_{k}+1, \cdots, 2 m_{k}$ by $y^{s}=y^{s-1}+R_{k}^{\left(s+m_{k}\right)}\left(g-A_{k} y^{s-1}\right)$. Here m_{k} is the number of smoothing steps on level k. The case $p=1$ and $p=2$ corresponds to the V-cycle and the W-cycle, respectively.

Let Λ_{k} be the maximum eigenvalue of A_{k}. Using the estimates (3.1)-(3.3) we can prove (cf.[1]) that the regularity-approximation property [2] holds

$$
\begin{equation*}
\left|a_{k}\left(\left(I-I_{k} P_{k-1}\right) u, u\right)\right| \leq C\left(\frac{\left\|A_{k} u\right\|_{0}^{2}}{\Lambda_{k}}\right)^{1 / 4}\left(a_{k}(u, u)\right)^{3 / 4} \tag{A.1}
\end{equation*}
$$

for the Morley element on a convex polygonal domain Ω.
Let $K_{k}=I-R_{k} A_{k}$ and $K_{k}^{*}=I-R_{k}^{t} A_{k}$ be the adjoint of K_{k} with respect to $a_{k}(\cdot, \cdot)$. Let $\bar{R}_{k}=\left(I-K_{k}^{*} K_{k}\right) A_{k}^{-!}$. We need the following two assumptions concerning the smoother and the number of smoothing steps.

$$
\begin{equation*}
C \Lambda_{k}^{-1}(u, u) \leq\left(\bar{R}_{k} u, u\right), \quad \forall u \in V_{k} \tag{A.2}
\end{equation*}
$$

There exist β_{0} and $\beta_{1}, 1<\beta_{0} \leq \beta_{1}$ such that the smoothing steps for variable V-cycle satisfy

$$
\begin{equation*}
\beta_{0} m_{k} \leq m_{k-1} \leq \beta_{1} m_{k} \tag{A.3}
\end{equation*}
$$

Let δ_{k} or δ be the contraction number of the multigrid algorithm, that is $\mid a_{k}((I-$ $\left.\left.B_{k} A_{k}\right) u, u\right) \mid \leq \delta_{k} a_{k}(u, u)$. A standard argument now yields the following two theorems.

Theorem 1. If the smoother R_{k} satisfies (A.2), and the number of smoothing steps $m_{k} \equiv m$ is sufficient large, but independent of k, then there exists a constant $M>0$ such that the contraction number for W-cycle multigrid satisfies $\delta \leq \frac{M}{M+m^{1 / 4}}$.

Theorem 2. If the smoother R_{k} satisfies (A.2) and the number of smoothing m_{k} satisfies (A.3), then there exists a constant $M>0$ such that the variable V-cycle preconditioner satisfies

$$
\frac{m_{k}^{1 / 4}}{M+m_{k}^{1 / 4}} a_{k}(u, u) \leq a_{k}\left(B_{k} A_{k} u, u\right) \leq \frac{M+m_{k}^{1 / 4}}{m_{k}^{1 / 4}} a_{k}(u, u) .
$$

Thus, the condition number of the matrix $B_{k} A_{k}$ is unifoormly bounded, that is $\operatorname{Cond}\left(B_{k} A_{k}\right) \leq\left[\frac{M+m_{k}^{1 / 4}}{m_{k}^{1 / 4}}\right]^{2}$.

Acknowledgement. The second author wishes to thank Professor Lieheng Wang and Professor Dehao Yu for their valuable discussions.

References

[1] J.H. Bramble, Multigrid Methods, Cornell Mathematics Department Lecture Notes, Pitman, 1993.
[2] J.H. Bramble, J.E. Pasciak and J. Xu, The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms, Math. Comp., 56 (1991), 1-34.
[3] S.C. Brenner, An optimal order multigrid method for the biharmonic equation, SIAM. J. Numer. Anal., 26 (1989), 1124-1138.
[4] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[5] K. Feng, On the theory of discontinuous finite elements, Math. Numer. Sinica, 1:4 (1979), 378-385.
[6] P. Peisker and D. Braess, A conjugate gradient method and a multigrid algorithm for Morley's finite element approximation of the biharmonic equation, Numer.Math., 50 (1987), 567-586.
[7] Z.C. Shi, On the error estimate for Morley element. Mathematica Numerica Sinica, 12 (1990), 113-118.
[8] Z.C. Shi, X.J Yu and Z.H. Xie, A multigrid method for Bergan's energy-orthogonal plate element, Lecture Notes in Num. Appl. Anal., 14, (1995), 159-169; Advances in Numerical Mathematics; Proceedings of the Second Japan-China Seminar on Numerical Mathematics.
[9] Zhenghui Xie, Domain Decomposition and Multigrid Methods for Nonconforming Plate Elements, Ph.D dissertation, The Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, 1996.

[^0]: * Received October 21, 1996
 ${ }^{1)}$ This work was supported by Chinese National Key Project of Fundamental Research: Methods and Theories in Large-scale Scientific and Engineering Computing.

